Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = homogeneous magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 317
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

13 pages, 4772 KiB  
Article
Design of Low-SAR High-Efficiency Terminal Antenna Using Magnetic Field Homogenization
by Sihan Xiao, Yong-Chang Jiao, Ziming Lv, Liupeng Zan and Zibin Weng
Micromachines 2025, 16(8), 856; https://doi.org/10.3390/mi16080856 - 25 Jul 2025
Viewed by 242
Abstract
A low-SAR high-efficiency terminal antenna based on the magnetic field homogenization is proposed in this paper. Starting from the spatial correlation between the antenna’s near-field tangential magnetic field hotspots and SAR distribution, the influence of hotspot distribution on SAR was analyzed, and we [...] Read more.
A low-SAR high-efficiency terminal antenna based on the magnetic field homogenization is proposed in this paper. Starting from the spatial correlation between the antenna’s near-field tangential magnetic field hotspots and SAR distribution, the influence of hotspot distribution on SAR was analyzed, and we found that a homogenized tangential magnetic field distribution can reduce the SAR without compromising the radiation efficiency. Based on the SAR reduction mechanism, a low-SAR high-efficiency terminal antenna was designed. By adjusting the magnetic field distributions on two planes with the highest initial SARs, 39% and 27% SAR reduction is achieved, respectively. Measurement results show that the antenna operates in the 3.3 GHz to 3.8 GHz band, with a radiation efficiency exceeding 69%, and a peak 10 g average SAR of 1.39 W/kg at 3.6 GHz. Full article
Show Figures

Figure 1

24 pages, 3701 KiB  
Article
Multifunctional REE Selective Hybrid Membranes Based on Ion-Imprinted Polymers and Modified Multiwalled Carbon Nanotubes: A Physicochemical Characterization
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Waldemar Kaszuwara, Mariusz Nyc, Rafał Molak, Jakub Jaroszewicz and Spas D. Kolev
Int. J. Mol. Sci. 2025, 26(15), 7136; https://doi.org/10.3390/ijms26157136 - 24 Jul 2025
Viewed by 309
Abstract
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), [...] Read more.
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), X-ray micro-tomography, and Fourier transform infrared spectroscopy (FTIR). The hybrid membranes were also studied in terms of their mechanical and rheological properties. The key element of the proper preparation of hybrid membranes using the casting method in an external magnetic field was to synthesize membrane components with appropriate magnetic properties. It was found that they showed tunable weak ferromagnetic properties, and the increase in modified nanotube addition caused the rise in the membrane’s saturation magnetization, which for Nd-selective hybrid membranes reached 0.44 emu/g. Also, the increase in thermooxidative stability was noted after introducing functionalized nanotubes into polymer matrices, which, in the case of Gd-selective membranes, were stable even up to 730 °C. The rise in the modified MWCNT addition and selection of appropriate REE ion-imprinted polymers improved mechanical (Rm and E values increase even twice) and rheological parameters (almost double growth of E′ and E″ values) of the tested membranes. Synthesized hybrid membranes showed a high rejection of matrix components and an increase in retention ratio with rising MWCNT-REEIIP addition, ultimately reaching 94.35%, 92.12%, and 90.11% for Nd, Pr, and Gd, respectively. The performed analysis confirmed homogeneous dispersion, phase compatibility, network integration, formation of a complex 3D microstructure, and improved operational stability of created hybrid membranes, which is significant for their future applications in Nd, Pr, and Gd recovery from coal fly ash extracts. Full article
Show Figures

Graphical abstract

18 pages, 6380 KiB  
Article
Synthesis and Application of Fe3O4–ZrO2 Magnetic Nanoparticles for Fluoride Adsorption from Water
by Israel Águila-Martínez, José Antonio Pérez-Tavares, Efrén González-Aguiñaga, Pablo Eduardo Cardoso-Avila, Héctor Pérez Ladrón de Guevara and Rita Patakfalvi
Inorganics 2025, 13(7), 248; https://doi.org/10.3390/inorganics13070248 - 19 Jul 2025
Viewed by 616
Abstract
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios [...] Read more.
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios of 1:1, 1:2, and 1:4, and characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FTIR analysis confirmed the presence of Fe3O4 and ZrO2 functional groups, while XRD showed that increased Zr content led to a dominant amorphous phase. SEM and EDS analyses revealed quasi-spherical and elongated morphologies with uniform elemental distribution, maintaining the designed Fe/Zr ratios. Preliminary adsorption tests identified the Fe/Zr = 1:1 (M1) nanoadsorbent as the most effective due to its high surface homogeneity and optimal fluoride-binding characteristics. Adsorption experiments demonstrated that the material achieved a maximum fluoride adsorption capacity of 70.4 mg/g at pH 3, with the adsorption process best fitting the Temkin isotherm model (R2 = 0.987), suggesting strong adsorbate–adsorbent interactions. pH-dependent studies confirmed that adsorption efficiency decreased at higher pH values due to electrostatic repulsion and competition with hydroxyl ions. Competitive ion experiments revealed that common anions such as nitrate, chloride, and sulfate had negligible effects on fluoride adsorption, whereas bicarbonate, carbonate, and phosphate reduced removal efficiency due to their strong interactions with active adsorption sites. The Fe3O4–ZrO2 nanoadsorbent exhibited excellent magnetic properties, facilitating rapid and efficient separation using an external magnetic field, making it a promising candidate for practical water treatment applications. Full article
Show Figures

Graphical abstract

16 pages, 2849 KiB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 346
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 2914 KiB  
Article
Asymmetric Magnetohydrodynamic Propulsion for Oil–Water Core Annular Flow Through Elbow
by Chengming Wang, Zezhong Jia, Lei Yang, Yongqi Xu, Jinhao Zhao, Shihui Jiao, Hao Ma, Ruofan Shen, Erjun Liang, Weiwei Zhang, Yanyan Liu and Baojun Li
Appl. Sci. 2025, 15(12), 6828; https://doi.org/10.3390/app15126828 - 17 Jun 2025
Viewed by 303
Abstract
The use of oil–water rings has become an emerging, effective, and energy-saving method of transporting heavy oil. Maintaining the shape of the oil–water ring and preventing rupture during the transport of heavy oil are of great scientific significance in oil–water annular flow transportation. [...] Read more.
The use of oil–water rings has become an emerging, effective, and energy-saving method of transporting heavy oil. Maintaining the shape of the oil–water ring and preventing rupture during the transport of heavy oil are of great scientific significance in oil–water annular flow transportation. To ensure the oil–water ring passes smoothly through the elbow without rupture, this article proposes an asymmetrical magnetohydrodynamic (MHD) propulsion method to utilize the significant difference between the conductivity of heavy oil and electrolyte solution to achieve an accelerating effect on the outer water ring. The magnetohydrodynamic device designed by this method can generate a magnetic field and provide Lorentzian magnetic force to achieve the asymmetric acceleration of the oil and water rings, to homogenize the water ring velocity on the inner and outer elbows, to push the deviated oil core back to the center of the pipeline, and to repair the rupture of the water film. The flow state of the oil–water ring in the bend pipe under the joint action of the electric field and magnetic field is simulated by a differential MHD thick oil simulation flow model, which confirms that the device can realize the repair of the oil–water ring flow at the bend pipe and ensure that the oil–water ring flow passes through the bend pipe stably. Meanwhile, the effects of coil current, electrode plate voltage, and the conductivity of electrolyte solution on the morphology and velocity of the oil–water ring in the elbow are investigated. In addition, the role of the device in maintaining the morphology under different gravitational conditions is investigated. These results provide a reference design for related devices and offer a new approach to heavy oil transportation. Full article
Show Figures

Figure 1

11 pages, 288 KiB  
Article
Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces
by Muhammad Zainul Abidin and Abid Khan
Fractal Fract. 2025, 9(6), 360; https://doi.org/10.3390/fractalfract9060360 - 29 May 2025
Viewed by 378
Abstract
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild [...] Read more.
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild solution for small and divergence-free initial data. Moreover, our approach is based on proving sharp bilinear convolution estimates in critical Sobolev norms, which in turn guarantee the uniform analyticity of both the velocity and magnetic fields with respect to time. Furthermore, leveraging the decay properties of the associated fractional heat semigroup and a bootstrap argument, we derived algebraic decay rates and established the long-time dissipative behavior of FrMHD solutions. These results extended the existing literature on fractional Navier–Stokes equations by fully incorporating magnetic coupling and Coriolis effects within a unified fractional-dissipation framework. Full article
7 pages, 833 KiB  
Communication
Nonlinear Waves of a Surface Charge at the Boundary of a Semi-Infinite Cold Plasma in a Constant Magnetic Field
by Oleg M. Gradov
Physics 2025, 7(2), 16; https://doi.org/10.3390/physics7020016 - 14 May 2025
Viewed by 426
Abstract
In this paper, an equation describing nonlinear wave phenomena on the surface of magnetically active plasma in the approximation of the complete homogeneity of processes along the direction of the constant magnetic field is obtained. One of its solutions, in the form of [...] Read more.
In this paper, an equation describing nonlinear wave phenomena on the surface of magnetically active plasma in the approximation of the complete homogeneity of processes along the direction of the constant magnetic field is obtained. One of its solutions, in the form of a pulse having the shape of rapidly decaying oscillations with a changing period, is found to essentially depend on the magnitude of the magnetic field and shown to be approximately described by a specially selected analytical function. A detailed analytical analysis of the properties of another solitary wave formation existing under conditions of resonant coincidence of its carrier frequency with the corresponding value of its eigen surface oscillations in the considered cold semi-infinite plasma, in which a constant magnetic field is directed along its boundary, is also carried out. The conditions for the excitation of wave disturbances are determined, and analytical expressions that adequately describe the space–time structure of nonlinear waves are proposed. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
Show Figures

Figure 1

14 pages, 8581 KiB  
Article
Analysis Based on a Two-Dimensional Mathematical Model of the Thermo-Stressed State of a Copper Plate During Its Induction Heat Treatment
by Roman Musii, Myroslava Klapchuk, Eugeniusz Koda, Ivan Kernytskyy, Inga Svidrak, Ruslan Humeniuk, Yaroslav Sholudko, Mykola Nagirniak, Joanna Andrzejak and Yuriy Royko
Symmetry 2025, 17(5), 754; https://doi.org/10.3390/sym17050754 - 14 May 2025
Viewed by 314
Abstract
A two-dimensional physical and mathematical model is proposed for determining the components of the stress tensor and stress intensity in an electroconductive plate of rectangular cross-section under the action of an unsteady electromagnetic field. The two-dimensional thermomechanics problem for such a plate is [...] Read more.
A two-dimensional physical and mathematical model is proposed for determining the components of the stress tensor and stress intensity in an electroconductive plate of rectangular cross-section under the action of an unsteady electromagnetic field. The two-dimensional thermomechanics problem for such a plate is formulated. The determining functions are the component of the magnetic field intensity vector tangent to the plate bases, temperature, and components of the stress tensor. The methodology for solving the formulated thermomechanics problem by approximating all the determining functions by the thickness variable with cubic polynomials is developed. As a result, the original two-dimensional problems related to the determining functions are reduced to one-dimensional problems on the integral characteristics of these functions. To solve the obtained systems of equations for the integral characteristics of the determining functions, a finite integral transformation in the transverse variable is used. During induction heating of a copper plate by a homogeneous quasi-steady-state electromagnetic field, the change in the stress intensity depending on the Fourier time, as well as its distribution across the plate cross-section depending on the parameters of induction heating and the Biot criterion, is numerically analyzed. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

13 pages, 3492 KiB  
Article
Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis
by Joel Torres-Andrés, Guillermo Cassinello, Francesc Sagués and Jordi Ignés-Mullol
Colloids Interfaces 2025, 9(3), 27; https://doi.org/10.3390/colloids9030027 - 6 May 2025
Viewed by 769
Abstract
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the [...] Read more.
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the particles’ fore-aft symmetry thanks to anisotropies in the conductivity and dielectric permittivity parameters of the liquid crystal. Under the application of an AC electric field, asymmetric osmotic flows are generated to propel non-spherical particles, whose direction of motion depends on the orientational order of the liquid crystal molecules around the inclusions. This means that, by controlling the LC orientation, one will be able to steer driven colloidal inclusions. In this experimental work, we show that a homogeneous magnetic field that is able to control the orientation of the liquid crystal molecules also allows us to determine the direction of motion of driven particles without significant changes in the propulsion mechanism. Additionally, we show that a radial configuration of the magnetic field lines can be used to generate topological defects in the liquid crystal orientational field that attract colloidal particles, leading to their clustering as rotating mills. The generated clusters were tested to study the collective motion of particles, suggesting the presence of particle–particle interactions. Full article
Show Figures

Graphical abstract

21 pages, 4679 KiB  
Article
A Mathematical Modeling of Time-Fractional Maxwell’s Equations Under the Caputo Definition of a Magnetothermoelastic Half-Space Based on the Green–Lindsy Thermoelastic Theorem
by Eman A. N. Al-Lehaibi
Mathematics 2025, 13(9), 1468; https://doi.org/10.3390/math13091468 - 29 Apr 2025
Viewed by 338
Abstract
This study has established and resolved a new mathematical model of a homogeneous, generalized, magnetothermoelastic half-space with a thermally loaded bounding surface, subjected to ramp-type heating and supported by a solid foundation where these types of mathematical models have been widely used in [...] Read more.
This study has established and resolved a new mathematical model of a homogeneous, generalized, magnetothermoelastic half-space with a thermally loaded bounding surface, subjected to ramp-type heating and supported by a solid foundation where these types of mathematical models have been widely used in many sciences, such as geophysics and aerospace. The governing equations are formulated according to the Green–Lindsay theory of generalized thermoelasticity. This work’s uniqueness lies in the examination of Maxwell’s time-fractional equations via the definition of Caputo’s fractional derivative. The Laplace transform method has been used to obtain the solutions promptly. Inversions of the Laplace transform have been computed via Tzou’s iterative approach. The numerical findings are shown in graphs representing the distributions of the temperature increment, stress, strain, displacement, induced electric field, and induced magnetic field. The time-fractional parameter derived from Maxwell’s equations significantly influences all examined functions; however, it does not impact the temperature increase. The time-fractional parameter of Maxwell’s equations functions as a resistor to material deformation, particle motion, and the resulting magnetic field strength. Conversely, it acts as a catalyst for the stress and electric field intensity inside the material. The strength of the main magnetic field considerably influences the mechanical and electromagnetic functions; however, it has a lesser effect on the thermal function. Full article
Show Figures

Figure 1

27 pages, 1571 KiB  
Article
Gaussian Versus Mean-Field Models: Contradictory Predictions for the Casimir Force Under Dirichlet–Neumann Boundary Conditions
by Daniel Dantchev, Vassil Vassilev and Joseph Rudnick
Entropy 2025, 27(5), 468; https://doi.org/10.3390/e27050468 - 25 Apr 2025
Viewed by 427
Abstract
The mean-field model (MFM) is the workhorse of statistical mechanics: one normally accepts that it yields results which, despite differing numerically from correct ones, are not “very wrong”, in that they resemble the actual behavior of the system as eventually obtained by more [...] Read more.
The mean-field model (MFM) is the workhorse of statistical mechanics: one normally accepts that it yields results which, despite differing numerically from correct ones, are not “very wrong”, in that they resemble the actual behavior of the system as eventually obtained by more advanced treatments. This, for example, turns out to be the case for the Casimir force under, say, Dirichlet–Dirichlet, (+,+) and (+,) boundary conditions (BC) for which, according to the general expectations, the MFM is attractive for similar BC or repulsive for dissimilar BC force, with the principally correct position of the maximum strength of the force below or above the critical point Tc. It turns out, however, that this is not the case with Dirichlet–Neumann (DN) BC. In this case, the mean-field approach leads to an attractive Casimir force. This contradiction with the “boundary condition rule” is cured in the case of the Gaussian model under DN BC. Our results, which are mathematically exact, demonstrate that the Casimir force within the MFM is attractive as a function of temperature T and external magnetic field h, while for the Gaussian model, it is repulsive for h=0 and can be, surprisingly, both repulsive and attractive for h0. The treatment of the MFM is based on the exact solution of one non-homogeneous, nonlinear differential equation of second order. The Gaussian model is analyzed in terms of both its continuum and lattice realization. The obtained outcome teaches us that the mean-field results should be accepted with caution in the case of fluctuation-induced forces and ought to be checked against the more precise treatment of fluctuations within the envisaged system. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

25 pages, 1655 KiB  
Article
Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form
by Dimosthenis Stamopoulos
Crystals 2025, 15(4), 331; https://doi.org/10.3390/cryst15040331 - 30 Mar 2025
Cited by 1 | Viewed by 529
Abstract
Spherical structures of dielectric and magnetic materials are studied intensively in basic research and employed widely in applications. The polarization, (P for dielectric and M for magnetic materials), is the parent physical vector of all relevant entities (e.g., moment, , and force, [...] Read more.
Spherical structures of dielectric and magnetic materials are studied intensively in basic research and employed widely in applications. The polarization, (P for dielectric and M for magnetic materials), is the parent physical vector of all relevant entities (e.g., moment, , and force, F), which determine the signals recorded by an experimental setup or diagnostic equipment and configure the motion in real space. Here, we use classical electromagnetism to study the polarization, , of spherical structures of linear and isotropic—however, not necessarily homogeneous—materials subjected to an external vector field, (Eext for dielectric and Hext for magnetic materials), dc (static), or even ac of low frequency (quasistatic limit). We tackle an integro-differential equation on the polarization, , able to provide closed-form solutions, determined solely from , on the basis of spherical harmonics, Ylm. These generic equations can be used to calculate analytically the polarization, , directly from an external field, , of any form. The proof of concept is studied in homogeneous dielectric and magnetic spheres. Indeed, the polarization, , can be obtained by universal expressions, directly applicable for any form of the external field, . Notably, we obtain the relation between the extrinsic, , and intrinsic, , susceptibilities (χeext and χeint for dielectric and χmext and χmint for magnetic materials) and clarify the nature of the depolarization factor, , which depends on the degree l—however, not on the order m of the mode (l,m) of the applied . Our universal approach can be useful to understand the physics and to facilitate applications of such spherical structures. Full article
Show Figures

Figure 1

13 pages, 3444 KiB  
Article
Low-Field Magnetic Resonance Imaging: A Full-Wave Simulation of Radiofrequency Birdcage Coils for Musculoskeletal Limb Imaging
by Giulio Giovannetti, Francesca Frijia, Maria Filomena Santarelli and Vincenzo Positano
Diagnostics 2025, 15(6), 713; https://doi.org/10.3390/diagnostics15060713 - 12 Mar 2025
Viewed by 811
Abstract
Background: Low-field Magnetic Resonance Imaging (MRI) (fields below 0.5 T) has received increasing attention since the images produced have been shown to be diagnostically equivalent to high-field MR images for specific applications, such as musculoskeletal studies. In recent years, low-field MRI has made [...] Read more.
Background: Low-field Magnetic Resonance Imaging (MRI) (fields below 0.5 T) has received increasing attention since the images produced have been shown to be diagnostically equivalent to high-field MR images for specific applications, such as musculoskeletal studies. In recent years, low-field MRI has made great strides in clinical relevance due to advances in high-performance gradients, magnet technology, and the development of organ-specific radiofrequency (RF) coils, as well as advances in acquisition sequence design. For achieving optimized image homogeneity and signal-to-noise Ratio (SNR), the design and simulation of dedicated RF coils is a constraint both in clinical and in many research studies. Methods: This paper describes the application of a numerical full-wave method based on the finite-difference time-domain (FDTD) algorithm for the simulation and the design of birdcage coils for musculoskeletal low-field MRI. In particular, the magnetic field pattern in loaded and unloaded conditions was investigated. Moreover, the magnetic field homogeneity variations and the coil detuning after an RF shield insertion were evaluated. Finally, the coil inductance and the sample-induced resistance were estimated. Results: The accuracy of the results was verified by data acquired from two lowpass birdcage prototypes designed for musculoskeletal experiments on a 0.18 T open MR clinical scanner. Conclusions: This work describes the capability of numerical simulations to design RF coils for various scenarios, including the presence of electromagnetic shields and different load conditions. Full article
(This article belongs to the Special Issue Diagnostic and Clinical Application of Magnetic Resonance Imaging)
Show Figures

Figure 1

22 pages, 6744 KiB  
Article
Magnetic Pulse Powder Compaction
by Viktors Mironovs, Jekaterina Nikitina, Matthias Kolbe, Irina Boiko and Yulia Usherenko
Metals 2025, 15(2), 155; https://doi.org/10.3390/met15020155 - 4 Feb 2025
Cited by 1 | Viewed by 1248
Abstract
Powder metallurgy (PM) offers several advantages over conventional melt metallurgy, including improved homogeneity, fine grain size, and pseudo-alloying capabilities. Transitioning from conventional methods to PM can result in significant enhancements in material properties and production efficiency by eliminating unnecessary process steps. Dynamic compaction [...] Read more.
Powder metallurgy (PM) offers several advantages over conventional melt metallurgy, including improved homogeneity, fine grain size, and pseudo-alloying capabilities. Transitioning from conventional methods to PM can result in significant enhancements in material properties and production efficiency by eliminating unnecessary process steps. Dynamic compaction techniques, such as impulse and explosive compaction, aim to achieve higher powder density without requiring sintering, further improving PM efficiency. Among these techniques, magnetic pulse compaction (MPC) has gained notable interest due to its unique process mechanics and distinct advantages. MPC utilizes the rapid discharge of energy stored in capacitors to generate a pulsed electromagnetic field, which accelerates a tool to compress the powder. This high-speed process is particularly well-suited for compacting complex geometries and finds extensive application in industries such as powder metallurgy, welding, die forging, and advanced material manufacturing. This paper provides an overview of recent advancements and applications of MPC technology, highlighting its capabilities and potential for broader integration into modern manufacturing processes. Full article
(This article belongs to the Special Issue Powder Metallurgy of Metallic Materials)
Show Figures

Figure 1

Back to TopTop