Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = host genetic variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4113 KiB  
Article
Genetic Variation Associated with Leaf Phenology in Pedunculate Oak (Quercus robur L.) Implicates Pathogens, Herbivores, and Heat Stress as Selective Drivers
by Jonatan Isaksson, Marcus Hall, Iryna Rula, Markus Franzén, Anders Forsman and Johanna Sunde
Forests 2025, 16(8), 1233; https://doi.org/10.3390/f16081233 - 26 Jul 2025
Viewed by 364
Abstract
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this [...] Read more.
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this leaves genetic signatures allowing for projections of future responses. We investigated environmental correlates and genetic variation putatively associated with spring and autumn leaf phenology in northern range margin oak (Quercus robur L.) populations in Sweden (55.6° N–60.8° N). Results suggested that budburst occurred later at higher latitudes and in locations with colder spring (April) temperatures, whereas leaf senescence occurred earlier at higher latitudes. Several candidate loci associated with phenology were identified (n = 40 for budburst and 47 for leaf senescence), and significant associations between these loci and latitude were detected. Functions associated with some of the candidate loci, as identified in previous studies, included host defence and heat stress tolerance. The proportion of polymorphic candidate loci associated with budburst decreased with increasing latitude, towards the range margin. Overall, the Swedish oak population seems to comprise genetic diversity in phenology-related traits that may provide resilience to a rapidly changing climate. Full article
(This article belongs to the Special Issue Woody Plant Phenology in a Changing Climate, 2nd Edition)
Show Figures

Figure 1

15 pages, 236 KiB  
Article
Insights into Fanconi Anemia Based on Molecular and Clinical Characteristics: A Multicentre Study of 13 Patients
by Simoni Saranti, Nikoletta Selenti, Christalena Sofocleous, Joanne Traeger-Synodinos, Antonis Kattamis, Vassilios Papadakis, Evgenios Goussetis, Charikleia Kelaidi, Anna Paisiou, Sophia Polychronopoulou and Lydia Kossiva
Children 2025, 12(8), 973; https://doi.org/10.3390/children12080973 - 24 Jul 2025
Viewed by 346
Abstract
Background: Fanconi Anemia (FA) is a rare disorder, characterized by chromosomal instability, congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. FA is caused by pathogenic variants in any of the 23 (FANCA-FANCY) linked genes. Procedure: Retrospective analysis [...] Read more.
Background: Fanconi Anemia (FA) is a rare disorder, characterized by chromosomal instability, congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. FA is caused by pathogenic variants in any of the 23 (FANCA-FANCY) linked genes. Procedure: Retrospective analysis of 13 FA patients with a causative variant was performed. Patients (6 boys and 7 girls) aged from 9 to 26 years old, (mean age of 7.3 years), at diagnosis. Results: Phenotype evaluation demonstrated in 11/13 patients’ congenital anomalies, with pigmentary changes and short stature, present in 90% of cases. Hematological abnormalities were present in 10/11 patients, with thrombocytopenia being the prominent finding. Genetic analysis for the most common complementation group FA-A revealed that 12/13 patients belonged to this group and only one patient was found to be FA-E. Exon deletions, single nucleotide variations, and duplications were identified. Familial patterns, due to consanguinity, were evident in one case. Twelve patients underwent hematopoietic stem cell transplantation (HSCT), with variable pre-HSCT supportive treatments. Post-HSCT data showed that 9 out of 10 patients for whom follow up data was available, survived for a median time of 5.4 years. Complications like acute graft-versus-host disease were noted. Conclusions: Our study highlights the importance of genotype towards tailored monitoring for children and families with FA. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
14 pages, 846 KiB  
Article
Uncovering Allele-Specific Expression Patterns Associated with Sea Lice (Caligus rogercresseyi) Burden in Atlantic Salmon
by Pablo Cáceres, Paulina López, Carolina Araya, Daniela Cichero, Liane N. Bassini and José M. Yáñez
Genes 2025, 16(7), 841; https://doi.org/10.3390/genes16070841 - 19 Jul 2025
Viewed by 377
Abstract
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain [...] Read more.
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain unclear. Methods: two sea lice challenge trials were conducted, achieving high infestation rates (47.5% and 43.5%). A total of 85 fish, selected based on extreme phenotypes for lice burden (42 low, 43 high), were subjected to transcriptomic analysis. Differential gene expression was integrated with allele-specific expression (ASE) analysis to uncover cis-regulatory variation influencing host response. Results: Sixty genes showed significant ASE (p < 0.05), including 33 overexpressed and 27 underexpressed. Overexpressed ASE genes included Keratin 15, Collagen IV/V, TRIM16, and Angiopoietin-1-like, which are associated with epithelial integrity, immune response, and tissue remodeling. Underexpressed ASE genes such as SOCS3, CSF3R, and Neutrophil cytosolic factor suggest individual variation in cytokine signaling and oxidative stress pathways. Conclusions: several ASE genes co-localized with previously identified QTLs for sea lice resistance, indicating that cis-regulatory variants contribute to phenotypic differences in parasite susceptibility. These results highlight ASE analysis as a powerful tool to identify functional regulatory elements and provide valuable candidates for selective breeding and genomic improvement strategies in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

23 pages, 20063 KiB  
Article
The Genesis of a Thin-Bedded Beach-Bar System Under the Strike-Slip Extensional Tectonic Framework: A Case Study in the Bohai Bay Basin
by Jing Wang, Youbin He, Hua Li, Bin Feng, Zhongxiang Zhao, Xing Yu and Xiangyang Hou
Appl. Sci. 2025, 15(14), 7964; https://doi.org/10.3390/app15147964 - 17 Jul 2025
Viewed by 223
Abstract
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, [...] Read more.
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, geochemical analyses, and palynological data, this study investigates the sedimentary characteristics, sandbody distribution patterns, controlling factors, and genetic model of this lacustrine beach-bar system. Results reveal the following: (1) widespread thin-bedded beach-bar sandbodies dominated by fine-grained sandstones and siltstones, exhibiting wave ripples and low-angle cross-bedding; (2) two vertical stacking patterns, Type A, thick mudstone intervals intercalated with laterally continuous thin sandstone layers, and Type B, composite sandstones comprising thick sandstone units overlain by thin sandstone beds, both demonstrating significant lateral continuity; (3) three identified microfacies: bar-core, beach-core, and beach-margin facies; (4) key controls on sandbody development: paleoenvironmental evolution establishing the depositional framework, secondary fluctuations modulating depositional processes, strike-slip extensional tectonics governing structural zonation, paleobathymetry variations and paleotopography controlling distribution loci, and provenance clastic influx regulating scale and enrichment (confirmed by detrital zircon U-Pb dating documenting a dual provenance system). Collectively, these findings establish a sedimentary model for a thin-bedded beach-bar system under the strike-slip extensional tectonic framework. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
Effects of Endosymbionts on the Nutritional Physiology and Biological Characteristics of Whitefly Bemisia tabaci
by Han Gao, Xiang-Jie Yin, Zhen-Huai Fan, Xiao-Hang Gu, Zheng-Qin Su, Bing-Rui Luo, Bao-Li Qiu and Li-He Zhang
Insects 2025, 16(7), 703; https://doi.org/10.3390/insects16070703 - 9 Jul 2025
Viewed by 435
Abstract
Insects and their endosymbionts have a close mutualistic relationship. However, the precise nature of the bacterial endosymbiont-mediated interaction between host plants and whitefly Bemisia tabaci MEAM1 is still unclear. In the present study, six populations of Bemisia tabaci MEAM1 sharing the same genetic [...] Read more.
Insects and their endosymbionts have a close mutualistic relationship. However, the precise nature of the bacterial endosymbiont-mediated interaction between host plants and whitefly Bemisia tabaci MEAM1 is still unclear. In the present study, six populations of Bemisia tabaci MEAM1 sharing the same genetic background were established by rearing insects for ten generations on different host plants, including poinsettia, cabbage, cotton, tomato, and tobacco, and an additional population was reared on cotton and treated with antibiotics. The physiological and nutritional traits of the insects were found to be dependent on the host plant on which they had been reared. Systematic analysis was conducted on the endosymbiont titers, the amino acid molecules and contents, as well as developmental and oviposition changes in the MEAM1 populations reared on each host plant tested. The results indicate that B. tabaci contained the primary symbiont Portiera and the secondary symbionts Hamiltonella and Rickettsia. In addition, the titer of endosymbiotic bacteria in females is higher than that in males. Among the MEAM1 populations reared on each host plant, the variation pattern of Portiera titer generally corresponded with changes in biological characteristics (body length, weight and fecundity) and AA contents. This suggests that changes in the amino acid contents and biological characteristics of different B. tabaci populations may be due to changes in the Portiera content and the differences in the nutrition of the host plants themselves. Our findings were further confirmed by the reduction in Portiera with antibiotic treatment. The amino acids, body size, body weight, and fecundity of B. tabaci were all reduced with the decrease in the Portiera titer after antibiotic treatment. In summary, our research revealed that host plants can affect the content of symbiotic bacteria, particularly Portiera, and subsequently affect the nutrition (i.e., the essential amino acids content) of host insects, thus changing their biological characteristics. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

13 pages, 2220 KiB  
Article
Metagenome Analysis Reveals Changes in Gut Microbial Antibiotic Resistance Genes and Virulence Factors in Reintroduced Giant Pandas
by Wanju Feng, Chenyi Gao, Xinyuan Cui, Bing Yang, Ke He, Qiuyu Huang, Xinru Yang, Kaizhi Wen, Jiadong Xie, Zhisong Yang and Lifeng Zhu
Microorganisms 2025, 13(7), 1616; https://doi.org/10.3390/microorganisms13071616 - 9 Jul 2025
Viewed by 359
Abstract
Antibiotic resistance has emerged as a critical global public health challenge. In this study, we employed metagenomic sequencing to analyze fecal samples from giant pandas (Ailuropoda melanoleuca) across three distinct stages—semi-wild, released, and wild populations—to investigate shifts in antibiotic resistance genes [...] Read more.
Antibiotic resistance has emerged as a critical global public health challenge. In this study, we employed metagenomic sequencing to analyze fecal samples from giant pandas (Ailuropoda melanoleuca) across three distinct stages—semi-wild, released, and wild populations—to investigate shifts in antibiotic resistance genes (ARGs) and virulence factors (VFs) during the reintroduction process. Our findings revealed significant variations in the composition of ARG and VF across different stages, with released and wild giant pandas exhibiting similar ARG and VF profiles. Further analyses identified that the increased abundance of ARGs and VFs in both released and wild individuals compared to semi-wild individuals was mainly from Pseudomonas. We hypothesized that the same geographic environment in which ARGs and VFs are transmitted between a host and the environment via mobile genetic elements (MGEs) may be responsible for the similar structure of ARGs and VFs in released and wild giant pandas. Additionally, diet may modulate the gut microbial community, thereby influencing the distributions of ARG and VF. This study elucidated the impact of geographic and dietary factors on ARGs and VFs dynamics in giant pandas, offering valuable insights for mitigating antibiotic resistance and virulence gene dissemination. Full article
(This article belongs to the Special Issue Gut Microbiota: Metagenomics to Study Ecology, 2nd Edition)
Show Figures

Figure 1

43 pages, 1468 KiB  
Review
Biometric Strategies to Improve Vaccine Immunogenicity and Effectiveness
by Vicente Javier Clemente-Suárez, Laura Redondo-Flórez, Alvaro Bustamante-Sánchez, Alexandra Martín-Rodríguez, Rodrigo Yáñez-Sepúlveda and Jose Francisco Tornero-Aguilera
Biomimetics 2025, 10(7), 439; https://doi.org/10.3390/biomimetics10070439 - 3 Jul 2025
Viewed by 644
Abstract
Background: Vaccines have revolutionized disease prevention, yet their effectiveness is challenged by variable immunogenicity, individual response differences, and emerging variants. Biomimetic strategies, inspired by natural immune processes, offer new avenues to enhance vaccine performance. Objectives: This narrative review examines how bioinspired approaches—grounded in [...] Read more.
Background: Vaccines have revolutionized disease prevention, yet their effectiveness is challenged by variable immunogenicity, individual response differences, and emerging variants. Biomimetic strategies, inspired by natural immune processes, offer new avenues to enhance vaccine performance. Objectives: This narrative review examines how bioinspired approaches—grounded in evolutionary medicine, immunology, and host–microbiota interactions—can improve vaccine immunogenicity and long-term protection. We further examine the evolutionary foundations of immune responses, highlighting how an evolutionary perspective can inform the development of durable, broadly protective, and personalized vaccines. Furthermore, mechanistic insights at the molecular and cellular level are explored, including Toll-like receptor (TLR) engagement, dendritic cell activation pathways, and MHC-I/MHC-II-mediated antigen presentation. These mechanisms are often mimicked in biomimetic systems to enhance uptake, processing, and adaptive immune activation. Results: The review highlights how immunosenescence, maternal immunity, genetic variation, and gut microbiota composition influence vaccine responses. Biomimetic platforms—such as nanoparticle carriers and novel adjuvants—enhance antigen presentation, boost adaptive immunity, and may overcome limitations in traditional vaccine approaches. Additionally, co-administration strategies, delivery systems, and microbiota-derived immunomodulators show promise in improving vaccine responsiveness. Conclusions: Integrating biomimetic and evolutionary principles into vaccine design represents a promising path toward safer, longer-lasting, and more effective immunizations Full article
Show Figures

Figure 1

14 pages, 1995 KiB  
Article
Genetic and Morphological Variation Among Populations of Duckweed Species in Thailand
by Athita Senayai, Yosapol Harnvanichvech, Srunya Vajrodaya, Tokitaka Oyama and Ekaphan Kraichak
Plants 2025, 14(13), 2030; https://doi.org/10.3390/plants14132030 - 2 Jul 2025
Viewed by 1455
Abstract
Duckweeds have emerged as frontier plants in research, food, and bioenergy applications. Consistency in genetic and morphological traits within species is therefore crucial for their effective use. Thailand hosts diverse duckweed populations with representatives from four of the five genera and at least [...] Read more.
Duckweeds have emerged as frontier plants in research, food, and bioenergy applications. Consistency in genetic and morphological traits within species is therefore crucial for their effective use. Thailand hosts diverse duckweed populations with representatives from four of the five genera and at least four species recorded. However, the extent of genetic and morphological variation within these species in Thailand remains unclear. Here, we investigated the genetic and morphological variation in four duckweed species—Landoltia punctata, Lemna aequinoctialis, Spirodela polyrhiza, and Wolffia globosa—collected from 26 sites across Thailand. Using the multilocus sequence typing approach based on three chloroplast genes (rbcL, atpF–atpH, and psbK–psbI), we show that genetic variation in duckweed is distinct at both inter-species and intra-species levels. Among these four species, Lemna aequinoctialis exhibits the highest genetic variation, forming four distinct phylogenetic clusters. This is followed by Spirodela polyrhiza, Wolffia globosa, and Landoltia punctata. In addition, we observe that morphological variation, particularly frond aspect ratio, varies significantly among clusters but remains consistent within each cluster of each species. These findings suggest that duckweed populations in Thailand exhibit substantial genetic variation at the intraspecific level, which is closely associated with frond morphological variation. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

19 pages, 1219 KiB  
Review
Carboxylesterase Factors Influencing the Therapeutic Activity of Common Antiviral Medications Used for SARS-CoV-2 Infection
by Yue Shen, William Eades, Linh Dinh and Bingfang Yan
Pharmaceutics 2025, 17(7), 832; https://doi.org/10.3390/pharmaceutics17070832 - 26 Jun 2025
Viewed by 574
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have been shown to inhibit SARS-CoV-2 replication and are approved for treating SARS-CoV-2 infections. Nirmatrelvir inhibits the viral main protease (Mpro), a key enzyme for processing polyproteins in viral replication. In contrast, molnupiravir, favipiravir, and remdesivir are prodrugs that target RNA-dependent RNA polymerase (RdRp), which is crucial for genome replication and subgenomic RNA production. However, undergoing extensive metabolism profoundly impacts their therapeutic effects. Carboxylesterases (CES) are a family of enzymes that play an essential role in the metabolism of many drugs, especially prodrugs that require activation through hydrolysis. Molnupiravir is activated by carboxylesterase-2 (CES2), while remdesivir is hydrolytically activated by CES1 but inhibits CES2. Nirmatrelvir and remdesivir are oxidized by the same cytochrome P450 (CYP) enzyme. Additionally, various transporters are involved in the uptake or efflux of these drugs and/or their metabolites. It is well established that drug-metabolizing enzymes and transporters are differentially expressed depending on the cell type, and these genes exhibit significant polymorphisms. In this review, we examine how CES-related cellular and genetic factors influence the therapeutic activities of these widely used COVID-19 medications. This article highlights implications for improving product design, targeted inhibition, and personalized medicine by exploring genetic variations and their impact on drug metabolism and efficacy. Full article
(This article belongs to the Special Issue ADME Properties in the Drug Delivery)
Show Figures

Figure 1

32 pages, 1826 KiB  
Review
Regulatory Genetic Networks by microRNAs: Exploring Genomic Signatures in Cervical Cancer
by Carlos Pérez-Plasencia, Yaneth Citlalli Orbe-Orihuela, Armando Méndez-Herrera, Jessica Deas, Claudia Gómez-Cerón, Hilda Jiménez-Wences, Julio Ortiz-Ortiz, Gloria Fernández-Tilapa, Aldo Francisco Clemente-Soto, Jesús Ricardo Parra-Unda, Jesús Salvador Velarde-Felix, Mauricio Rodríguez-Dorantes and Oscar Peralta-Zaragoza
Biomedicines 2025, 13(6), 1457; https://doi.org/10.3390/biomedicines13061457 - 13 Jun 2025
Viewed by 786
Abstract
Cervical cancer remains a significant global health concern, impacting over half a million women annually. The primary cause is a persistent infection with hr-HPV, which disrupts various cellular processes crucial for normal function. This disruption leads to genetic instability, including changes in the [...] Read more.
Cervical cancer remains a significant global health concern, impacting over half a million women annually. The primary cause is a persistent infection with hr-HPV, which disrupts various cellular processes crucial for normal function. This disruption leads to genetic instability, including changes in the expression of microRNAs and their corresponding host genes, with far-reaching consequences for cellular regulation. Researchers have widely utilized high-throughput technologies to analyze gene expression in cervical cancer, aiming to identify distinct molecular signatures of microRNAs and genes through genomic analysis. However, discrepancies among studies have been noted, possibly due to variations in sample collection, technological platforms, and data processing methods such as normalization and filtering. Therefore, it is essential to synthesize findings from diverse studies to comprehensively understand the molecular mechanisms of regulatory genetic networks involved in the initiation and progression of cervical cancer. This review examined the evidence detailing the role of microRNA signatures and their target genes in cervical carcinogenesis and disease advancement. The accumulated data suggest the presence of widespread regulatory genetic networks active in both precancerous and cancerous cervical cells, potentially acting as key drivers of this malignancy. Identifying these molecular genomic signatures could open new avenues for developing therapeutic strategies for cervical cancer, particularly in the realm of precision medicine. Full article
(This article belongs to the Special Issue Advanced Research in Gynecologic Oncology)
Show Figures

Figure 1

16 pages, 1810 KiB  
Article
Occurrence and Genetic Variation of Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae), a Newly Emerging Pest, Among Hosts in Northeast China
by Wei Sun, Xiuhua Zhang, Jiachun Zhou and Yuebo Gao
Insects 2025, 16(6), 605; https://doi.org/10.3390/insects16060605 - 8 Jun 2025
Viewed by 1106
Abstract
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle [...] Read more.
The northeast region of China plays a crucial role in crop production. The leaf beetle Monolepta hieroglyphica (Motschulsky, 1858) (Coleoptera: Chrysomelidae) has emerged as a potential threat to food security in the region. With a wide distribution spanning Asia and Russia, this beetle affects various crops. However, limited information is available regarding its occurrence patterns and genetic diversity among major crops in the region. Based on systematic observations across various hosts, coupled with genetic variation analysis using mitochondrial DNA markers, the main results were as follows. Leaf beetle occurrence varied among hosts, peaking from late July to mid-August, with maize and soybean fields exhibiting higher infestation rates compared with other crops. Notably, late-cultivated maize fields harbored the highest beetle numbers due to the species’ preference for young leaves. The host transfer trajectory may have originated in soybean and weeds, with subsequent alternation between host plants and other crops, before the final migration to cabbage and late-cultivated maize fields. Genetic analysis revealed nine COI haplotypes, four COII haplotypes, eleven Cytb haplotypes, and twenty-one combined haplotypes. No clear relationship existed between genetic diversity and occurrence, and no distinct host-based genetic patterns emerged from neighbor-joining tree and haplotype network analyses. High gene flow rates were observed, likely contributing to decreased genetic variation. An analysis of molecular variance results indicated major genetic variation within populations, although genetic distance and haplotype distribution indicated divergence among host populations. These results provide foundational data for developing effective M. hieroglyphica pest management strategies. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

16 pages, 618 KiB  
Review
Host-Associated Biofilms: Vibrio fischeri and Other Symbiotic Bacteria Within the Vibrionaceae
by Joaquin Lucero and Michele K. Nishiguchi
Microorganisms 2025, 13(6), 1223; https://doi.org/10.3390/microorganisms13061223 - 27 May 2025
Viewed by 645
Abstract
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation [...] Read more.
Biofilm formation is important for microbial survival, adaptation, and persistence within mutualistic and pathogenic systems in the Vibironaceae. Biofilms offer protection against environmental stressors, immune responses, and antimicrobial treatments by increasing host colonization and resilience. This review examines the mechanisms of biofilm formation in Vibrio species, focusing on quorum sensing, cyclic-di-GMP signaling, and host-specific adaptations that influence biofilm structure and function. We discuss how biofilms differ between mutualistic and pathogenic species based on environmental and host signals. Recent advances in omics technologies such as transcriptomics and metabolomics have enhanced research in biofilm regulation under different conditions. Horizontal gene transfer and phase variation promote the greater fitness of bacterial biofilms due to the diversity of environmental isolates that utilize biofilms to colonize host species. Despite progress, questions remain regarding the long-term effects of biofilm formation and persistence on host physiology and biofilm community dynamics. Research integrating multidisciplinary approaches will help advance our understanding of biofilms and their implications for influencing microbial adaptation, symbiosis, and disease. These findings have applications in biotechnology and medicine, where the genetic manipulation of biofilm regulation can enhance or disrupt microbiome stability and pathogen resistance, eventually leading to targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

12 pages, 2313 KiB  
Article
Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis
by Jieli Fan, Yanan Yin, Yanhui Liu, Yuan Chen, Wenxing Long and Chenghong Liao
Microorganisms 2025, 13(6), 1214; https://doi.org/10.3390/microorganisms13061214 - 26 May 2025
Viewed by 556
Abstract
The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates globally, threatened by habitat destruction, genetic diversity loss, and ecological competition. In this study, given the critical role of the gut microbiota in host immune regulation and nutrient metabolism, [...] Read more.
The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates globally, threatened by habitat destruction, genetic diversity loss, and ecological competition. In this study, given the critical role of the gut microbiota in host immune regulation and nutrient metabolism, we investigated the composition of and age-related variations in the gut microbiota in Hainan gibbons. Using 16S rRNA sequencing, we systematically investigated the gut microbial diversity of Hainan gibbons. We collected 41 fecal samples from Hainan Tropical Rainforest National Park, covering three age groups: juveniles (4–6 years), subadults (7–10 years), and elderly animals (≥13 years). This study found that microbiota composition changed significantly with age. Juveniles had higher microbial diversity and complexity, while subadults showed an increased abundance of Fibrobacter and Prevotella in their microbial communities, along with a Tax4Fun-predicted enrichment of functional genes related to energy metabolism, cell motility, and nervous system functions. LEfSe analysis identified statistically significant microbial taxa among different age groups, with Bacteroidota and Firmicutes being the dominant phyla across all groups with varying proportions. These results highlight the critical role of the gut microbiota in the health and adaptability of Hainan gibbons, offering insights for conservation strategies. The findings of this study are significant for understanding the changes in gut microbiota and their ecological functions across different life stages of endangered primates. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

22 pages, 8666 KiB  
Article
Comparative Mitochondrial Genome Analysis of the Intestinal Schistosomiasis Snail Host Biomphalaria pfeifferi from Multiple Populations in Gezira State, Sudan
by Arwa Osman, Peter S. Andrus, Xianglu Zhu, Zhaoyang Dong, Yunhai Guo, Bakri Y. M. Nour, Xiaonong Zhou and Liming Zhao
Int. J. Mol. Sci. 2025, 26(10), 4756; https://doi.org/10.3390/ijms26104756 - 16 May 2025
Viewed by 570
Abstract
Biomphalaria pfeifferi is a key intermediate host for Schistosoma mansoni transmission in Sudan. In total, 27 complete mitochondrial genomes from seven B. pfeifferi populations in Gezira State, Sudan, were sequenced for the first time to investigate their population structure and phylogenetic relationships. This involved [...] Read more.
Biomphalaria pfeifferi is a key intermediate host for Schistosoma mansoni transmission in Sudan. In total, 27 complete mitochondrial genomes from seven B. pfeifferi populations in Gezira State, Sudan, were sequenced for the first time to investigate their population structure and phylogenetic relationships. This involved comparing the nucleotide composition, codon usage, rRNAs, and tRNAs of the East Gezira (EG), South Gezira (SG), Hasahisa (HA), Greater Wad Medani (GW), Managil (MA), and North Umelgura (NU1, NU3) populations. All 27 mitogenomes (13,688–13,696 bp) contained 37 genes with conserved AT/GC content (76.7/23.4%). Phylogenetic analysis revealed that although samples clustered within the same clade, B. pfeifferi from EG, SG, NU1, and NU3 grouped closely with B. pfeifferi from Kenya, whereas HA and GW samples formed distinct ancestral lineages. The MA population exhibited unique genetic characteristics, supported by phylogenetic trees and nucleotide/amino acid identity, suggesting the potential presence of a distinct B. pfeifferi subspecies that warrants further investigation. All protein-coding genes evolved under negative selection, with the amino acids of nad1 and nad6 being highly conserved, while nad3 exhibited some variation. Further research on the mitogenomic diversity of B. pfeifferi and other Biomphalaria species in Sudan and across Africa is needed in order to better understand the population structure and evolutionary history of Biomphalaria. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 3400 KiB  
Article
Genetic Diversity and Conservation of Bomarea ovallei (Phil.) Ravenna: Microsatellite Markers Reveal Population Vulnerability in the Atacama Desert
by Valeska Rozas-Lazcano, Mariel Mamani-Gómez, Irina Rojas-Jopia, Mariana Arias-Aburto and Roberto Contreras-Díaz
Plants 2025, 14(10), 1468; https://doi.org/10.3390/plants14101468 - 14 May 2025
Viewed by 447
Abstract
The Atacama Desert, the driest and oldest desert on Earth, hosts a unique floral phenomenon known as the Desierto Florido (Flowering Desert), which occurs sporadically in response to rare rainfall events. Bomarea ovallei (Phil.) Ravenna is an endemic and endangered species of the [...] Read more.
The Atacama Desert, the driest and oldest desert on Earth, hosts a unique floral phenomenon known as the Desierto Florido (Flowering Desert), which occurs sporadically in response to rare rainfall events. Bomarea ovallei (Phil.) Ravenna is an endemic and endangered species of the Atacama Desert. However, its populations are geographically restricted and potentially vulnerable to genetic erosion due to isolation and extreme environmental conditions. This study aims to assess the genetic diversity of B. ovallei populations and develop microsatellite markers using next-generation sequencing (NGS) technology. A total of 268 microsatellite loci were identified, and 34 co-dominant markers were successfully developed for the first time in B. ovallei. Genetic diversity analysis using eight fluorescently labeled SSR markers revealed low genetic diversity across four populations, with the highest diversity observed in the QCA population, located within Llanos de Challe National Park, and the lowest in the TOTO population, which is highly exposed to anthropogenic activities. UPGMA and STRUCTURE analyses revealed three genetic clusters and high admixture among populations, suggesting historical or ongoing gene flow despite geographical separation. The presence of non-polymorphic loci and low PIC values in some markers further supports limited genetic variation. The newly developed microsatellite markers offer a valuable tool for future genetic studies, enabling the monitoring of genetic diversity and informing strategies for the preservation of this rare and ecologically significant species. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

Back to TopTop