Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = histone methyl-transferase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1345 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
Show Figures

Figure 1

28 pages, 3613 KiB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

31 pages, 13626 KiB  
Article
Epigenomics Nutritional Insights of Crocus sativus L.: Computational Analysis of Bioactive Molecules Targeting DNA Methyltransferases and Histone Deacetylases
by Alessia Piergentili, Paolo Roberto Saraceni, Olivia Costantina Demurtas, Barbara Benassi and Caterina Arcangeli
Int. J. Mol. Sci. 2025, 26(15), 7575; https://doi.org/10.3390/ijms26157575 - 5 Aug 2025
Abstract
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA [...] Read more.
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA calculations to investigate the interactions between four saffron-derived molecules—crocetin, beta-D-glucosyl trans-crocetin, picrocrocin and safranal—and four epigenetic enzymes—DNMT1, DNMT3a, HDAC2, and SIRT1. Our in silico screening identifies beta-D-glucosyl trans-crocetin, one of the saffron’s crocins, as a potential DNMT1 inhibitor. Along with crocetin, it also shows the ability to inhibit HDAC2 and activate SIRT1. Picrocrocin displays a resveratrol-like ability to activate SIRT1. None of the saffron-derived compounds effectively bind or inhibit DNMT3a. Among the tested molecules, safranal shows no interaction with the selected epigenetic targets. These findings highlight saffron’s nutriepigenomic potential and emphasize the need for functional validation within relevant in vitro and in vivo experimental methodologies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 496
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

27 pages, 2494 KiB  
Review
Redox-Epigenetic Crosstalk in Plant Stress Responses: The Roles of Reactive Oxygen and Nitrogen Species in Modulating Chromatin Dynamics
by Cengiz Kaya and Ioannis-Dimosthenis S. Adamakis
Int. J. Mol. Sci. 2025, 26(15), 7167; https://doi.org/10.3390/ijms26157167 - 24 Jul 2025
Viewed by 433
Abstract
Plants are constantly exposed to environmental stressors such as drought, salinity, and extreme temperatures, which threaten their growth and productivity. To counter these challenges, they employ complex molecular defense systems, including epigenetic modifications that regulate gene expression without altering the underlying DNA sequence. [...] Read more.
Plants are constantly exposed to environmental stressors such as drought, salinity, and extreme temperatures, which threaten their growth and productivity. To counter these challenges, they employ complex molecular defense systems, including epigenetic modifications that regulate gene expression without altering the underlying DNA sequence. This review comprehensively examines the emerging roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as central signaling molecules orchestrating epigenetic changes in response to abiotic stress. In addition, biotic factors such as pathogen infection and microbial interactions are considered for their ability to trigger ROS/RNS generation and epigenetic remodeling. It explores how ROS and RNS influence DNA methylation, histone modifications, and small RNA pathways, thereby modulating chromatin structure and stress-responsive gene expression. Mechanistic insights into redox-mediated regulation of DNA methyltransferases, histone acetyltransferases, and microRNA expression are discussed in the context of plant stress resilience. The review also highlights cutting-edge epigenomic technologies such as whole-genome bisulfite sequencing (WGBS), chromatin immunoprecipitation sequencing (ChIP-seq), and small RNA sequencing, which are enabling precise mapping of stress-induced epigenetic landscapes. By integrating redox biology with epigenetics, this work provides a novel framework for engineering climate-resilient crops through the targeted manipulation of stress-responsive epigenomic signatures. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1882 KiB  
Review
Epigenetic Drivers of Chemoresistance in Nucleobase and Nucleoside Analog Therapies
by John Kaszycki and Minji Kim
Biology 2025, 14(7), 838; https://doi.org/10.3390/biology14070838 - 9 Jul 2025
Viewed by 611
Abstract
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms [...] Read more.
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms that contribute to acquired chemoresistance, focusing on DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These epigenetic alterations regulate key processes such as DNA repair, drug metabolism, cell transport, and autophagy, enabling cancer cells to survive and resist therapeutic pressure. We highlight how dysregulation of DNA methyltransferases (DNMTs) and histone acetyltransferases (HATs) modulates expression of transporters (e.g., hENT1, ABCB1), DNA repair enzymes (e.g., Polβ, BRCA1/2), and autophagy-related genes (e.g., CSNK2A1, BNIP3). Furthermore, emerging roles for long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in regulating nucleoside export and DNA damage response pathways underscore their relevance as therapeutic targets. The interplay of these epigenetic modifications drives resistance to agents such as gemcitabine and 5-fluorouracil across multiple tumor types. We also discuss recent progress in therapeutic interventions, including DNMT and HDAC inhibitors, RNA-based therapeutics, and CRISPR-based epigenome editing. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

37 pages, 14233 KiB  
Article
Unveiling the Role of Histone Methyltransferases in Psoriasis Pathogenesis: Insights from Transcriptomic Analysis
by Dóra Romhányi, Ágnes Bessenyei, Kornélia Szabó, Lajos Kemény, Rolland Gyulai and Gergely Groma
Int. J. Mol. Sci. 2025, 26(13), 6329; https://doi.org/10.3390/ijms26136329 - 30 Jun 2025
Viewed by 436
Abstract
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of [...] Read more.
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of histone methyltransferases. Consistent with previous findings, EZH2 transcripts showed increased expression in lesional skin, indicating altered H3K27 methylation that may enhance gene silencing, promoting keratinocyte proliferation and inflammatory responses. In the SET2 family, ASH1L exhibited reversed expression patterns between non-lesional and lesional skin, while NSD1 and NSD2 were upregulated, and SETD2 downregulated in lesions, suggesting disrupted H3K36 methylation that may affect immune responses and keratinocyte proliferation. Among H3K9 methyltransferases, SUV39 members, SUV39H2 was upregulated in lesions, whereas EHMT1 transcripts increased in non-lesional skin, and SETDB2 decreased in lesions. Additionally, PRDM family members such as PRDM2, MECOM (PRDM3), PRDM6, and PRDM8 showed altered expression in lesional skin. The H4K20 methylating SUV4-20 subfamily member, a SUV420H1 transcript, and SETD8 belonging to the other SET domain-containing family of methyltransferases were significantly increased in non-lesional skin and in lesions, respectively. Overall, aberrant expression and isoform variability of histone methyltransferases likely contribute to psoriasis pathogenesis by dysregulating proliferation, differentiation, and immune responses. Full article
Show Figures

Figure 1

22 pages, 1538 KiB  
Review
Multi-Faceted Role of Histone Methyltransferase Enhancer of Zeste 2 (EZH2) in Neuroinflammation and Emerging Targeting Options
by Sotirios Moraitis and Christina Piperi
Biology 2025, 14(7), 749; https://doi.org/10.3390/biology14070749 - 23 Jun 2025
Viewed by 449
Abstract
Neuroinflammation, a complex nervous system response to brain injury and other pathological stimuli, exhibits a common denominator role in the pathogenesis of neurological disorders and their progression. Among several regulators of neuroinflammation, epigenetic mechanisms with particular emphasis on histone methylation have a prominent [...] Read more.
Neuroinflammation, a complex nervous system response to brain injury and other pathological stimuli, exhibits a common denominator role in the pathogenesis of neurological disorders and their progression. Among several regulators of neuroinflammation, epigenetic mechanisms with particular emphasis on histone methylation have a prominent role by altering the expression of specific genes involved in the onset and progression of neuroinflammation. The Enhancer of Zeste 2 (EZH2) histone lysine methyltransferase is a multi-faceted and context-dependent regulator of immune response and neural cell function, significantly involved in the underlying mechanisms of neuroinflammation, such as inflammatory gene expression, astrocyte function, microglial activation, BBB integrity, and interactions with non-coding RNAs. Herein, we explore the intricate implication of EZH2 activity in the onset of neuroinflammation and associated pathological conditions, and discuss its potential as a therapeutic target. Currently available EZH2 inhibitors with neuroprotective effects are also addressed in an effort to reveal novel strategies for managing neuroinflammatory conditions, and potentially improving neurological health. Full article
(This article belongs to the Special Issue How Epigenetics Shapes the Nervous System)
Show Figures

Figure 1

25 pages, 4879 KiB  
Article
Combined Phytochemical Sulforaphane and Dietary Fiber Inulin Contribute to the Prevention of ER-Negative Breast Cancer via PI3K/AKT/MTOR Pathway and Modulating Gut Microbial Composition
by Huixin Wu, Brittany L. Witt, William J. van der Pol, Casey D. Morrow, Lennard W. Duck and Trygve O. Tollefsbol
Nutrients 2025, 17(12), 2023; https://doi.org/10.3390/nu17122023 - 17 Jun 2025
Viewed by 736
Abstract
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, [...] Read more.
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, and smoking, play a substantial role in BC occurrence and development. Early life dietary intervention with plant-based bioactive compounds has been studied for its potential role in BC prevention. Sulforaphane (SFN), an isothiocyanate, is an antioxidant and anti-inflammatory agent extracted from broccoli sprouts (BSp) and other plants. Dietary supplementation of SFN suppresses tumor growth by inducing protective epigenetic changes and inhibiting cancer cell proliferation. Inulin, as a dietary fiber, has been studied for alleviating GI discomfort and weight loss by promoting the growth of beneficial bacteria in the gut. Objective: Early-life combinatorial treatment with both phytochemical SFN and potential prebiotic agent inulin at lower and safer dosages may confer more efficacious and beneficial effects in BC prevention. Methods: Transgenic mice representing estrogen receptor-negative BC were fed 26% (w/w) BSp and 2% (w/v) inulin supplemented in food and water, respectively. Results: The combinatorial treatment inhibited tumor growth, increased tumor onset latency, and synergistically reduced tumor weight. Gut microbial composition was analyzed between groups, where Ruminococcus, Muribaculaceae, and Faecalibaculum significantly increased, while Blautia, Turicibacter, and Clostridium sensu stricto 1 significantly decreased in the combinatorial group compared with the control group. Furthermore, combinatorial treatment induced a protective epigenetic effect by inhibiting histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Intermediates in the AKT/PI3K/MTOR pathway were significantly suppressed by the combinatorial treatment, including PI3K p85, p-AKT, p-PI3K p55, MTOR, and NF-κB. Cell cycle arrest and programmed cell death were induced by the combinatorial treatment via elevating the expression of cleaved-caspase 3 and 7 and inhibiting the expressions of CDK2 and CDK4, respectively. Orally administering F. rodentium attenuated tumor growth and induced apoptosis in a syngeneic triple-negative breast cancer (TNBC) mouse model. Conclusions: Overall, the findings suggest that early-life dietary combinatorial treatment contributed to BC prevention and may be a potential epigenetic therapy that serves as an adjunct to other traditional neoadjuvant therapies. Full article
(This article belongs to the Special Issue Advances in Gene–Diet Interactions and Human Health)
Show Figures

Figure 1

47 pages, 2976 KiB  
Review
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review
by Marco Meleiro and Rui Henrique
Int. J. Mol. Sci. 2025, 26(12), 5634; https://doi.org/10.3390/ijms26125634 - 12 Jun 2025
Viewed by 1359
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood–brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms. Full article
(This article belongs to the Special Issue Glioblastoma: Molecular Pathogenesis and Treatment)
Show Figures

Graphical abstract

24 pages, 3035 KiB  
Article
Functional Characterization of LTR12C as Regulators of Germ-Cell-Associated TA-p63 in U87-MG and T98-G In Vitro Models
by Lucia Meola, Sohum Rajesh Shetty, Angelo Peschiaroli, Claudio Sette and Camilla Bernardini
Cells 2025, 14(11), 852; https://doi.org/10.3390/cells14110852 - 5 Jun 2025
Viewed by 624
Abstract
Glioblastoma multiforme (GBM) is a deadly disease known for its genetic heterogeneity. LTR12C is an endogenous retrovirus-derived regulator of pro-apoptotic genes and is normally silenced by epigenetic regulation. In this study, we found that the treatment of two glioblastoma cell lines, T98-G and [...] Read more.
Glioblastoma multiforme (GBM) is a deadly disease known for its genetic heterogeneity. LTR12C is an endogenous retrovirus-derived regulator of pro-apoptotic genes and is normally silenced by epigenetic regulation. In this study, we found that the treatment of two glioblastoma cell lines, T98-G and U87-MG, with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors activated LTR12C expression. Combined treatment with these epigenetic drugs exerted a synergistic action on the LTR12C activation in both cell lines, while treatment with each drug as a single agent had a far weaker effect. A strong induction of the expression of the TP63 gene was seen in both cell lines, with the pro-apoptotic isoform GTA-p63 accounting for most of this increase. Coherently, downstream targets of p63, such as p21 and PUMA, were also induced by the combined treatment. Furthermore, we observed a significant reduction in the GBM cell growth and viability following the dual DNMT/HDAC inhibition. These findings reveal that the reactivation of LTR12C expression has the potential to modulate survival pathways in glioblastoma and provide information regarding possible epigenetic mechanisms that can be used to treat this deadly disease. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

26 pages, 978 KiB  
Review
Reversing Epigenetic Dysregulation in Neurodegenerative Diseases: Mechanistic and Therapeutic Considerations
by David B. Olawade, Intishar Rashad, Eghosasere Egbon, Jennifer Teke, Saak Victor Ovsepian and Stergios Boussios
Int. J. Mol. Sci. 2025, 26(10), 4929; https://doi.org/10.3390/ijms26104929 - 21 May 2025
Cited by 1 | Viewed by 1494
Abstract
Epigenetic dysregulation has emerged as an important player in the pathobiology of neurodegenerative diseases (NDDs), such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Aberrant DNA methylation, histone modifications, and dysregulated non-coding RNAs have been shown to contribute to neuronal dysfunction and degeneration. These alterations [...] Read more.
Epigenetic dysregulation has emerged as an important player in the pathobiology of neurodegenerative diseases (NDDs), such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Aberrant DNA methylation, histone modifications, and dysregulated non-coding RNAs have been shown to contribute to neuronal dysfunction and degeneration. These alterations are often exacerbated by environmental toxins, which induce oxidative stress, inflammation, and genomic instability. Reversing epigenetic aberrations may offer an avenue for restoring brain mechanisms and mitigating neurodegeneration. Herein, we revisit the evidence suggesting the ameliorative effects of epigenetic modulators in toxin-induced models of NDDs. The restoration of normal gene expressions, the improvement of neuronal function, and the reduction in pathological markers by histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors have been demonstrated in preclinical models of NDDs. Encouragingly, in clinical trials of Alzheimer’s disease (AD), HDAC inhibitors have caused improvements in cognition and memory. Combining these beneficial effects of epigenetic modulators with neuroprotective agents and the clearance of misfolded amyloid proteins may offer synergistic benefits. Reinforced by the emerging methods for more effective and brain-specific delivery, reversibility, and safety considerations, epigenetic modulators are anticipated to minimize systemic toxicity and yield more favorable outcomes in NDDs. In summary, although still in their infancy, epigenetic modulators offer an integrated strategy to address the multifactorial nature of NDDs, altering their therapeutic landscape. Full article
Show Figures

Figure 1

18 pages, 1376 KiB  
Review
Emerging Epigenetic Therapies for the Treatment of Cardiac Fibrosis
by Nerea Garitano, Laura Pilar Aguado-Alvaro and Beatriz Pelacho
Biomedicines 2025, 13(5), 1170; https://doi.org/10.3390/biomedicines13051170 - 11 May 2025
Viewed by 953
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis [...] Read more.
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis is particularly relevant due to its impact on cardiovascular diseases (CVDs), which remain the leading cause of morbidity and mortality worldwide. This process is driven by activated cardiac fibroblasts (CFs), which promote ECM accumulation in response to chronic stressors. Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are key regulators of fibroblast activation and fibrotic gene expression. Enzymes such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) have emerged as potential therapeutic targets, and epigenetic inhibitors have shown promise in modulating these enzymes to attenuate fibrosis by controlling fibroblast function and ECM deposition. These small-molecule compounds offer advantages such as reversibility and precise temporal control, making them attractive candidates for therapeutic intervention. This review aims to provide a comprehensive overview of the mechanisms by which epigenetic regulators influence cardiac fibrosis and examines the latest advances in preclinical epigenetic therapies. By integrating recent data from functional studies, single-cell profiling, and drug development, it highlights key molecular targets, emerging therapeutic strategies, and current limitations, offering a critical framework to guide future research and clinical translation. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1590 KiB  
Review
Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma
by Taketo Kato, Ichidai Tanaka, Heng Huang, Shoji Okado, Yoshito Imamura, Yuji Nomata, Hirofumi Takenaka, Hiroki Watanabe, Yuta Kawasumi, Keita Nakanishi, Yuka Kadomatsu, Harushi Ueno, Shota Nakamura, Tetsuya Mizuno and Toyofumi Fengshi Chen-Yoshikawa
Int. J. Mol. Sci. 2025, 26(9), 4299; https://doi.org/10.3390/ijms26094299 - 1 May 2025
Cited by 1 | Viewed by 1219
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway [...] Read more.
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody–drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy. Full article
(This article belongs to the Special Issue Translational Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

9 pages, 1023 KiB  
Review
A Novel Frameshift Variant and a Partial EHMT1 Microdeletion in Kleefstra Syndrome 1 Patients Resulting in Variable Phenotypic Severity and Literature Review
by Maria Tzetis, Anastasios Mitrakos, Ioanna Papathanasiou, Vasiliki Koute, Konstantina Kosma, Roser Pons, Aspasia Michoula, Ioanna Grivea and Aspasia Tsezou
Genes 2025, 16(5), 521; https://doi.org/10.3390/genes16050521 - 29 Apr 2025
Viewed by 931
Abstract
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical [...] Read more.
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical phenotype of KLEFS1 includes moderate to severe intellectual disability (ID), hypotonia, and distinctive facial features and additionally involves other organ systems (heart, renal, genitourinary, sensory) albeit with phenotypic heterogeneity between patients. The purpose of this study is to expand the genotypic spectrum of KLEFS1 and compare phenotypic features of the syndrome of already published cases. Methods: Exome sequencing (ES), chromosomal microarray analysis (CMA), as well as sanger sequencing, for confirmation of the de novo status of the frameshift variant, were used. Results: Here we describe two more cases, both males with a similar age and carriers of novel variants; one with a frameshift variant involving exon 13: p.Val692Glyfs*64 and the other with the smallest so far described, 11 Kb (exons 19-25), 9q34.4 microdeletion: 9q34.3 (140703393-140714454). Both presented with an NDD disorder with one showing more severe ID with significant social disabilities, while the other with the microdeletion had mild ID and following a normal education curriculum. Neither of them were obese nor had any other significant organ system disorder. Conclusions: The observed phenotypic variability due to genotypic differences in the two children contributes to the expanding spectrum of KLEFS1 disease phenotypes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop