Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = homer pro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Co-Optimized Design of Islanded Hybrid Microgrids Using Synergistic AI Techniques: A Case Study for Remote Electrification
by Ramia Ouederni and Innocent E. Davidson
Energies 2025, 18(13), 3456; https://doi.org/10.3390/en18133456 - 1 Jul 2025
Viewed by 488
Abstract
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy [...] Read more.
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy insecurity when harnessed in a hybrid manner. Advances in space solar power systems are recognized to be feasible sources of renewable energy. Their usefulness arises due to advances in satellite and space technology, making valuable space data available for smart grid design in these remote areas. In this case study, an isolated village in Namibia, characterized by high levels of solar irradiation and limited wind availability, is identified. Using NASA data, an autonomous hybrid system incorporating a solar photovoltaic array, a wind turbine, storage batteries, and a backup generator is designed. The local load profile, solar irradiation, and wind speed data were employed to ensure an accurate system model. Using HOMER Pro software V 3.14.2 for system simulation, a more advanced AI optimization was performed utilizing Grey Wolf Optimization and Harris Hawks Optimization, which are two metaheuristic algorithms. The results obtained show that the best performance was obtained with the Grey Wolf Optimization algorithm. This method achieved a minimum energy cost of USD 0.268/kWh. This paper presents the results obtained and demonstrates that advanced optimization techniques can enhance both the hybrid system’s financial cost and energy production efficiency, contributing to a sustainable electricity supply regime in this isolated rural community. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
by Paul Cheng McKinley, Michelle Wilber and Erin Whitney
Sustainability 2025, 17(13), 5996; https://doi.org/10.3390/su17135996 - 30 Jun 2025
Viewed by 500
Abstract
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal [...] Read more.
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal grid architectures to minimize cost, including how and when to incorporate long-duration energy storage. This study implements a novel, multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue, which has already successfully deployed solar photovoltaics, wind turbines, and battery storage systems. Using real community load, resource, and generation data, we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation, considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs, but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase, but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue, we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability, sustainability, and security. Full article
Show Figures

Figure 1

24 pages, 2477 KiB  
Article
Techno-Economic Optimization of an Isolated Solar Microgrid: A Case Study in a Brazilian Amazon Community
by Nikole Teran Uruchi, Valentin Silvera Diaz, Norah Nadia Sánchez Torres, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, Marco Roberto Cavallari, Mario Gazziro, Taynara Geysa Silva do Lago and Oswaldo Hideo Ando Junior
Eng 2025, 6(7), 133; https://doi.org/10.3390/eng6070133 - 21 Jun 2025
Viewed by 527
Abstract
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing [...] Read more.
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing isolated solar–diesel microgrid located in Tunui-Cachoeira, in the district of São Gabriel da Cachoeira (AM). The analysis uses an energy balance methodology, implemented through the HOMER Pro simulation platform, to assess three scenarios: (i) without batteries, (ii) with lithium-ion batteries, and (iii) with lead–acid batteries. Technical and economic indicators such as net present cost (NPC), levelized cost of energy (LCOE), diesel consumption, and renewable fraction were compared. The results indicate that incorporating lead–acid batteries yields the lowest LCOE (1.99 R$/kWh) and the highest renewable fraction (96.8%). This demonstrates that adding energy storage systems significantly enhances the performance and cost-effectiveness of microgrids, offering a viable path to electrify remote and hard-to-reach communities in the Amazon. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Integrating Hybrid Energy Solutions into Expressway Infrastructure
by Muqing Yao, Zunbiao Wang, Song Zhang, Zhufa Chu, Yufei Zhang, Shuo Zhang and Wenkai Han
Energies 2025, 18(12), 3186; https://doi.org/10.3390/en18123186 - 18 Jun 2025
Viewed by 364
Abstract
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, [...] Read more.
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, where a solar/wind/hydro hybrid energy system was developed based on the proposed approach. Using the HOMER Pro 3.14 software platform, the system was simulated and optimized under off-grid conditions, and a sensitivity analysis was conducted to evaluate performance variability. The results demonstrate that the strategic integration of corridor-based natural resources—solar irradiance, wind energy, and hydrodynamic potential—enables the construction of a technically and economically viable hybrid energy system. The system includes 382 kW of PV, 210 kW of wind, 80 kW of hydrokinetic power, a 500 kW diesel generator, and 180 kWh of battery storage, forming a hybrid configuration for a stable and reliable energy supply. The optimized configuration can supply up to 1,095,920 kWh of electricity annually at a minimum levelized cost of energy of USD 0.22/kWh. This system reduces CO2 emissions by 23.2 tons/year and NOx emissions by 23 kg/year. demonstrating strong environmental performance and long-term sustainability potential. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

29 pages, 5868 KiB  
Article
Assessing the Potential of a Hybrid Renewable Energy System: MSW Gasification and a PV Park in Lobito, Angola
by Salomão Joaquim, Nuno Amaro and Nuno Lapa
Energies 2025, 18(12), 3125; https://doi.org/10.3390/en18123125 - 13 Jun 2025
Viewed by 1259
Abstract
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air [...] Read more.
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air flow produces syngas rich in CO and H2. The syngas is treated to remove contaminants before powering a combined cycle. The PV system was designed for optimal energy generation, considering local solar radiation and shading effects. Simulation tools, including Aspen Plus v11.0, PVsyst v8, and HOMER Pro software 3.16.2, were used for modeling and optimization. The hybrid system generates 62 GWh/year of electricity, with the gasifier contributing 42 GWh/year, and the PV system contributing 20 GWh/year. This total energy output, sufficient to power 1186 households, demonstrates an integration mechanism that mitigates the intermittency of solar energy through continuous MSW gasification. However, the system lacks surplus electricity for green hydrogen production, given the region’s energy deficit. Economically, the system achieves a Levelized Cost of Energy of 0.1792 USD/kWh and a payback period of 16 years. This extended payback period is mainly due to the hydrogen production system, which has a low production rate and is not economically viable. When excluding H2 production, the payback period is reduced to 11 years, making the hybrid system more attractive. Environmental benefits include a reduction in CO2 emissions of 42,000 t/year from MSW gasification and 395 t/year from PV production, while also addressing waste management challenges. This study highlights the mechanisms behind hybrid system operation, emphasizing its role in reducing energy poverty, improving public health, and promoting sustainable development in Angola. Full article
Show Figures

Figure 1

22 pages, 3808 KiB  
Article
Sustainable Crop Irrigation with Renewable Energy: A Case Study of Lethbridge County, Alberta
by Mohammad Adnan Aftab, James Byrne, Paul Hazendonk, Dan Johnson and Locke Spencer
Energies 2025, 18(12), 3102; https://doi.org/10.3390/en18123102 - 12 Jun 2025
Viewed by 392
Abstract
The agriculture sector is a major contributor to the economy of Alberta, Canada, accounting for almost 2.8% of the total GDP. Considering its importance, implementing efficient and cost-effective irrigation systems is vital for promoting sustainable agriculture in semi-arid regions like Lethbridge County, Alberta, [...] Read more.
The agriculture sector is a major contributor to the economy of Alberta, Canada, accounting for almost 2.8% of the total GDP. Considering its importance, implementing efficient and cost-effective irrigation systems is vital for promoting sustainable agriculture in semi-arid regions like Lethbridge County, Alberta, Canada. Although irrigation is primarily carried out using the Oldman River and its allied reservoirs, groundwater pumping becomes a supplementary necessity during periods of limited surface water availability or droughts. This research investigates the potential of renewable energy resources, such as wind and solar energy, to meet the energy requirements for crop irrigation. The study begins by identifying and calculating the water requirements for major crops in Lethbridge County, such as wheat and barley, using the United Nations Food and Agriculture Organization’s CROPWAT 8.0 software. Subsequently, energy calculations were conducted to meet the specific crop water demand through the design of a hybrid energy system using Homer Pro 3.16.2. A technoeconomic analysis of the renewable hybrid system has been carried out to demonstrate the efficiency and novelty of the proposed work. Outcomes revealed that the proposed system is both efficient and economical in fulfilling the crop water requirement through groundwater pumping, promoting sustainable agriculture, and helping to ensure food security in the region. Full article
Show Figures

Figure 1

16 pages, 1329 KiB  
Article
Spatial Differentiation of Profitability of Wind Turbine Investments in Poland
by Łukasz Augustowski and Piotr Kułyk
Energies 2025, 18(11), 2871; https://doi.org/10.3390/en18112871 - 30 May 2025
Viewed by 560
Abstract
Dilemmas related to the development of demand for renewable energy encourage continuous evaluation of such investments in various locations, taking into account market and environmental conditions. The conducted study concerns the analysis of the profitability of investment in a 1.65 MW wind turbine [...] Read more.
Dilemmas related to the development of demand for renewable energy encourage continuous evaluation of such investments in various locations, taking into account market and environmental conditions. The conducted study concerns the analysis of the profitability of investment in a 1.65 MW wind turbine with a hub height of 70 m in various zones in Poland. The analysis was performed using the clustering method (cluster analysis and the Czekanowski diagram). Computer simulation was also used using the Hybrid Optimization of Multiple Energy Resources (HOMER), ver. x64 3.18.4 software. As a result, three zones were distinguished that ensure differentiation in the rates of return on investment in wind energy. The authors positively verified the hypothesis about the spatial differentiation of profitability in relation to the examined factors. The justification for investments in wind farms was demonstrated and factors determining their profitability were indicated. It was emphasized that, in the case of wind farms, energy production is relatively predictable, which shapes the benefits for investors, and facilitates financial planning and long-term return on investment. Full article
Show Figures

Figure 1

38 pages, 4699 KiB  
Article
Enhancing Island Energy Resilience: Optimized Networked Microgrids for Renewable Integration and Disaster Preparedness
by Zheng Grace Ma, Magnus Værbak, Lu Cong, Joy Dalmacio Billanes and Bo Nørregaard Jørgensen
Electronics 2025, 14(11), 2186; https://doi.org/10.3390/electronics14112186 - 28 May 2025
Cited by 1 | Viewed by 666
Abstract
Island communities that depend on mainland grid connections face substantial risks when natural disasters sever undersea or overhead cables, often resulting in long-lasting outages. This paper presents a comprehensive and novel two-part methodological framework for enhancing the resilience of these communities through networked [...] Read more.
Island communities that depend on mainland grid connections face substantial risks when natural disasters sever undersea or overhead cables, often resulting in long-lasting outages. This paper presents a comprehensive and novel two-part methodological framework for enhancing the resilience of these communities through networked microgrids that interconnect local renewable energy resources and battery storage. The framework integrates techno-economic capacity optimization using HOMER Pro with agent-based simulation in AnyLogic to determine cost-effective solar and storage capacities and to model dynamic real-time dispatch under varying conditions. Six island communities across three Indonesian provinces serve as illustrative case studies, tested under best-case and worst-case disruption scenarios that reflect seasonal extremes of solar availability. Simulation results reveal that isolated expansions of PV and battery storage can ensure critical residential loads, though certain islands with limited resources continue to experience shortfalls. By contrast, networked microgrids enable surplus power transfers between islands, significantly reducing unmet demand and alleviating the need for large-scale, individual storage. These findings demonstrate the significant potential of clustered microgrid designs to improve reliability, lower operational costs, and facilitate secure energy supply even during prolonged cable outages. The proposed framework offers a scalable roadmap for deploying resilient microgrid clusters in remote regions, with direct policy implications for system planners and local stakeholders seeking to leverage renewable energy in high-risk environments. Full article
Show Figures

Figure 1

30 pages, 5552 KiB  
Article
Techno-Economic Analysis and Optimization of the Hybrid System for a Research Campus—Case Study Center for Research, Innovation, and Technology Transfer in Cuenca-Ecuador
by Daniel Icaza-Alvarez and David Borge-Diez
Energies 2025, 18(11), 2746; https://doi.org/10.3390/en18112746 - 26 May 2025
Cited by 1 | Viewed by 576
Abstract
Energy development based on renewable energy has gained widespread acceptance in society, especially in recent years. Among the initiatives currently being promoted are those promoted by higher education institutions that utilize available space on their campuses by configuring energy systems to incorporate renewable [...] Read more.
Energy development based on renewable energy has gained widespread acceptance in society, especially in recent years. Among the initiatives currently being promoted are those promoted by higher education institutions that utilize available space on their campuses by configuring energy systems to incorporate renewable generation technologies. This study conducts a techno-economic analysis of a hybrid energy system that combines photovoltaic systems, wind turbines, hydrokinetic turbines, batteries, and fuel generators for the Center for Research, Innovation, and Technology Transfer of the Universidad Católica de Cuenca (UCACUE) in southern Ecuador. Using data collected on site, particularly from the CIITT campus meteorological station and recorded on the RESMUCC platform, the size of each renewable system configuration is optimized based on the three proposed energy control algorithms. The designs of the different configurations developed using the Homer Pro tool are then compared in terms of costs and energy generated. The results show that the system, which includes photovoltaic systems, wind turbines, hydrokinetic turbines, and fuel-powered generators, has the lowest cost, at USD 0.33/kWh. Full article
Show Figures

Figure 1

32 pages, 7003 KiB  
Article
Solar, Wind, Hydrogen, and Bioenergy-Based Hybrid System for Off-Grid Remote Locations: Techno-Economic and Environmental Analysis
by Roksana Yasmin, Md. Nurun Nabi, Fazlur Rashid and Md. Alamgir Hossain
Clean Technol. 2025, 7(2), 36; https://doi.org/10.3390/cleantechnol7020036 - 23 Apr 2025
Cited by 1 | Viewed by 2590
Abstract
Transitioning to clean energy in off-grid remote locations is essential to reducing fossil-fuel-generated greenhouse gas emissions and supporting renewable energy growth. While hybrid renewable energy systems (HRES), including multiple renewable energy (RE) sources and energy storage systems are instrumental, it requires technical reliability [...] Read more.
Transitioning to clean energy in off-grid remote locations is essential to reducing fossil-fuel-generated greenhouse gas emissions and supporting renewable energy growth. While hybrid renewable energy systems (HRES), including multiple renewable energy (RE) sources and energy storage systems are instrumental, it requires technical reliability with economic efficiency. This study examines the feasibility of an HRES incorporating solar, wind, hydrogen, and biofuel energy at a remote location in Australia. An electric vehicle charging load alongside a residential load is considered to lower transportation-based emissions. Additionally, the input data (load profile and solar data) is validated through statistical analysis, ensuring data reliability. HOMER Pro software is used to assess the techno-economic and environmental performance of the hybrid systems. Results indicate that the optimal HRES comprising of photovoltaic, wind turbines, fuel cell, battery, and biodiesel generators provides a net present cost of AUD 9.46 million and a cost of energy of AUD 0.183, outperforming diesel generator-inclusive systems. Hydrogen energy-based FC offered the major backup supply, indicating the potential role of hydrogen energy in maintaining reliability in off-grid hybrid systems. Sensitivity analysis observes the effect of variations in biodiesel price and electric load on the system performance. Environmentally, the proposed system is highly beneficial, offering zero carbon dioxide and sulfur dioxide emissions, contributing to the global net-zero target. The implications of this research highlight the necessity of a regional clean energy policy facilitating energy planning and implementation, skill development to nurture technology-intensive energy projects, and active community engagement for a smooth energy transition. Potentially, the research outcome advances the understanding of HRES feasibility for remote locations and offers a practical roadmap for sustainable energy solutions. Full article
Show Figures

Figure 1

27 pages, 3008 KiB  
Article
Optimal Sizing and Techno-Economic Feasibility of Hybrid Microgrid
by Hedra Saleeb, Ali M. El-Rifaie, Khairy Sayed, Oussama Accouche, Shazly A. Mohamed and Rasha Kassem
Processes 2025, 13(4), 1209; https://doi.org/10.3390/pr13041209 - 16 Apr 2025
Cited by 2 | Viewed by 1092
Abstract
This study explores the energy demand planning for university loads at the new Sohag University campus in Sohag Al Gadida City, Egypt. It assesses the feasibility of establishing a microgrid on a section of the campus to determine its practicality and potential benefits. [...] Read more.
This study explores the energy demand planning for university loads at the new Sohag University campus in Sohag Al Gadida City, Egypt. It assesses the feasibility of establishing a microgrid on a section of the campus to determine its practicality and potential benefits. The existing power distribution system is analyzed, and the suitability of various distributed generation sources, including photovoltaic, battery, and hydrogen-based microgrid, is evaluated. A techno-economic analysis is conducted to optimize microgrid sizing, using MATLAB R2023a (Optimization Toolbox) to implement a sizing algorithm for a hybrid microgrid system and HOMER Pro 3.14 for component sizing. The optimal microgrid configuration is verified based on the intended power supply potential while minimizing costs. The results demonstrate that the energy costs of the proposed hybrid microgrid system align with previously published values, confirming its feasibility. Additionally, economic analysis reveals that the proposed system not only reduces carbon emissions but also achieves cost savings of 20–30% over 20 years compared to conventional grid supply, with a payback period of 8–10 years. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

23 pages, 3822 KiB  
Article
Integrated Multi-Timescale Battery Dispatch and Overload Mitigation: An Agent-Based Optimization Framework for High EV Penetration in Danish Distribution Networks
by Lu Cong, Bo Nørregaard Jørgensen and Zheng Grace Ma
Electronics 2025, 14(8), 1612; https://doi.org/10.3390/electronics14081612 - 16 Apr 2025
Viewed by 464
Abstract
The rapid integration of renewable energy and electric vehicles is challenging modern distribution networks with increased demand volatility and overload risks. To address these issues, we propose an integrated, multi-timescale battery dispatch framework that unifies long-term capacity planning, day-ahead/intra-day scheduling, and sub-minute real-time [...] Read more.
The rapid integration of renewable energy and electric vehicles is challenging modern distribution networks with increased demand volatility and overload risks. To address these issues, we propose an integrated, multi-timescale battery dispatch framework that unifies long-term capacity planning, day-ahead/intra-day scheduling, and sub-minute real-time control. The framework combines HOMER Pro-based capacity sizing, a MISOCP model for economic scheduling, and an agent-based simulation for immediate overload mitigation. In a case study of a Danish distribution network projected to reach full EV penetration by 2034, our approach reduced moderate-to-severe overload incidents by 82.7%. Furthermore, a price-sensitive variant achieved a 27.4% reduction in operational costs, with only a 12.5% increase in minor overload events. These quantitative improvements, alongside qualitative enhancements in grid stability and battery longevity, provide actionable insights for distribution system operators. Full article
Show Figures

Figure 1

21 pages, 3520 KiB  
Article
Carbon Credit Earned by Rooftop PV Systems: Assessing Opportunities for Carbon Market Adoption in the Ecuadorian Context
by Ruben Hidalgo-Leon, Jose Campoverde-Gil, Jaqueline Litardo, Miguel Torres, Maria Luisa Granda, Viviana Villavicencio, Scarleth Vasconcelos, Cristian A. Hernandez, Juan Solano-Aguirre, Pritpal Singh and Guillermo Soriano
Clean Technol. 2025, 7(2), 28; https://doi.org/10.3390/cleantechnol7020028 - 1 Apr 2025
Viewed by 1253
Abstract
This study assessed the techno-economic and environmental feasibility of a grid-connected PV system on a university building, with a focus on potential revenue from carbon credit sales. The analysis assumes a regulated CO2 emissions market in Ecuador and references carbon credit prices [...] Read more.
This study assessed the techno-economic and environmental feasibility of a grid-connected PV system on a university building, with a focus on potential revenue from carbon credit sales. The analysis assumes a regulated CO2 emissions market in Ecuador and references carbon credit prices from the European Union, New Zealand, China, and the Republic of Korea. Seven PV system configurations, varying in size and capacity, were modeled using Homer Pro and assessed for their techno-economic feasibility and environmental performance. The results indicated that the 166 kWp system was the most promising, supplying approximately 74% of the building’s electricity demand. Thus, this system was selected as the baseline for evaluating potential revenues from carbon credit sales in international markets, based on average carbon prices in 2022. The selected markets generated annual revenues of USD 4410.68, USD 2587.55, USD 446.34, and USD 958.37, respectively. While these additional revenues improved the Net Present Value (NPV) of the 166 kWp system, the overall NPV remained negative due to the high initial investment costs. Full article
Show Figures

Figure 1

35 pages, 5368 KiB  
Article
Systematic Optimize and Cost-Effective Design of a 100% Renewable Microgrid Hybrid System for Sustainable Rural Electrification in Khlong Ruea, Thailand
by Montri Ngao-det, Jutturit Thongpron, Anon Namin, Nopporn Patcharaprakiti, Worrajak Muangjai and Teerasak Somsak
Energies 2025, 18(7), 1628; https://doi.org/10.3390/en18071628 - 24 Mar 2025
Cited by 1 | Viewed by 1071
Abstract
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), [...] Read more.
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), and lithium-ion battery storage (264 kWh) to provide a reliable, cost-effective, and environmentally sustainable energy solution for a remote village of 306 residents. The methodology encompasses site-specific resource assessment (solar irradiance, hydro flow), load demand analysis, and techno-economic optimization, minimizing the net present cost (NPC) and cost of energy (COE) while achieving zero emissions. Simulation results indicate the optimal configuration (S1) achieves an NPC of USD 362,687 and COE of USD 0.19/kWh, with a 100% renewable fraction, outperforming the current diesel–hydro system (NPC USD 3,400,000, COE USD 1.85/kWh, 61.4% renewable). Sensitivity analysis confirms robustness against load increases (1–5%), though battery capacity and costs rise proportionally. Compared to regional microgrids, the proposed system excels in terms of sustainability and scalability, leveraging local resources effectively. The lifecycle assessment highlights the battery’s embodied emissions (13,200–39,600 kg CO2e), underscoring the need for recycling to enhance long-term sustainability. Aligned with Thailand’s AEDP 2018–2037 and net-zero goals, this model offers a replicable framework for rural electrification in Southeast Asia. Stakeholder engagement, including community input and EGAT funding, ensures practical implementation. The study demonstrates that fully renewable microgrids are technically feasible and economically viable, providing a blueprint for sustainable energy transitions globally. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop