Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (547)

Search Parameters:
Keywords = historic urban environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6730 KiB  
Article
Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District
by Yongqi Liu, Ziheng Xiong, Mo Wang, Menghan Zhang, Rana Muhammad Adnan, Weicong Fu, Chuanhao Sun and Soon Keat Tan
Water 2025, 17(15), 2325; https://doi.org/10.3390/w17152325 - 5 Aug 2025
Abstract
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West [...] Read more.
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West Street Historic Reserve, China. Using a multi-objective optimization framework integrating SWMM simulations, life-cycle cost (LCC) modeling, and resilience metrics, we found that the decentralized CGGI layouts reduced the total LCC by up to 29.6% and required 60.7% less green infrastructure (GI) area than centralized schemes. Under nine extreme rainfall scenarios, the GREI-only systems showed slightly higher technical resilience (Tech-R: max 99.6%) than CGGI (Tech-R: max 99.1%). However, the CGGI systems outperformed GREI in operational resilience (Oper-R), reducing overflow volume by up to 22.6% under 50% network failure. These findings demonstrate that decentralized CGGI provides a more resilient and cost-effective drainage solution, well-suited for heritage districts with spatial and cultural constraints. Full article
Show Figures

Figure 1

22 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

32 pages, 6681 KiB  
Article
Spatial Distribution Characteristics and Cluster Differentiation of Traditional Villages in the Central Yunnan Region
by Tao Chen, Sisi Zhang, Juan Chen, Jiajing Duan, Yike Zhang and Yaoning Yang
Land 2025, 14(8), 1565; https://doi.org/10.3390/land14081565 - 30 Jul 2025
Viewed by 300
Abstract
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects [...] Read more.
As an integral component of humanity’s cultural heritage, traditional villages universally confront challenges such as population loss and cultural discontinuity amid rapid urbanization. Cluster-based protection models have increasingly become the international consensus for addressing the survival crisis of such settlements. This study selects the Central Yunnan region of Southwest China—characterized by its complex geography and multi-ethnic habitation—as the research area. Employing ArcGIS spatial analysis techniques alongside clustering algorithms, we examine the spatial distribution characteristics and clustering patterns of 251 traditional villages within this region. The findings are as follows. In terms of spatial distribution, traditional villages in Central Yunnan are unevenly dispersed, predominantly aggregating on mid-elevation gentle slopes; their locations are chiefly influenced by rivers and historical courier routes, albeit with only indirect dependence on waterways. Regarding single-cluster attributes, the spatial and geomorphological features exhibit a composite “band-and-group” pattern shaped by river valleys; culturally, two dominant modes emerge—“ancient-route-dependent” and “ethnic-symbiosis”—reflecting an economy-driven cultural mechanism alongside latent marginalization risks. Concerning construction characteristics, the “Qionglong-Ganlan” and Han-style “One-seal” residential features stand out, illustrating both adaptation to mountainous environments and the cumulative effects of historical culture. Based on these insights, we propose a three-tiered clustering classification framework—“comprehensive-element coordination”, “feature-led”, and “potential-cultivation”—to inform the development of contiguous and typological protection strategies for traditional villages in highland, multi-ethnic regions. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 369
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

24 pages, 3365 KiB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Viewed by 287
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 618
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

16 pages, 2371 KiB  
Article
Exploring Patterns of Ethnic Diversification and Residential Intermixing in the Neighborhoods of Riga, Latvia
by Sindija Balode and Māris Bērziņš
Urban Sci. 2025, 9(7), 274; https://doi.org/10.3390/urbansci9070274 - 16 Jul 2025
Viewed by 278
Abstract
Residential segregation remains a persistent challenge in European urban environments and is an increasing focal point in urban policy debates. This study investigates the changing geographies of ethnic diversity and residential segregation in Riga, the capital city of Latvia. The research addresses the [...] Read more.
Residential segregation remains a persistent challenge in European urban environments and is an increasing focal point in urban policy debates. This study investigates the changing geographies of ethnic diversity and residential segregation in Riga, the capital city of Latvia. The research addresses the complex dynamics of ethnic residential patterns within the distinctive context of post-socialist urban transformation, examining how historical legacies of ethnic diversity interact with contemporary migration flows to reshape neighborhood ethnic composition. Using geo-referenced data from 2000, 2011, and 2021 census rounds, we examined changes in the spatial distribution of five major ethnic groups. Our analysis employs the Dissimilarity Index to measure ethnic residential segregation and the Location Quotient to identify the residential concentration of ethnic groups across the city. The findings reveal that Riga’s ethnic landscape is undergoing a gradual yet impactful transformation. The spatial distribution of ethnic groups is shifting, with the increasing segregation of certain groups, particularly traditional ethnic minorities, coupled with a growing concentration of Europeans and non-Europeans in the inner city. The findings reveal distinctive patterns of ethnic diversification and demographic change, wherein long-term trends intersect with contemporary migration dynamics to produce unique trajectories of ethnic residential segregation, which differ from those observed in Western European contexts. However, the specific dynamics in Riga, particularly the persistence of traditional ethnic minority communities and the emergence of new ethnic groups, highlight the unique context of post-socialist urban landscapes. Full article
Show Figures

Figure 1

19 pages, 1952 KiB  
Article
Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability
by Yongqi Liu, Jiayu Zhao, Rana Muhammad Adnan Ikram, Soon Keat Tan and Mo Wang
Water 2025, 17(14), 2110; https://doi.org/10.3390/w17142110 - 15 Jul 2025
Viewed by 380
Abstract
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs [...] Read more.
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs into historic urban landscapes by employing Internal–External (IE) matrix modeling and an impact–uncertainty assessment, grounded in a structured evaluation of key internal strengths and weaknesses, as well as external opportunities and threats. The Internal Factor Evaluation (IFE) score of 2.900 indicates a favorable internal environment, characterized by the multifunctionality of NBS and their ability to reconnect urban populations with nature. Meanwhile, the External Factor Evaluation (EFE) score of 2.797 highlights moderate support from policy and public awareness but identifies barriers such as funding shortages and interdisciplinary coordination. Based on these findings, two strategies are developed: an SO (Strength–Opportunity) strategy, promoting community-centered and policy-driven NBS design, and a WO (Weakness–Opportunity) strategy, targeting resource optimization through legal support and cross-sectoral collaboration. This study breaks new ground by transforming theoretical NBS concepts into actionable, culturally sensitive planning tools that enable decision-makers to navigate the unique challenges of implementing adaptive stormwater and environmental management in historically constrained urban environments. Full article
Show Figures

Figure 1

31 pages, 7121 KiB  
Article
Bidirectional Adaptation of Shared Autonomous Vehicles and Old Towns’ Urban Spaces: The Views of Residents on the Present
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(7), 395; https://doi.org/10.3390/wevj16070395 - 14 Jul 2025
Viewed by 332
Abstract
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow [...] Read more.
The integration of shared autonomous vehicles into historic urban areas presents both opportunities and challenges. In heritage-rich environments like very old Asian (such as Suzhou old town, which serves as a use case example) or European (especially Mediterranean coastal cities) areas—characterized by narrow alleys, dense development, and sensitive cultural landscapes—shared autonomous vehicle adoption raises critical spatial and social questions. This study employs a qualitative, user-centered approach based on the ripple model to examine residents’ perceptions across four dimensions: residential patterns, parking land use, regional accessibility, and street-level infrastructure. Semi-structured interviews with 27 participants reveal five key findings: (1) public trust depends on transparent decision-making and safety guarantees; (2) shared autonomous vehicles may reshape generational residential clustering; (3) the short-term parking demand remains stable, but the long-term reuse of space is feasible; (4) shared autonomous vehicles could enhance accessibility in historic cores; (5) transport systems may evolve toward intelligent, human-centered designs. Based on these insights, the study proposes three strategies: (1) transparent risk assessment using explainable artificial intelligence and digital twins; (2) polycentric development to diversify land use; (3) hierarchical street retrofitting to balance mobility and preservation. While this study is limited by its qualitative scope and absence of simulation, it offers a framework for culturally sensitive, small-scale interventions supporting sustainable mobility transitions in historic urban contexts. Full article
Show Figures

Figure 1

13 pages, 2300 KiB  
Review
Research on Heritage Conservation and Development of Chinese Ancient Towns and Historic Districts Based on Knowledge Graph Analysis
by Wu Jin and Hiroatsu Fukuda
Buildings 2025, 15(14), 2459; https://doi.org/10.3390/buildings15142459 - 14 Jul 2025
Viewed by 395
Abstract
Historic districts of ancient towns serve as significant carriers of historical and cultural heritage while also being popular tourist destinations. Within the context of urbanization and organic renewal, the protection and development of historic districts have become crucial research topics. This study collects [...] Read more.
Historic districts of ancient towns serve as significant carriers of historical and cultural heritage while also being popular tourist destinations. Within the context of urbanization and organic renewal, the protection and development of historic districts have become crucial research topics. This study collects literature from the Web of Science database and applies manual screening to ensure relevance to the research theme. Using CiteSpace as an analytical tool, the study conducts a visual analysis from multiple perspectives, including keywords, writing time, authors, centrality, keyword clustering analysis, and timeline visualization. By constructing a knowledge graph, this research explores the key pathways and knowledge nodes in the organic renewal of spatial environments in historic districts of ancient towns. Based on literature clustering, the study categorizes research into four major aspects: heritage conservation, cultural and tourism development, spatial planning and design, and environmental enhancement. Based on this, universal strategies for the cultural and tourism development of historic districts in ancient towns are proposed. The research focus shifts from emphasizing cultural heritage preservation to the integrated development of culture and tourism. In the spatial development of historic districts, everyday life scenes should be incorporated while new technologies should be utilized to enhance environmental comfort. This paper summarizes the current research frontiers in this field and proposes future research trends, providing valuable references for scholars in related areas. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 3565 KiB  
Article
Restoring Historical Watercourses to Cities: The Cases of Poznań, Milan, and Beijing
by Wojciech Skórzewski, Ling Qi, Mo Zhou and Agata Bonenberg
Sustainability 2025, 17(14), 6325; https://doi.org/10.3390/su17146325 - 10 Jul 2025
Viewed by 349
Abstract
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments [...] Read more.
The increasing frequency of extreme weather events, combined with the historic degradation of urban water systems, has prompted cities worldwide to reconsider the role of water in urban planning. This study examines the restoration and integration of historical watercourses into contemporary urban environments through blue and green infrastructure (BGI). Focusing on three case study cities—Poznań (Poland), Milan (Italy), and Beijing (China)—this research explores both spatial and regulatory conditions for reintroducing surface water into cityscapes. Utilizing historical maps, contemporary land use data, and spatial planning documents, this study applies a GIS-based multi-criteria decision analysis (GIS-MCDA) to assess restoration potential. The selected case studies, including the redesign of Park Rataje in Poznań, canal daylighting projects in Milan, and the multifunctional design of Beijing’s Olympic Forest Park, illustrate diverse approaches to ecological revitalization. The findings emphasize that restoring or recreating urban water systems can enhance urban resilience, ecological connectivity, and the quality of public space. Full article
Show Figures

Figure 1

32 pages, 4252 KiB  
Article
Heritage and Resilience: Sustainable Recovery of Historic Syrian Cities
by Emad Noaime and Mohammed Mashary Alnaim
Buildings 2025, 15(14), 2403; https://doi.org/10.3390/buildings15142403 - 9 Jul 2025
Viewed by 494
Abstract
This study investigates the challenges and opportunities of balancing cultural preservation, tourism investment, and community resilience in historic Syrian cities during the post-war recovery period. The Syrian conflict has imposed considerable harm upon the nation’s cultural heritage, encompassing UNESCO World Heritage sites, thereby [...] Read more.
This study investigates the challenges and opportunities of balancing cultural preservation, tourism investment, and community resilience in historic Syrian cities during the post-war recovery period. The Syrian conflict has imposed considerable harm upon the nation’s cultural heritage, encompassing UNESCO World Heritage sites, thereby interrupting not only the urban infrastructure but also local economies and social networks. Utilizing a comprehensive methodology that includes a literature review, stakeholder interviews, and local surveys, this research investigates the potential for aligning cultural preservation with tourism investment to promote sustainable economic revitalization while simultaneously enhancing social cohesion and community resilience. The results underscore the significance of inclusive governance, participatory planning, and capacity enhancement to guarantee that post-conflict urban redevelopment fosters enduring environmental, social, and cultural sustainability. By framing the Syrian case within the broader context of global urban sustainability and resilience discourse, the study offers valuable insights for policymakers, urban planners, and heritage managers working in post-conflict or post-disaster environments worldwide. In the end, the study highlights that the revitalization of historic cities transcends being a simple technical or economic endeavor; it is a complex process of re-establishing identity, strengthening communities, and fostering sustainable, resilient urban futures. Full article
(This article belongs to the Special Issue Community Resilience and Urban Sustainability: A Global Perspective)
Show Figures

Figure 1

26 pages, 1541 KiB  
Article
Projected Urban Air Pollution in Riyadh Using CMIP6 and Bayesian Modeling
by Khadeijah Yahya Faqeih, Mohamed Nejib El Melki, Somayah Moshrif Alamri, Afaf Rafi AlAmri, Maha Abdullah Aldubehi and Eman Rafi Alamery
Sustainability 2025, 17(14), 6288; https://doi.org/10.3390/su17146288 - 9 Jul 2025
Viewed by 554
Abstract
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach [...] Read more.
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach that combines CMIP6 climate projections with localized air quality data. We analyzed daily concentrations of major pollutants (SO2, NO2) across 15 strategically selected monitoring stations representing diverse urban environments, including traffic corridors, residential areas, healthcare facilities, and semi-natural zones. Climate data from two Earth System Models (CNRM-ESM2-1 and MPI-ESM1.2) were bias-corrected and integrated with historical pollution measurements (2000–2015) using hierarchical Bayesian statistical modeling under SSP2-4.5 and SSP5-8.5 emission scenarios. Our results revealed substantial deterioration in air quality, with projected increases of 80–130% for SO2 and 45–55% for NO2 concentrations by 2070 under high-emission scenarios. Spatial analysis demonstrated pronounced pollution gradients, with traffic corridors (Eastern Ring Road, Northern Ring Road, Southern Ring Road) and densely urbanized areas (King Fahad Road, Makkah Road) experiencing the most severe increases, exceeding WHO guidelines by factors of 2–3. Even semi-natural areas showed significant increases in pollution due to regional transport effects. The hierarchical Bayesian framework effectively quantified uncertainties while revealing consistent degradation trends across both climate models, with the MPI-ESM1.2 model showing a greater sensitivity to anthropogenic forcing. Future concentrations are projected to reach up to 70 μg m−3 for SO2 and exceed 100 μg m−3 for NO2 in heavily trafficked areas by 2070, representing 2–3 times the Traffic corridors showed concentration increases of 21–24% compared to historical baselines, with some stations (R5, R13, and R14) recording projected levels above 4.0 ppb for SO2 under the SSP5-8.5 scenario. These findings highlight the urgent need for comprehensive emission reduction strategies, accelerated renewable energy transition, and reformed urban planning approaches in rapidly developing arid cities. Full article
Show Figures

Figure 1

27 pages, 6244 KiB  
Article
The Characteristics of Spatial Genetic Diversity in Traditional Township Neighborhoods in the Xiangjiang River Basin: A Case Study of the Changsha Suburbs
by Peishan Cai, Yan Gao and Mingjing Xie
Sustainability 2025, 17(13), 6129; https://doi.org/10.3390/su17136129 - 4 Jul 2025
Viewed by 387
Abstract
An important historical and cultural region in southern China, the Xiangjiang River Basin, has formed a unique spatial pattern and regional cultural characteristics in its long-term development. In recent years, the acceleration of urbanization has led to the historical texture and cultural elements [...] Read more.
An important historical and cultural region in southern China, the Xiangjiang River Basin, has formed a unique spatial pattern and regional cultural characteristics in its long-term development. In recent years, the acceleration of urbanization has led to the historical texture and cultural elements of Changsha’s suburban blocks facing deconstruction pressure. How to identify and protect their cultural value at the spatial structure level has become an urgent issue. Taking three typical traditional township blocks in the suburbs of Changsha as the research object, this paper constructs a trinity research framework of “spatial gene identification–diversity analysis–strategy optimization.” It systematically discusses the makeup of the types, quantity, distribution, relative importance ranking, and diversity characteristics of their spatial genes. The results show that (1) the distribution and quantity of spatial genes are affected by multiple driving forces such as historical function, geographic environment, and settlement evolution mechanisms, and that architectural spatial genes have significant advantages in type richness and importance indicators; (2) spatial gene diversity shows the structural characteristics of “enriched artificial space and sparse natural space,” and different blocks show clear differences in node space and boundary space; (3) spatial genetic diversity not only reflects the complexity of the spatial evolution of a block but is also directly related to its cultural inheritance and the feasibility of renewal strategies. Based on this, this paper proposes strategies such as building a spatial gene database, improving the diversity evaluation system, and implementing differentiated protection mechanisms. These strategies provide theoretical support and methods for the protection and sustainable development of cultural heritage in traditional blocks. Full article
Show Figures

Figure 1

14 pages, 5485 KiB  
Article
Immersive 3D Soundscape: Analysis of Environmental Acoustic Parameters of Historical Squares in Parma (Italy)
by Adriano Farina, Antonella Bevilacqua, Matteo Fadda, Luca Battisti, Maria Cristina Tommasino and Lamberto Tronchin
Urban Sci. 2025, 9(7), 259; https://doi.org/10.3390/urbansci9070259 - 3 Jul 2025
Viewed by 365
Abstract
Sound source localization represents one of the major challenges for soundscapes due to the dynamicity of a large variety of signals. Many applications are found related to ecosystems to study the migration process of birds and animals other than other terrestrial environments to [...] Read more.
Sound source localization represents one of the major challenges for soundscapes due to the dynamicity of a large variety of signals. Many applications are found related to ecosystems to study the migration process of birds and animals other than other terrestrial environments to survey wildlife. Other applications on sound recording are supported by sensors to detect animal movement. This paper deals with the immersive 3D soundscape by using a multi-channel spherical microphone probe, in combination with a 360° camera. The soundscape has been carried out in three Italian squares across the city of Parma. The acoustic maps obtained from the data processing detect the directivity of dynamic sound sources as typical of an urban environment. The analysis of the objective environmental parameters (like loudness, roughness, sharpness, and prominence) was conducted alongside the investigations on the historical importance of Italian squares as places for social inclusivity. A dedicated listening playback is provided by the AGORA project with a portable listening room characterized by modular unit of soundbars. Full article
Show Figures

Figure 1

Back to TopTop