Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = hollow-core photonics crystal fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12042 KiB  
Article
Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber
by Yitong Song, Wei Li, Xiaobin Xu, Rui Han, Chengchun Gao, Cheng Dai and Ningfang Song
Photonics 2024, 11(5), 428; https://doi.org/10.3390/photonics11050428 - 3 May 2024
Cited by 5 | Viewed by 2110
Abstract
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed [...] Read more.
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed in π/2-π-π/2 Doppler-insensitive interferometry. The spin coherence time is extended to 13.4 ms by optimizing the coupling of the trapping laser beam into a quasi-single-mode hollow-core anti-resonant fiber. The Doppler-sensitive interferometry shows a much shorter coherence time, indicating that the main limits to our fiber-guided atom interferometer are the wide axial velocity distribution and the irregular modes of the Raman laser beams inside the fiber. This work paves the way for portable and miniaturized quantum devices, which have advantages for inertial sensing at arbitrary orientations and in dynamic environments. Full article
(This article belongs to the Special Issue The Integration of Quantum Communication and Quantum Sensors)
Show Figures

Figure 1

11 pages, 2499 KiB  
Article
Cascaded All-Fiber Gas Raman Laser Oscillator in Deuterium-Filled Hollow-Core Photonic Crystal Fibers
by Hao Li, Wenxi Pei, Xuanxi Li, Luohao Lei, Jing Shi, Zhiyue Zhou and Zefeng Wang
Nanomaterials 2024, 14(8), 661; https://doi.org/10.3390/nano14080661 - 11 Apr 2024
Cited by 1 | Viewed by 1453
Abstract
Hollow-core photonic crystal fibers (HC-PCFs) provide an ideal transmission medium and experimental platform for laser–matter interaction. Here, we report a cascaded all-fiber gas Raman laser based on deuterium (D2)-filled HC-PCFs. D2 is sealed into a gas cavity formed by a [...] Read more.
Hollow-core photonic crystal fibers (HC-PCFs) provide an ideal transmission medium and experimental platform for laser–matter interaction. Here, we report a cascaded all-fiber gas Raman laser based on deuterium (D2)-filled HC-PCFs. D2 is sealed into a gas cavity formed by a 49 m-long HC-PCF and solid-core fibers, and two homemade fiber Bragg gratings (FBGs) with the Raman and pump wavelength, respectively, are further introduced. When pumped by a pulsed fiber amplifier at 1540 nm, the pure rotational stimulated Raman scattering of D2 occurs inside the cavity. The first-order Raman laser at 1645 nm can be obtained, realizing a maximum power of ~0.8 W. An all-fiber cascaded gas Raman laser oscillator is achieved by adding another 1645 nm high-reflectivity FBG at the output end of the cavity, reducing the peak power of the cascaded Raman threshold by 11.4%. The maximum cascaded Raman power of ~0.5 W is obtained when the pump source is at its maximum, and the corresponding conversion efficiency inside the cavity is 21.4%, which is 1.8 times that of the previous configuration. Moreover, the characteristics of the second-order Raman lasers at 1695 nm and 1730 nm are also studied thoroughly. This work provides a significant method for realizing all-fiber cascaded gas Raman lasers, which is beneficial for expanding the output wavelength of fiber gas lasers with a good stability and compactivity. Full article
Show Figures

Figure 1

12 pages, 7211 KiB  
Article
Near-Infrared Dual Greenhouse Gas Sensor Based on Hollow-Core Photonic Crystal Fiber for Gas-Cell In-Situ Applications
by Jianing Wang, Bingqiang Li, Weiping Wu and Guanyu Lin
Sensors 2024, 24(5), 1670; https://doi.org/10.3390/s24051670 - 5 Mar 2024
Cited by 3 | Viewed by 1653
Abstract
A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective [...] Read more.
A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective end surface to double the absorption length. The incorporation of side holes for gas diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side holes, and energy loss. As the number of drilled holes increases, the response time decreases to less than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells, establishing all-fiber sensors with high sensitivity and rapid response. Full article
Show Figures

Figure 1

15 pages, 4328 KiB  
Article
Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer
by Maryam Shirmohammad, Michael A. Short and Haishan Zeng
Biosensors 2023, 13(11), 979; https://doi.org/10.3390/bios13110979 - 9 Nov 2023
Cited by 4 | Viewed by 2483
Abstract
Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with [...] Read more.
Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas. In this study, we first showed that the intensity of the 587 cm−1 stimulated Raman scattering (SRS) peak of H2 confined in an HCPCF is enhanced by as much as five orders of magnitude by mixing with a buffer gas such as helium or N2. Secondly, we showed that the magnitudes of Raman enhancement depend on the type of buffer gas, with helium being more efficient compared to N2. This makes helium a favorable buffer gas for CERS. Thirdly, we applied CERS for Raman measurements of propene, a metabolically interesting volatile organic compound (VOC) with an association to lung cancer. CERS resulted in a substantial enhancement of propene Raman peaks. In conclusion, the CERS we developed is a simple and efficient Raman-enhancing mechanism for improving gas analysis. It has great potential for application in breath analysis for lung cancer detection. Full article
(This article belongs to the Special Issue New Progress in Optical Fiber-Based Biosensors)
Show Figures

Figure 1

14 pages, 3715 KiB  
Article
A New Gas Analysis Method Based on Single-Beam Excitation Stimulated Raman Scattering in Hollow Core Photonic Crystal Fiber Enhanced Raman Spectroscopy
by Maryam Shirmohammad, Michael A. Short and Haishan Zeng
Bioengineering 2023, 10(10), 1161; https://doi.org/10.3390/bioengineering10101161 - 3 Oct 2023
Cited by 2 | Viewed by 2592
Abstract
We previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon–gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, [...] Read more.
We previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon–gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, we explored nanosecond/sub-nanosecond pulsed laser excitation in HCPCF based fiber enhanced Raman spectroscopy (FERS) and successfully induced stimulated Raman scattering (SRS) enhancement. Raman measurements of simple and complex gases were performed using the new system to assess its feasibility for gas analysis. We studied the gas Raman scattering characteristics, the relationship between Raman intensities and pump energies, and the energy threshold for the transition from spontaneous Raman scattering to SRS. H2, CO2, and propene (C3H6) were used as test gases. Our results demonstrated that a single-beam pulsed pump combined with FERS provides an effective Raman enhancement technique for gas analysis. Furthermore, an energy threshold for SRS initiation was experimentally observed. The SRS-capable FERS system, utilizing a single-beam pulsed pump, shows great potential for analyzing complex gases such as propene, which is a volatile organic compound (VOC) gas, serving as a biomarker in human breath for lung cancer and other human diseases. This work contributes to the advancement of gas analysis and opens alternative avenues for exploring novel Raman enhancement techniques. Full article
(This article belongs to the Special Issue Optical Techniques for Biomedical Engineering)
Show Figures

Figure 1

18 pages, 2337 KiB  
Article
Wave-Shaped Microstructure Cancer Detection Sensor in Terahertz Band: Design and Analysis
by Md Rezaul Hoque Khan, Atiqul Alam Chowdhury, Mohammad Rakibul Islam, Md Sanowar Hosen, Mhamud Hasan Mim and Mirza Muntasir Nishat
Appl. Sci. 2023, 13(9), 5784; https://doi.org/10.3390/app13095784 - 8 May 2023
Cited by 8 | Viewed by 2779
Abstract
For the quick identification of diverse types of cancer/malignant cells in the human body, a new hollow-core optical waveguide based on Photonic Crystal Fiber (PCF) is proposed and numerically studied. The refractive index (RI) differs between normal and cancerous cells, and it is [...] Read more.
For the quick identification of diverse types of cancer/malignant cells in the human body, a new hollow-core optical waveguide based on Photonic Crystal Fiber (PCF) is proposed and numerically studied. The refractive index (RI) differs between normal and cancerous cells, and it is through this distinction that the other crucial optical parameters are assessed. The proposed cancer cell biosensor’s guiding characteristics are examined in the COMSOL Multiphysics v5.5 environment. The Finite Element Method (FEM) framework is used to quantify the display of the suggested fiber biosensor. Extremely fine mesh elements are additionally added to guarantee the highest simulation accuracy. The simulation results on the suggested sensor model achieve a very high relative sensitivity of 99.9277%, 99.9243%, 99.9302%, 99.9314%, 99.9257% and 99.9169%, a low effective material loss of 8.55×105 cm1, 8.96×105 cm1, 8.24×105 cm1, 8.09×105 cm1, 8.79×105 cm1, and 9.88×105 cm1 for adrenal gland cancer, blood cancer, breast cancer type-1, breast cancer type-2, cervical cancer, and skin cancer, respectively, at a 3.0 THz frequency regime. A very low confinement loss of 6.1×1010 dB/cm is also indicated by the simulation findings for all of the cancer cases that were mentioned. The straightforward PCF structure of the proposed biosensor offers a high likelihood of implementation when used in conjunction with these conventional performance indexes. So, it appears that this biosensor will create new opportunities for the identification and diagnosis of various cancer cells. Full article
(This article belongs to the Special Issue New Insight in Biomedicine: Optics, Ultrasound and Imaging)
Show Figures

Figure 1

14 pages, 3867 KiB  
Article
Development of a Methane-Detection System Using a Distributed Feedback Laser Diode and Hollow-Core Photonic Crystal Fiber
by Bin Li, Qingpeng Wang, Qizheng Wang and Yitong Huang
Electronics 2023, 12(4), 838; https://doi.org/10.3390/electronics12040838 - 7 Feb 2023
Cited by 4 | Viewed by 2175
Abstract
A highly integrated methane-detection system was experimentally established by using a distributed feedback laser diode and hollow-core photonic crystal fiber. The self-developed circuits with a laser diode and essential optical devices were integrated into an instrument that generated a modulated optical signal in [...] Read more.
A highly integrated methane-detection system was experimentally established by using a distributed feedback laser diode and hollow-core photonic crystal fiber. The self-developed circuits with a laser diode and essential optical devices were integrated into an instrument that generated a modulated optical signal in a fiber-coupled gas cell that contained the hollow-core photonic crystal fiber. The instrument could also process the return optical signal that contained the gas concentration information. The experiments demonstrated the good performance of the developed system. In the spectrum tests, the center wavelength of the laser diode could be tuned linearly by controlling the laser’s working temperature and driving current. The second harmonic signal could be extracted in order to reflect the gas concentration. According to the Allan deviation method, the low limit of detection of the system was determined to be 29.52 ppm. In addition, a long-term stability test demonstrated that the system has a good stable performance. The proposed system can be further optimized in order to be applied in paddy fields to detect and monitor the methane concentration in a large area by using the optical fibers. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

10 pages, 1726 KiB  
Communication
Surface Plasmon Resonance-Based Gold-Coated Hollow-Core Negative Curvature Optical Fiber Sensor
by J. Divya and S. Selvendran
Biosensors 2023, 13(2), 148; https://doi.org/10.3390/bios13020148 - 17 Jan 2023
Cited by 15 | Viewed by 2907
Abstract
The hollow-core fiber-based sensor has garnered high interest due to its simple structure and low transmission loss. A new hollow-core negative-curvature fiber (HC-NCF) sensor based on the surface plasmon resonance (SPR) technique is proposed in this work. The cladding region is composed of [...] Read more.
The hollow-core fiber-based sensor has garnered high interest due to its simple structure and low transmission loss. A new hollow-core negative-curvature fiber (HC-NCF) sensor based on the surface plasmon resonance (SPR) technique is proposed in this work. The cladding region is composed of six circular silica tubes and two elliptical silica tubes to reduce fabrication complexity. Chemically stable gold is used as a plasmonic material on the inner wall of the sensor structure to induce the SPR effect. The proposed sensor detects a minor variation in the refractive indices (RIs) of the analyte placed in the hollow core. Numerical investigations are carried out using the finite element method (FEM). Through the optimization of structural parameters, the maximum wavelength sensitivity of 6000 nm/RIU and the highest resolution of 2.5 × 10−5 RIU are achieved in the RI range of 1.31 to 1.36. In addition, an improved figure of merit (FOM) of 2000 RIU−1 for Y-polarization and 857.1 RIU−1 for X-polarization is obtained. Because of its simple structure, high sensitivity, high FOM, and low transmission loss, the proposed sensor can be used as a temperature sensor, a chemical sensor, and a biosensor. Full article
Show Figures

Figure 1

15 pages, 4283 KiB  
Article
Designing of Hollow Core Grapefruit Fiber Using Cyclo Olefin Polymer for the Detection of Fuel Adulteration in Terahertz Region
by Sakawat Hossain, Md. Aslam Mollah, Md. Kamal Hosain, Md. Shofiqul Islam and Abdulhameed Fouad Alkhateeb
Polymers 2023, 15(1), 151; https://doi.org/10.3390/polym15010151 - 29 Dec 2022
Cited by 7 | Viewed by 2041
Abstract
A grapefruit-shape hollow-core liquid infiltrated photonic crystal fiber (LI-PCF) is proposed and evaluated to identify the percentage of kerosene in adulterated petrol. The proposed hollow-fiber sensor is designed with Cyclo Olefin Polymer (Zeonex) and likely to be filled with different samples of petrol [...] Read more.
A grapefruit-shape hollow-core liquid infiltrated photonic crystal fiber (LI-PCF) is proposed and evaluated to identify the percentage of kerosene in adulterated petrol. The proposed hollow-fiber sensor is designed with Cyclo Olefin Polymer (Zeonex) and likely to be filled with different samples of petrol which is adulated by the kerosene up to 100%. Considering the electromagnetic radiation in THz band, the sensing properties are thoroughly investigated by adopting finite element method (FEM) based COMSOL Multiphysics software. However, the proposed sensor offers a very high relative sensitivity (RS) of 97.27% and confinement loss (CL) less than 10−10 dB/m, and total loss under 0.07 dB/cm, at 2 THz operating frequency. Besides that, the sensor also possesses a low effective material loss (EML), high numerical aperture (NA), and large Marcuse spot size (MSS). The sensor structure is fabrication feasible through existing fabrication methodologies consequently making this petrol adulteration sensor a propitious aspirant for real-life applications of petrol adulteration measurements in commercial and industrial sensing. Full article
Show Figures

Figure 1

10 pages, 3366 KiB  
Article
Multiplexed Photonic Crystal Fiber Gas-Sensing Network Based on Intracavity Absorption
by Guangyao Wang, Jianping Sun, Ting Li, Hongjun Wang and Jiahao Li
Sensors 2022, 22(23), 9237; https://doi.org/10.3390/s22239237 - 28 Nov 2022
Cited by 2 | Viewed by 1973
Abstract
A highly sensitive hollow-core photonic crystal fiber (HC-PCF) gas-sensing network based on intracavity absorption is designed and experimentally verified. The capacity of the multichannel sensing network is expanded by time division multiplexing and wavelength division multiplexing technology. The voltage gradient method is employed [...] Read more.
A highly sensitive hollow-core photonic crystal fiber (HC-PCF) gas-sensing network based on intracavity absorption is designed and experimentally verified. The capacity of the multichannel sensing network is expanded by time division multiplexing and wavelength division multiplexing technology. The voltage gradient method is employed in the wavelength scanning process of Fabry–Perot (F-P) filter to enhance the detection efficiency up to six times. The proposed sensing network has 16 sensing points. Experimental results show that the minimum detection limit (MDL) of this sensing system is 25.91 ppm and 26.85 ppm at the acetylene gas absorption peaks of 1530.371 nm and 1531.588 nm, respectively. As far as we know, it is the first time to obtain an intracavity sensing network via the application of an optical switch and DWDM at the same time. The sensing network can be used for high-capacity, low-concentration dangerous gas detection. It has great potential in environmental monitoring, industrial manufacturing, safety inspection and similar occasions. Full article
(This article belongs to the Special Issue Advanced Applications of Fiber Optic Sensors)
Show Figures

Figure 1

10 pages, 6275 KiB  
Article
Design of a Fiber Alkali Vapor Cell for Atomic Magnetometer for Magnetoencephalography Applications
by Xuejing Liu, Yanhui Hu, Yang Li, Xudong Wu, Min Chang and Xuedian Zhang
Photonics 2022, 9(10), 749; https://doi.org/10.3390/photonics9100749 - 10 Oct 2022
Cited by 1 | Viewed by 2541
Abstract
Spin exchange relaxation free (SERF) atomic magnetometer (AM), based on the Larmor precession of alkali atoms, is considered a promising candidate for magnetoencephalography (MEG) systems with the advantages of high sensitivity and no need for cryogenic devices. The footprint of the sensor header [...] Read more.
Spin exchange relaxation free (SERF) atomic magnetometer (AM), based on the Larmor precession of alkali atoms, is considered a promising candidate for magnetoencephalography (MEG) systems with the advantages of high sensitivity and no need for cryogenic devices. The footprint of the sensor header contains alkali vapor cell and bulk optical elements determining the spatial resolution of the MEG system. Optical fiber could separate the vapor cell far from other parts of the sensor header to improve the spatial resolution. However, coupling between glass cell and fibers limits the coupling loss of the light. Here, we describe the design of a fiber-based alkali vapor cell that could alleviate these issues. A pair of fiber cables combining a polarization maintaining fiber (PMF) and hollow-core photonic crystal fibers (HC-PCFs) are enclosed in a vacuum-sealed T-shape glass tube filled with alkali atoms. The fiber cell ensures a flexible integration with most fiber systems. The fiber structure, with an air gap between HC-PCFs, provides a large interaction volume between light and atoms. The vapor of the alkali atoms diffuses into the air core of the HC-PCF from the glass tube by heating. The alkali atoms still contained in SERF regime are within the wall relaxation rates of 12,764 s−1 in the coating fiber cell. The insertion loss due to fiber coupling is analyzed. The coupling efficiency could be 91%, with the fiber structure consisting of a 40 μm diameter HC-PCF and a 1 mm air gap. The limit sensitivity under this condition is simulated at 14.7 fT/Hz1/2. The fabrication technique and the light insertion loss are discussed. The fiber alkali vapor cell is of compact size and has flexible integration with the fiber atomic spin precession detection system. Full article
Show Figures

Figure 1

12 pages, 3714 KiB  
Article
Design of a Hollow-Core Photonic Crystal Fiber Based Edible Oil Sensor
by Md. Nazmul Islam, Kusay Faisal Al-tabatabaie, Md. Ahasan Habib, Sheikh Sharif Iqbal, Khurram Karim Qureshi and Eid M. Al-Mutairi
Crystals 2022, 12(10), 1362; https://doi.org/10.3390/cryst12101362 - 26 Sep 2022
Cited by 11 | Viewed by 2833
Abstract
This work proposes and statistically analyzes a hexagonal-shaped hollow-core photonic crystal fiber-based edible oil sensor in the terahertz (THz) range. The suggested sensor’s performance was assessed by means of Comsol Multiphysics, a finite element method-based commercial tool. The simulation results demonstrate that the [...] Read more.
This work proposes and statistically analyzes a hexagonal-shaped hollow-core photonic crystal fiber-based edible oil sensor in the terahertz (THz) range. The suggested sensor’s performance was assessed by means of Comsol Multiphysics, a finite element method-based commercial tool. The simulation results demonstrate that the suggested sensor has more than 99% relative sensitivity for different types of edible oils at 1.6 THz under ideal geometric conditions. Furthermore, the suggested sensor exhibits low confinement loss, high numerical aperture and effective area at optimal geometry and operational conditions. The proposed sensor is realizable using conventional production procedures and its superior sensing qualities may make it a key component of real-world oil detection systems. Full article
(This article belongs to the Special Issue Photonic and Phononic Crystals)
Show Figures

Figure 1

26 pages, 5035 KiB  
Review
Review on All-Fiber Online Raman Sensor with Hollow Core Microstructured Optical Fiber
by Haonan Ding, Dora Juan Juan Hu, Xingtao Yu, Xiaoxian Liu, Yifan Zhu and Guanghui Wang
Photonics 2022, 9(3), 134; https://doi.org/10.3390/photonics9030134 - 25 Feb 2022
Cited by 19 | Viewed by 6353
Abstract
Raman spectroscopy is widely used for qualitative and quantitative analysis of trace components in scientific fields such as food safety monitoring, drug testing, environmental monitoring, etc. In addition to its demonstrated advantages of fast response, non-destructive, and non-polluting characteristics, fast online Raman detection [...] Read more.
Raman spectroscopy is widely used for qualitative and quantitative analysis of trace components in scientific fields such as food safety monitoring, drug testing, environmental monitoring, etc. In addition to its demonstrated advantages of fast response, non-destructive, and non-polluting characteristics, fast online Raman detection is drawing growing attention for development. To achieve this desirable capability, hollow core optical fibers are employed as a common transmission channel for light and fluid in the Raman sensor. By enhancing the interaction process between light and matter, the detection sensitivity is improved. At the same time, the Raman spectroscopy signal light collection efficiency is significantly improved. This article summarizes enhancement techniques reported for Raman sensors, followed by a detailed review on fiber-based Raman sensor techniques including theoretical analyses, fabrication, and application based on hollow core photonic crystal fibers and capillary-based hollow core fibers. The prospects of using these fibers for Raman spectroscopy are discussed. Full article
(This article belongs to the Special Issue Novel Specialty Optical Fibers and Applications)
Show Figures

Figure 1

10 pages, 9160 KiB  
Communication
A Hollow-Core Photonic-Crystal Fiber-Optic Gyroscope Based on a Parallel Double-Ring Resonator
by Heliang Shen, Kan Chen, Kang Zou, Yijia Gong, Ran Bi and Xiaowu Shu
Sensors 2021, 21(24), 8317; https://doi.org/10.3390/s21248317 - 13 Dec 2021
Cited by 6 | Viewed by 3499
Abstract
A novel system structure of resonant fiber optical gyroscope using a parallel double hollow-core photonic crystal fiber ring resonator is proposed, which employs the double closed loop and reciprocal modulation–demodulation technique to solve the problem of the length mismatch between rings. This structure [...] Read more.
A novel system structure of resonant fiber optical gyroscope using a parallel double hollow-core photonic crystal fiber ring resonator is proposed, which employs the double closed loop and reciprocal modulation–demodulation technique to solve the problem of the length mismatch between rings. This structure can suppress the residual amplitude modulation noise and laser frequency noise, essentially eliminating the influence of the Rayleigh backscattering noise and dramatically reduce the Kerr-effect-induced drift by three orders of magnitude. Thanks to its excellent noise suppression effect, the sensitivity of this novel system can approach the shot-noise-limited theoretical value of 8.94 × 10−7 rad/s assuming the length of the fiber ring resonator is 10 m. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 3403 KiB  
Communication
Angle-Resolved Hollow-Core Fiber-Based Curvature Sensing Approach
by William M. Guimarães, Cristiano M. B. Cordeiro, Marcos A. R. Franco and Jonas H. Osório
Fibers 2021, 9(11), 72; https://doi.org/10.3390/fib9110072 - 4 Nov 2021
Cited by 12 | Viewed by 3221
Abstract
We propose and theoretically study a new hollow-core fiber-based curvature sensing approach with the capability of detecting both curvature radius and angle. The new sensing method relies on a tubular-lattice fiber that encompasses, in its microstructure, tubes with three different thicknesses. By adequately [...] Read more.
We propose and theoretically study a new hollow-core fiber-based curvature sensing approach with the capability of detecting both curvature radius and angle. The new sensing method relies on a tubular-lattice fiber that encompasses, in its microstructure, tubes with three different thicknesses. By adequately choosing the placement of the tubes within the fiber cross-section, and by exploring the spectral shifts of the fiber transmitted spectrum due to the curvature-induced mode field distributions’ displacements, we demonstrate a multi-axis curvature sensing method. In the proposed platform, curvature radii and angles are retrieved via a suitable calibration routine, which is based on conveniently adjusting empirical functions to the fiber response. Evaluation of the sensing method performance for selected cases allowed the curvature radii and angles to be determined with percentual errors of less than 7%. The approach proposed herein provides a promising path for the accomplishment of new curvature sensors able to resolve both the curvature radius and angle. Full article
Show Figures

Figure 1

Back to TopTop