Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,626)

Search Parameters:
Keywords = histone H1.0

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1939 KiB  
Review
Dual Nature of Neutrophil Extracellular Traps (NETs)—From Cancer’s Ally to Therapeutic Target
by Karolina Buszka, Claudia Dompe, Kinga Derwich, Izabela Pieścikowska, Michał Nowicki and Joanna Budna-Tukan
Cells 2025, 14(15), 1200; https://doi.org/10.3390/cells14151200 - 5 Aug 2025
Abstract
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential [...] Read more.
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential liquid biopsy markers. NETs are web-like chromatin structures released by neutrophils in response to various stimuli to trap and neutralize pathogens. However, excessive or dysregulated NET formation has been implicated in tumor progression and metastasis. Elevated levels of NETs have been observed in patients with various types of cancer and correlate with disease stage and prognosis. The presence of NET markers such as citrullinated histone H3 (H3Cit), neutrophil elastase (NE) and myeloperoxidase (MPO) has been associated with higher tumor burden and poorer clinical outcomes. Several studies have shown a positive correlation between NET markers and circulating free DNA (cfDNA) levels, suggesting that NETs may increase the sensitivity of liquid biopsy in detecting and monitoring cancer progression. This review examines the role of NETs in the tumor microenvironment, their contribution to cancer progression and metastasis, and their potential use in liquid biopsy and cancer therapy. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironments for Enhanced Cancer Immunotherapy)
Show Figures

Figure 1

19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting activation by upregulated GDF15. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 - 31 Jul 2025
Viewed by 197
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

16 pages, 8899 KiB  
Article
DNA Methylation Concurrence, Independent of DNA Methylation Ratios, Is Associated with Chromatin Accessibility and 3D Genome Architecture
by Guian Zhang, Yixian Yang, Dan Cui and Jia Li
Int. J. Mol. Sci. 2025, 26(15), 7199; https://doi.org/10.3390/ijms26157199 - 25 Jul 2025
Viewed by 162
Abstract
Multiple metrics for read-level DNA methylation pattern analysis have provided new insights into DNA methylation modifications. However, the performance of these metrics and their relationship with DNA methylation ratios in identifying biologically meaningful regions have remained unclear. Here, we systematically benchmarked five read-level [...] Read more.
Multiple metrics for read-level DNA methylation pattern analysis have provided new insights into DNA methylation modifications. However, the performance of these metrics and their relationship with DNA methylation ratios in identifying biologically meaningful regions have remained unclear. Here, we systematically benchmarked five read-level DNA methylation metrics using whole-genome bisulfite sequencing data from 59 individuals across six healthy tissue types and six tumor types. We found that DNA methylation concurrence (MCR) effectively captured tissue-specific features independent of the DNA methylation ratios. Regions that exhibited decreased MCR (MCDRs) in tumors were significantly enriched in promoter and intergenic regions and strongly overlapped with tumor-gained chromatin accessibility sites. The further analysis of histone modifications, including H3K4me3, H3K27ac, and H3K9ac, confirmed that MCDRs marked active gene regulatory elements. Motif enrichment analysis revealed a strong preference for CTCF binding within MCDRs. Additionally, 3D genome analysis supported a model in which MCDRs, independent of DNA methylation ratios, contribute to active gene regulation by facilitating CTCF binding and long-range chromatin interactions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2227 KiB  
Article
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination
by Xiangyu Shen, Chunxu Chen, Amanda E. Jones, Xiaokun Jian, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(15), 1133; https://doi.org/10.3390/cells14151133 - 23 Jul 2025
Viewed by 295
Abstract
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. [...] Read more.
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. In this study, we employed isoform-specific epitope-tagged knock-in mouse embryonic stem cell (ESC) lines to dissect the roles of each isoform in Polycomb Repressive Complex 1 (PRC1)-mediated H2AK119ub. Our results show that H2AZ.1 and H2AZ.2 share highly overlapping genomic binding profiles, both co-localizing extensively with H2AK119ub-enriched loci. The knockdown of either isoform led to reduced H2AK119ub levels; however, the two isoforms appear to function through distinct mechanisms. H2AZ.1 facilitates the recruitment of Ring1B, the catalytic subunit of PRC1, thereby promoting the deposition of H2AK119ub. In contrast, H2AZ.2 does not significantly affect Ring1B recruitment but instead functions as a structural component that stabilizes H2AK119ub-modified nucleosomes. In vitro ubiquitination assays indicate that H2AZ.1-containing nucleosomes serve as more efficient substrates for PRC1-mediated ubiquitination compared to those containing H2AZ.2. Thus, these findings define the distinct mechanisms of the two H2AZ variants in regulated PRC1-mediated H2AK119 ubiquitination and highlight a functional division of labor in epigenetic regulation. Full article
Show Figures

Figure 1

16 pages, 2408 KiB  
Article
Female Mice Lacking LSD1 in Myeloid Cells Are Resistant to Inflammatory Bone Loss
by Kristina Astleford-Hopper, Flavia Saavedra, Peter Bittner-Eddy, Clara Stein, Jennifer Auger, Rachel Clark, Juan E. Abrahante Llorens, Bryce A. Binstadt, Vivek Thumbigere-Math and Kim C. Mansky
Cells 2025, 14(14), 1111; https://doi.org/10.3390/cells14141111 - 19 Jul 2025
Viewed by 360
Abstract
Osteoclasts, which are derived from myeloid precursors, are essential for physiologic bone remodeling but also mediate pathological bone loss in inflammatory diseases such as periodontitis and rheumatoid arthritis. Lysine-specific demethylase (LSD1/KDM1A) is a histone demethylase that modulates the chromatin landscape via demethylation of [...] Read more.
Osteoclasts, which are derived from myeloid precursors, are essential for physiologic bone remodeling but also mediate pathological bone loss in inflammatory diseases such as periodontitis and rheumatoid arthritis. Lysine-specific demethylase (LSD1/KDM1A) is a histone demethylase that modulates the chromatin landscape via demethylation of H3K4me1/2 and H3K9me1/2, thereby regulating the expression of genes essential for deciding cell fate. We previously demonstrated that myeloid-specific deletion of LSD1 (LSD1LysM-Cre) disrupts osteoclast differentiation, leading to enhanced BV/TV under physiological conditions. In this study, we show that LSD1LysM-Cre female mice are similarly resistant to inflammatory bone loss in both ligature-induced periodontitis and K/BxN serum-transfer arthritis models. Bulk RNA-seq of mandibular-derived preosteoclasts from LSD1LysM-Cre mice with ligature-induced periodontitis revealed the upregulation of genes involved in inflammation, lipid metabolism, and immune response. Notably, LSD1 deletion blocked osteoclastogenesis even under TGF-β and TNF co-stimulation, which is an alternative RANKL-independent differentiation pathway. Upregulation of Nlrp3, Hif1α, and Acod1 in LSD1LysM-Cre preosteoclasts suggests that LSD1 is essential for repressing inflammatory and metabolic programs that otherwise hinder osteoclast commitment. These findings establish LSD1 as a critical epigenetic gatekeeper integrating inflammatory and metabolic signals to regulate osteoclast differentiation and bone resorption. Therapeutic inhibition of LSD1 may selectively mitigate inflammatory bone loss while preserving physiological bone remodeling. Full article
Show Figures

Figure 1

17 pages, 3159 KiB  
Article
Csn5 Depletion Reverses Mitochondrial Defects in GCN5-Null Saccharomyces cerevisiae
by Angela Cirigliano, Emily Schifano, Alessandra Ricelli, Michele M. Bianchi, Elah Pick, Teresa Rinaldi and Arianna Montanari
Int. J. Mol. Sci. 2025, 26(14), 6916; https://doi.org/10.3390/ijms26146916 - 18 Jul 2025
Viewed by 220
Abstract
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal [...] Read more.
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal lysine residues on histones H2B and H3 to modulate gene expression. The loss of GCN5 leads to mitochondrial abnormalities, including defects in mitochondrial morphology, a reduced mitochondrial DNA copy number, and defective mitochondrial inheritance due to the depolarization of actin filaments. These defects collectively trigger the activation of the mitophagy pathway. Interestingly, deleting CSN5, which encodes to Csn5/Rri1 (Csn5), the catalytic subunit of the COP9 signalosome complex, rescues the mitochondrial phenotypes observed in the gcn5Δ strain. Furthermore, these defects are suppressed by exogenous ergosterol supplementation, suggesting a link between the rescue effect mediated by CSN5 deletion and the regulatory role of Csn5 in the ergosterol biosynthetic pathway. Full article
(This article belongs to the Special Issue Research on Mitochondrial Genetics and Epigenetics)
Show Figures

Figure 1

16 pages, 361 KiB  
Article
Identifying Cortical Molecular Biomarkers Potentially Associated with Learning in Mice Using Artificial Intelligence
by Xiyao Huang, Carson Gauthier, Derek Berger, Hao Cai and Jacob Levman
Int. J. Mol. Sci. 2025, 26(14), 6878; https://doi.org/10.3390/ijms26146878 - 17 Jul 2025
Viewed by 215
Abstract
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to [...] Read more.
In this study, we identify cortical molecular biomarkers potentially associated with learning in mice using artificial intelligence (AI), inclusive of established and novel feature selection combined with supervised learning technologies. We applied multiple machine learning (ML) algorithms, using public domain ML software, to a public domain dataset, in order to support reproducible findings. We developed technologies tasked with predicting whether a given mouse was shocked to learn, based on protein expression levels extracted from their cortices. Results indicate that it is possible to predict whether a mouse has been shocked to learn or not based only on the following cortical molecular biomarkers: brain-derived neurotrophic factor (BDNF), NR2A subunit of N-methyl-D-aspartate receptor, B-cell lymphoma 2 (BCL2), histone H3 acetylation at lysine 18 (H3AcK18), protein kinase R-like endoplasmic reticulum kinase (pERK), and superoxide dismutase 1 (SOD1). These results were obtained with a novel redundancy-aware feature selection method. Five out of six protein expression biomarkers (BDNF, NR2A, H3AcK18, pERK, SOD1) identified have previously been associated with aspects of learning in the literature. Three of the proteins (BDNF, NR2A, and BCL2) have previously been associated with pruning, and one has previously been associated with apoptosis (BCL2), implying a potential connection between learning and both cortical pruning and apoptosis. The results imply that these six protein expression profiles (BDNF, NR2A, BCL2, H3AcK18, pERK, SOD1) are highly predictive of whether or not a mouse has been shocked to learn. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 3617 KiB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Viewed by 349
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

30 pages, 2301 KiB  
Review
Retinoic Acid Induced 1 and Smith–Magenis Syndrome: From Genetics to Biology and Possible Therapeutic Strategies
by Jasmine Covarelli, Elisa Vinciarelli, Alessandra Mirarchi, Paolo Prontera and Cataldo Arcuri
Int. J. Mol. Sci. 2025, 26(14), 6667; https://doi.org/10.3390/ijms26146667 - 11 Jul 2025
Viewed by 371
Abstract
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and [...] Read more.
Haploinsufficiency disorders are genetic diseases caused by reduced gene expression, leading to developmental, metabolic, and tumorigenic abnormalities. The dosage-sensitive Retinoic Acid Induced 1 (RAI1) gene, located within the 17p11.2 region, is central to the core features of Smith––Magenis syndrome (SMS) and Potocki––Lupski syndrome (PTLS), caused by the reciprocal microdeletions and microduplications of this region, respectively. SMS and PTLS present contrasting phenotypes. SMS is characterized by severe neurobehavioral manifestations, sleep disturbances, and metabolic abnormalities, and PTLS shows milder features. Here, we detail the molecular functions of RAI1 in its wild-type and haploinsufficiency conditions (RAI1+/−), as studied in animal and cellular models. RAI1 acts as a transcription factor critical for neurodevelopment and synaptic plasticity, a chromatin remodeler within the Histone 3 Lysine 4 (H3K4) writer complex, and a regulator of faulty 5′-capped pre-mRNA degradation. Alterations of RAI1 functions lead to synaptic scaling and transcriptional dysregulation in neural networks. This review highlights key molecular mechanisms of RAI1, elucidating its role in the interplay between genetics and phenotypic features and summarizes innovative therapeutic approaches for SMS. These data provide a foundation for potential therapeutic strategies targeting RAI1, its mRNA products, or downstream pathways. Full article
(This article belongs to the Special Issue Gene Therapy Approaches in Haploinsufficiency Disorders)
Show Figures

Figure 1

23 pages, 1882 KiB  
Review
Epigenetic Drivers of Chemoresistance in Nucleobase and Nucleoside Analog Therapies
by John Kaszycki and Minji Kim
Biology 2025, 14(7), 838; https://doi.org/10.3390/biology14070838 - 9 Jul 2025
Viewed by 596
Abstract
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms [...] Read more.
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms that contribute to acquired chemoresistance, focusing on DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These epigenetic alterations regulate key processes such as DNA repair, drug metabolism, cell transport, and autophagy, enabling cancer cells to survive and resist therapeutic pressure. We highlight how dysregulation of DNA methyltransferases (DNMTs) and histone acetyltransferases (HATs) modulates expression of transporters (e.g., hENT1, ABCB1), DNA repair enzymes (e.g., Polβ, BRCA1/2), and autophagy-related genes (e.g., CSNK2A1, BNIP3). Furthermore, emerging roles for long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in regulating nucleoside export and DNA damage response pathways underscore their relevance as therapeutic targets. The interplay of these epigenetic modifications drives resistance to agents such as gemcitabine and 5-fluorouracil across multiple tumor types. We also discuss recent progress in therapeutic interventions, including DNMT and HDAC inhibitors, RNA-based therapeutics, and CRISPR-based epigenome editing. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

20 pages, 2556 KiB  
Article
High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps
by Yingqiu Sun, Hui Liu, Jiyu Jiang, Leyan Hu, Qingpu Ma, Shuxuan Li, Tiegang Liu and Xiaohong Gu
Nutrients 2025, 17(13), 2242; https://doi.org/10.3390/nu17132242 - 7 Jul 2025
Viewed by 565
Abstract
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined [...] Read more.
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined the exacerbating effects of a high-calorie diet on pneumonia in rats. Methods: Male Sprague-Dawley rats (3 weeks old, 110 ± 10 g) were allocated among four groups: normal diet (N), high-calorie diet (G), LPS-induced pneumonia (P), and high-calorie diet combined with lipopolysaccharide (LPS)-induced pneumonia (GP). LPS was administered via aerosolization for three days. Fecal, serum, and lung SCFA levels were quantified via GC-MS. Neutrophil extracellular traps (NETs) formation, neutrophil apoptosis, and HDAC activity were assessed using immunofluorescence, TUNEL assays, and qRT-PCR. Propionate supplementation and HDAC inhibitor (trichostatin A) interventions were applied to validate mechanistic pathways. Results: The group GP exhibited exacerbated lung inflammation, increased NETs release, and reduced neutrophil apoptosis compared to the group P. Propionate levels in feces, serum, and lung tissues decreased sharply in GP rats, correlating with elevated HDAC1/2/3/6 activity and reduced histone acetylation. Propionate supplementation or HDAC inhibition significantly attenuated lung injury, suppressed NETs, and restored neutrophil apoptosis. Conclusions: High-calorie diets exacerbate pneumonia by depleting gut-derived propionate, which drives HDAC-mediated NETs overproduction and impairs neutrophil apoptosis. Restoring propionate levels or targeting HDACs may offer therapeutic strategies for diet-aggravated respiratory diseases. Mechanistically, propionate-mediated HDAC inhibition demonstrates proof-of-concept efficacy in modulating H4 acetylation, warranting further investigation in disease-specific pneumonia models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

21 pages, 7342 KiB  
Article
Synergistic Antioxidant Effects of C3G-Enriched Oryza sativa L. cv. RD83 Extract and α-Tocopherol Against H2O2-Induced Oxidative Stress in SH-SY5Y Cells
by Nootchanat Mairuae and Nut Palachai
Int. J. Mol. Sci. 2025, 26(13), 6490; https://doi.org/10.3390/ijms26136490 - 5 Jul 2025
Viewed by 351
Abstract
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a [...] Read more.
Oxidative stress, which contributes to neuronal cell dysfunction, is a critical factor in the pathogenesis of neurodegenerative diseases. Anthocyanins and α-tocopherol have shown potential in mitigating oxidative damage, and their combination may provide synergistic effects. This study investigated the combined effects of a cyanidin-3-glucoside (C3G)-enriched extract derived from Oryza sativa L. cv. RD83 and α-tocopherol (C3GE) on hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y cells. Cells were treated with C3GE during exposure to 200 µM H2O2. Cell viability, intracellular reactive oxygen species (ROS), and oxidative stress biomarkers, including the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as malondialdehyde (MDA) levels, were evaluated. Protein expression levels of histone deacetylase 1 (HDAC1), nuclear factor erythroid 2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and SOD1 were also assessed. The combined treatment markedly improved cell viability, suppressed ROS accumulation, enhanced antioxidant enzyme activities, and significantly reduced MDA levels, suggesting effective protection against oxidative damage. Mechanistically, C3GE downregulated HDAC1 expression while upregulating Nrf2, HO-1, and SOD1, indicating that its antioxidant and neuroprotective effects are mediated, at least in part, through epigenetic modulation of redox-related signaling pathways. These results demonstrate a synergistic interaction between C3G and α-tocopherol that enhances cellular antioxidant defenses and supports redox homeostasis. In conclusion, the C3GE combination offers a promising therapeutic approach for preventing or attenuating oxidative stress-induced neuronal injury, with potential relevance for the treatment of neurodegenerative disorders. Full article
(This article belongs to the Special Issue Oxidative Stress and Disease: Basic and Biochemical Approaches)
Show Figures

Figure 1

14 pages, 2845 KiB  
Article
Heparin-Binding Hemagglutinin-Induced Trained Immunity in Macrophages: Implications for Antimycobacterial Defense
by Yongqiang Li, Xiuping Jia, Jinhua Tang, Huilian Qiao, Jiani Zhou and Yueyun Ma
Biomolecules 2025, 15(7), 959; https://doi.org/10.3390/biom15070959 - 4 Jul 2025
Viewed by 404
Abstract
Tuberculosis (TB) is a major global health threat, with the current Bacillus Calmette–Guérin (BCG) vaccine having limited efficacy against adult pulmonary disease. Trained immunity (TI) is a form of innate immune memory that enhances antimicrobial defense. It is characterized by the epigenetic and [...] Read more.
Tuberculosis (TB) is a major global health threat, with the current Bacillus Calmette–Guérin (BCG) vaccine having limited efficacy against adult pulmonary disease. Trained immunity (TI) is a form of innate immune memory that enhances antimicrobial defense. It is characterized by the epigenetic and metabolic reprogramming of innate immune cells and holds promise as a promising approach to prevent TB. In this study, we investigated the capacity of heparin-binding hemagglutinin (HBHA), a methylated antigen of Mycobacterium tuberculosis, to induce TI in murine RAW264.7 macrophages, human-derived THP-1 macrophages, and human peripheral blood mononuclear cells (hPBMCs). HBHA-trained macrophages exhibited the enhanced expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) following secondary lipopolysaccharide stimulation. The epigenetic profiling indicated elevated levels of H3K4me1 and H3K4me3 histone marks at cytokine gene loci. Further, metabolic analysis revealed heightened lactate production and the increased expression of glycolytic enzymes. Functionally, HBHA-trained macrophages exhibited improved control of intracellular mycobacteria, as evidenced by a significant reduction in colony-forming units following BCG infection. These findings elucidate that HBHA induces a functional TI phenotype via coordinated epigenetic and metabolic changes, and suggest HBHA may serve as a valuable tool for studying TI and its relevance to host defense against mycobacterial infections, pending further in vivo and clinical validation. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

Back to TopTop