High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animal Experiments
2.3. Blinding Procedures
2.4. Lung Histopathology
2.5. ELISA
2.6. Drug Administration
2.7. Real-Time PCR
2.8. Fecal/Serum/Lung Tissue SCFAs Analysis
2.9. Immunofluorescence
2.10. Statistical Analysis
3. Results
3.1. High-Calorie Diets Exacerbate Pneumonia-Associated Lung Injury in Juvenile Rats
3.2. High-Calorie Diets Promote Neutrophil Recruitment and NETosis While Inhibiting Apoptosis
3.3. High-Calorie Diets Reduce SCFAs Levels, Particularly Propionic Acid
3.4. Propionate Restoration and HDAC Inhibition Reduce Lung Injury Induced by Pneumonia and High-Calorie Diets
3.5. High-Calorie Diets May Reduce Propionate Levels, Potentially Activating HDAC Receptors 1, 2, 3, and 6
3.6. Propionate Has Been Observed to Inhibit the Release of NETs from Lung Tissue, an Effect That May Be Associated with the Enhancement of AcH4 Acetylation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NETs | neutrophil extracellular traps |
SCFAs | short-chain fatty acids |
LPS | Lipopolysaccharide |
HDAC | histone deacetylase |
GPCR | G protein-coupled receptors |
H&E | hematoxylin and eosin |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
TNF-α | tumor necrosis factor-alpha |
TSA | trichostatin A |
ELISA | enzyme-linked immunosorbent assay |
cDNA | complementary DNA |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
GC-MS | gas chromatography-mass spectrometry |
OCT | optimal cutting temperature |
DAPI | 4′,6-diamidino-2-phenylindole |
TUNEL | terminal deoxynucleotidyl transferase dUTP nick-end labeling |
CXCL1 | C-X-C Motif Chemokine Ligand 1 |
NF-κB | nuclear factor-κB |
References
- Narciso, A.R.; Dookie, R.; Nannapaneni, P.; Normark, S.; Henriques-Normark, B. Streptococcus Pneumoniae Epidemiology, Pathogenesis and Control. Nat. Rev. Microbiol. 2024, 23, 256–271. [Google Scholar] [CrossRef]
- Long, M.E.; Mallampalli, R.K.; Horowitz, J.C. Pathogenesis of Pneumonia and Acute Lung Injury. Clin. Sci. 2022, 136, 747–769. [Google Scholar] [CrossRef]
- Shah, S.N.; Bachur, R.G.; Simel, D.L.; Neuman, M.I. Childhood Pneumonia. JAMA 2017, 318, 490. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, Regional, and National Causes of under-5 Mortality in 2000–15: An Updated Systematic Analysis with Implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef]
- GBD 2015 Child Mortality Collaborators Global, Regional, National, and Selected Subnational Levels of Stillbirths, Neonatal, Infant, and under-5 Mortality, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1725–1774. [CrossRef]
- Jin, Y.; Mankadi, P.M.; Rigotti, J.I.; Cha, S. Cause-Specific Child Mortality Performance and Contributions to All-Cause Child Mortality, and Number of Child Lives Saved during the Millennium Development Goals Era: A Country-Level Analysis. Glob. Health Action 2018, 11, 1546095. [Google Scholar] [CrossRef]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, Regional, and National Causes of under-5 Mortality in 2000–19: An Updated Systematic Analysis with Implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef]
- Roux, D.M.L. Childhood Deaths Due to Pneumonia: A Novel Causal Analysis of Aetiology. Lancet Child Adolesc. Health 2024, 8, 178–179. [Google Scholar] [CrossRef]
- Vu, T.-H.T.; Van Horn, L.; Achenbach, C.J.; Rydland, K.J.; Cornelis, M.C. Diet and Respiratory Infections: Specific or Generalized Associations? Nutrients 2022, 14, 1195. [Google Scholar] [CrossRef]
- Salehi, Z.; Askari, M.; Jafari, A.; Ghosn, B.; Surkan, P.J.; Hosseinzadeh-Attar, M.J.; Pouraram, H.; Azadbakht, L. Dietary Patterns and Micronutrients in Respiratory Infections Including COVID-19: A Narrative Review. BMC Public Health 2024, 24, 1661. [Google Scholar] [CrossRef]
- Banfield, E.C.; Liu, Y.; Davis, J.S.; Chang, S.; Frazier-Wood, A.C. Poor Adherence to US Dietary Guidelines for Children and Adolescents in the National Health and Nutrition Examination Survey Population. J. Acad. Nutr. Diet. 2016, 116, 21–27. [Google Scholar] [CrossRef]
- Paglia, L. The Sweet Danger of Added Sugars. Eur. J. Paediatr. Dent. 2019, 20, 89. [Google Scholar] [CrossRef]
- Fidler Mis, N.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Hulst, J.; Indrio, F.; Lapillonne, A.; et al. Sugar in Infants, Children and Adolescents: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 681–696. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, M.; Zhu, X.; Shi, Y. Effect of a High-Calorie Diet and Constant Light Exposure on Female Reproduction, Metabolism and Immune Inflammation: A Comparative Study of Different Mouse Models. Am. J. Reprod. Immunol. 2021, 86, e13479. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Plasma Cytokine Response during the Postprandial Period: A Potential Causal Process in Vascular Disease? Br. J. Nutr. 2005, 93, 3–9. [Google Scholar] [CrossRef]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef]
- Rogero, M.M.; Calder, P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef]
- Ghanim, H.; Abuaysheh, S.; Sia, C.L.; Korzeniewski, K.; Chaudhuri, A.; Fernandez-Real, J.M.; Dandona, P. Increase in Plasma Endotoxin Concentrations and the Expression of Toll-like Receptors and Suppressor of Cytokine Signaling-3 in Mononuclear Cells after a High-Fat, High-Carbohydrate Meal: Implications for Insulin Resistance. Diabetes Care 2009, 32, 2281–2287. [Google Scholar] [CrossRef]
- Liu, H.; Bai, C.; Xian, F.; Liu, S.; Long, C.; Hu, L.; Liu, T.; Gu, X. A High-Calorie Diet Aggravates LPS-Induced Pneumonia by Disturbing the Gut Microbiota and Th17/Treg Balance. J. Leukoc. Biol. 2022, 112, 127–141. [Google Scholar] [CrossRef]
- Bai, C.; Liu, T.; Xu, J.; Ma, X.; Huang, L.; Liu, S.; Yu, H.; Chen, J.; Gu, X. Effect of High Calorie Diet on Intestinal Flora in LPS-Induced Pneumonia Rats. Sci. Rep. 2020, 10, 1701. [Google Scholar] [CrossRef]
- Li, Q.; Liu, T.; Bai, C.; Ma, X.; Liu, H.; Zheng, Z.; Wan, Y.; Yu, H.; Ma, Y.; Gu, X. iTRAQ-Based Proteomics Reveals the Mechanism of Action of Yinlai Decoction in Treating Pneumonia in Mice Consuming a High-Calorie Diet. J. Tradit. Chin. Med. Sci. 2024, 11, 21–32. [Google Scholar] [CrossRef]
- Ancona, G.; Alagna, L.; Alteri, C.; Palomba, E.; Tonizzo, A.; Pastena, A.; Muscatello, A.; Gori, A.; Bandera, A. Gut and Airway Microbiota Dysbiosis and Their Role in COVID-19 and Long-COVID. Front. Immunol. 2023, 14, 1080043. [Google Scholar] [CrossRef]
- Mendes de Almeida, V.; Engel, D.F.; Ricci, M.F.; Cruz, C.S.; Lopes, Í.S.; Alves, D.A.; d’ Auriol, M.; Magalhães, J.; Machado, E.C.; Rocha, V.M.; et al. Gut Microbiota from Patients with COVID-19 Cause Alterations in Mice That Resemble Post-COVID Symptoms. Gut Microbes 2023, 15, 2249146. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Machado, M.G.; Patente, T.A.; Rouillé, Y.; Heumel, S.; Melo, E.M.; Deruyter, L.; Pourcet, B.; Sencio, V.; Teixeira, M.M.; Trottein, F. Acetate Improves the Killing of Streptococcus Pneumoniae by Alveolar Macrophages via NLRP3 Inflammasome and Glycolysis-HIF-1α Axis. Front. Immunol. 2022, 13, 773261. [Google Scholar] [CrossRef]
- Gupta, N.; Abd El-Gawaad, N.S.; Osman Abdallah, S.A.; Al-Dossari, M. Possible Modulating Functions of Probiotic Lactiplantibacillus Plantarum in Particulate Matter-Associated Pulmonary Inflammation. Front. Cell Infect. Microbiol. 2023, 13, 1290914. [Google Scholar] [CrossRef]
- Włodarczyk, J.; Czerwiński, B.; Fichna, J. Short-Chain Fatty Acids–Microbiota Crosstalk in the Coronavirus Disease (COVID-19). Pharmacol. Rep. 2022, 74, 1198–1207. [Google Scholar] [CrossRef]
- Deng, M.; Qu, F.; Chen, L.; Liu, C.; Zhang, M.; Ren, F.; Guo, H.; Zhang, H.; Ge, S.; Wu, C.; et al. SCFAs Alleviated Steatosis and Inflammation in Mice with NASH Induced by MCD. J. Endocrinol. 2020, 245, 425–437. [Google Scholar] [CrossRef]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef]
- Cheng, B.; Pan, W.; Xiao, Y.; Ding, Z.; Zhou, Y.; Fei, X.; Liu, J.; Su, Z.; Peng, X.; Chen, J. HDAC-Targeting Epigenetic Modulators for Cancer Immunotherapy. Eur. J. Med. Chem. 2024, 265, 116129. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef]
- Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota Metabolite Short Chain Fatty Acids, GPCR, and Inflammatory Bowel Diseases. J. Gastroenterol. 2017, 52, 1–8. [Google Scholar] [CrossRef]
- Liew, P.X.; Kubes, P. The Neutrophil’s Role During Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef]
- Takei, H.; Araki, A.; Watanabe, H.; Ichinose, A.; Sendo, F. Rapid Killing of Human Neutrophils by the Potent Activator Phorbol 12-Myristate 13-Acetate (PMA) Accompanied by Changes Different from Typical Apoptosis or Necrosis. J. Leukoc. Biol. 1996, 59, 229–240. [Google Scholar] [CrossRef]
- Kumar, V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front. Immunol. 2020, 11, 1722. [Google Scholar] [CrossRef]
- Miller, E.J.; Cohen, A.B.; Nagao, S.; Griffith, D.; Maunder, R.J.; Martin, T.R.; Weiner-Kronish, J.P.; Sticherling, M.; Christophers, E.; Matthay, M.A. Elevated Levels of NAP-1/Interleukin-8 Are Present in the Airspaces of Patients with the Adult Respiratory Distress Syndrome and Are Associated with Increased Mortality. Am. Rev. Respir. Dis. 1992, 146, 427–432. [Google Scholar] [CrossRef]
- Blanch-Ruiz, M.A.; Ortega-Luna, R.; Martínez-Cuesta, M.Á.; Álvarez, Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int. J. Mol. Sci. 2021, 22, 4170. [Google Scholar] [CrossRef]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochem. Mosc. 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef]
- Lefrançais, E.; Mallavia, B.; Zhuo, H.; Calfee, C.S.; Looney, M.R. Maladaptive Role of Neutrophil Extracellular Traps in Pathogen-Induced Lung Injury. JCI Insightig. 2018, 3, e98178. [Google Scholar] [CrossRef]
- Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.-A.; Phoon, M.C.; van Rooijen, N.; Chow, V.T. Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis. Am. J. Pathol. 2011, 179, 199–210. [Google Scholar] [CrossRef]
- Caudrillier, A.; Kessenbrock, K.; Gilliss, B.M.; Nguyen, J.X.; Marques, M.B.; Monestier, M.; Toy, P.; Werb, Z.; Looney, M.R. Platelets Induce Neutrophil Extracellular Traps in Transfusion-Related Acute Lung Injury. J. Clin. Investig. 2012, 122, 2661–2671. [Google Scholar] [CrossRef]
- Moorthy, A.N.; Tan, K.B.; Wang, S.; Narasaraju, T.; Chow, V.T. Effect of High-Fat Diet on the Formation of Pulmonary Neutrophil Extracellular Traps during Influenza Pneumonia in BALB/c Mice. Front. Immunol. 2016, 7, 289. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Carrillo-Salinas, F.J.; Parthasarathy, S.; Moreno de Lara, L.; Borchers, A.; Ochsenbauer, C.; Panda, A.; Rodriguez-Garcia, M. Short-Chain Fatty Acids Impair Neutrophil Antiviral Function in an Age-Dependent Manner. Cells 2022, 11, 2515. [Google Scholar] [CrossRef]
- Cholan, P.M.; Han, A.; Woodie, B.R.; Watchon, M.; Kurz, A.R.; Laird, A.S.; Britton, W.J.; Ye, L.; Holmes, Z.C.; McCann, J.R.; et al. Conserved Anti-Inflammatory Effects and Sensing of Butyrate in Zebrafish. Gut Microbes 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Corrêa, R.O.; Vieira, A.; Sernaglia, E.M.; Lancellotti, M.; Vieira, A.T.; Avila-Campos, M.J.; Rodrigues, H.G.; Vinolo, M.A.R. Bacterial Short-Chain Fatty Acid Metabolites Modulate the Inflammatory Response against Infectious Bacteria. Cell. Microbiol. 2017, 19, e12720. [Google Scholar] [CrossRef]
- Hamam, H.J.; Palaniyar, N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019, 9, 369. [Google Scholar] [CrossRef]
- Hamam, H.J.; Palaniyar, N. Histone Deacetylase Inhibitors Dose-Dependently Switch Neutrophil Death from NETosis to Apoptosis. Biomolecules 2019, 9, 184. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Tatistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 12 December 2023).
- Wang, C.; Yu, H.; Lu, S.; Ke, S.; Xu, Y.; Feng, Z.; Qian, B.; Bai, M.; Yin, B.; Li, X.; et al. LncRNA Hnf4αos Exacerbates Liver Ischemia/Reperfusion Injury in Mice via Hnf4αos/Hnf4α Duplex-Mediated PGC1α Suppression. Redox Biol. 2022, 57, 102498. [Google Scholar] [CrossRef]
- Karasu, E.; Halbgebauer, R.; Schütte, L.; Greven, J.; Bläsius, F.M.; Zeller, J.; Winninger, O.; Braig, D.; Messerer, D.A.C.; Berger, B.; et al. A Conformational Change of C-Reactive Protein Drives Neutrophil Extracellular Trap Formation in Inflammation. BMC Biol. 2025, 23, 4. [Google Scholar] [CrossRef]
- Niu, X.; Jiao, Z.; Wang, Z.; Jiang, A.; Zhang, X.; Zhang, H.; Xue, F. MiR-17-5p Protects Neonatal Mice from Hypoxic-Ischemic Brain Damage by Targeting Casp2. Neurosci. Lett. 2022, 772, 136475. [Google Scholar] [CrossRef]
- Nieto-Figueroa, K.H.; Gaytán-Martínez, M.; Loarca-Piña, M.G.F.; Campos-Vega, R. Effect of Drying Method on the Production of in Vitro Short-Chain Fatty Acids and Histone Deacetylase Mediation of Cocoa Pod Husk. J. Food Sci. 2022, 87, 4476–4490. [Google Scholar] [CrossRef]
- Bilotta, A.J.; Ma, C.; Yang, W.; Yu, Y.; Yu, Y.; Zhao, X.; Zhou, Z.; Yao, S.; Dann, S.M.; Cong, Y. Propionate Enhances Cell Speed and Persistence to Promote Intestinal Epithelial Turnover and Repair. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1023–1044. [Google Scholar] [CrossRef]
- Bhat, M.F.; Srdanović, S.; Sundberg, L.-R.; Einarsdóttir, H.K.; Marjomäki, V.; Dekker, F.J. Impact of HDAC Inhibitors on Macrophage Polarization to Enhance Innate Immunity against Infections. Drug Discov. Today 2024, 29, 104193. [Google Scholar] [CrossRef]
- Jin, J.; Meng, T.; Yu, Y.; Wu, S.; Jiao, C.-C.; Song, S.; Li, Y.-X.; Zhang, Y.; Zhao, Y.-Y.; Li, X.; et al. Human HDAC6 Senses Valine Abundancy to Regulate DNA Damage. Nature 2025, 637, 215–223. [Google Scholar] [CrossRef]
- Sencio, V.; Machado, M.G.; Trottein, F. The Lung–Gut Axis during Viral Respiratory Infections: The Impact of Gut Dysbiosis on Secondary Disease Outcomes. Mucosal Immunol. 2021, 14, 296–304. [Google Scholar] [CrossRef]
- Huang, C.; Du, W.; Ni, Y.; Lan, G.; Shi, G. The Effect of Short-Chain Fatty Acids on M2 Macrophages Polarization in Vitro and in Vivo. Clin. Exp. Immunol. 2021, 207, 53–64. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, X.; Maruyama, D.; Arjomandi, M.; Prakash, A. Lung Immune Tone via Gut-Lung Axis: Gut-Derived LPS and Short-Chain Fatty Acids’ Immunometabolic Regulation of Lung IL-1β, FFAR2, and FFAR3 Expression. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L65–L78. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, F.; Luo, Y.; Ge, P.; Zhang, Y.; Wen, H.; Yang, Q.; Ma, S.; Chen, H. The Gut-Lung Axis in Severe Acute Pancreatitis-Associated Lung Injury: The Protection by the Gut Microbiota through Short-Chain Fatty Acids. Pharmacol. Res. 2022, 182, 106321. [Google Scholar] [CrossRef]
- Ashique, S.; De Rubis, G.; Sirohi, E.; Mishra, N.; Rihan, M.; Garg, A.; Reyes, R.-J.; Manandhar, B.; Bhatt, S.; Jha, N.K.; et al. Short Chain Fatty Acids: Fundamental Mediators of the Gut-Lung Axis and Their Involvement in Pulmonary Diseases. Chem.-Biol. Interact. 2022, 368, 110231. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Duda, K.A.; Lanzetta, R.; Silipo, A.; De Castro, C.; Molinaro, A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem. Rev. 2022, 122, 15767–15821. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Liu, S.; Su, X.; Pan, P.; Zhang, L.; Hu, Y.; Tan, H.; Wu, D.; Liu, B.; Li, H.; Li, H.; et al. Neutrophil Extracellular Traps Are Indirectly Triggered by Lipopolysaccharide and Contribute to Acute Lung Injury. Sci. Rep. 2016, 6, 37252. [Google Scholar] [CrossRef]
- Garra, S.; Mejlstrup Hymøller, C.; Di Molfetta, D.; Zagaria, N.; Gena, P.; Cardone, R.A.; Rützler, M.; Birkelund, S.; Calamita, G. Selective Blockade of Two Aquaporin Channels, AQP3 and AQP9, Impairs Human Leukocyte Migration. Cells 2025, 14, 880. [Google Scholar] [CrossRef]
- Borsa, N.; Di Pasquale, M.; Restrepo, M.I. Animal Models of Pneumococcal Pneumonia. Int. J. Mol. Sci. 2019, 20, 4220. [Google Scholar] [CrossRef]
- Bahader, G.A.; Warner, T.; Hall, M.W.; Sribnick, E.A. Granulocyte-Macrophage Colony-Stimulating Factor Reduces Lung Bacterial Load Following Traumatic Brain Injury and Hemorrhage Polytrauma in a Juvenile Rat Model. PLoS ONE 2025, 20, e0323674. [Google Scholar] [CrossRef]
- Dong, F.; Yu, H.; Wu, L.; Liu, T.; Ma, X.; Ma, J.; Gu, X. Association between Gastrointestinal Heat Retention Syndrome and Respiratory Tract Infections in Children: A Prospective Cohort Study. J. Tradit. Chin. Med. Sci. 2021, 8, 216–223. [Google Scholar] [CrossRef]
- Guzman, B.V.; Elbel, B.; Jay, M.; Messito, M.J.; Curado, S. Age-Dependent Association of Obesity with COVID-19 Severity in Paediatric Patients. Pediatr. Obes. 2022, 17, e12856. [Google Scholar] [CrossRef]
- Du, Z.; Liu, X.; Xie, Z.; Wang, Q.; Lv, Z.; Li, L.; Wang, H.; Xue, D.; Zhang, Y. The Relationship Between A High-Fat Diet, Gut Microbiome, and Systemic Chronic Inflammation: Insights from Integrated Multi-Omics Analysis. Am. J. Clin. Nutr. 2024, 121, 643–653. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, W.; Wang, Y.; Shi, L.; Zhao, Y.; Liang, J.; Zhao, Y.; Kang, J.; Zheng, X.; Guo, R.; et al. Lactobacillus Plantarum and Galacto-Oligosaccharides Synbiotic Relieve Irritable Bowel Syndrome by Reshaping Gut Microbiota and Attenuating Mast Cell Hyperactivation. Nutrients 2025, 17, 1670. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.; Wu, Z.; Liu, X.; Zhang, X.; Wu, Y.; Wen, Y.; Zhou, X.; Zhang, G.; Wang, J.; et al. Muribaculum Intestinale Restricts Salmonella Typhimurium Colonization by Converting Succinate to Propionate. ISME J. 2025, 19, wraf069. [Google Scholar] [CrossRef]
- Gurav, A.; Sivaprakasam, S.; Bhutia, Y.D.; Boettger, T.; Singh, N.; Ganapathy, V. Slc5a8, a Na+-Coupled High-Affinity Transporter for Short-Chain Fatty Acids, Is a Conditional Tumor Suppressor in Colon That Protects against Colitis and Colon Cancer under Low-Fiber Dietary Conditions. Biochem. J. 2015, 469, 267–278. [Google Scholar] [CrossRef]
- Sumbria, D.; Berber, E.; Rouse, B.T. Supplementing the Diet with Sodium Propionate Suppresses the Severity of Viral Immuno-Inflammatory Lesions. J. Virol. 2021, 95, e02056-20. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, M.; Pan, S.; Gao, S.; Ren, J.; Bai, R.; Li, H.; He, C.; Zhao, S.; Shi, Z.; et al. Induction of the Apoptosis, Degranulation and IL-13 Production of Human Basophils by Butyrate and Propionate via Suppression of Histone Deacetylation. Immunology 2021, 164, 292–304. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The Interplay between Gut Microbiota, Short-Chain Fatty Acids, and Implications for Host Health and Disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Walker, A.W.; Duncan, S.H.; McWilliam Leitch, E.C.; Child, M.W.; Flint, H.J. pH and Peptide Supply Can Radically Alter Bacterial Populations and Short-Chain Fatty Acid Ratios within Microbial Communities from the Human Colon. Appl. Environ. Microbiol. 2005, 71, 3692–3700. [Google Scholar] [CrossRef]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short Chain Fatty Acids in Human Large Intestine, Portal, Hepatic and Venous Blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, L.; Yang, J.; Zhang, S.; Jin, J.; Wei, Y. Gut Microbes Improve Prognosis of Klebsiella Pneumoniae Pulmonary Infection through the Lung-Gut Axis. Front. Cell Infect. Microbiol. 2024, 14, 1392376. [Google Scholar] [CrossRef]
- Wen, X.; Xiaoyue, D.; Longkun, D.; Yue, X.; Man, Y.; Min, Z.; Liang, W.; Chengxue, Y.; Huaxi, X. Three Main Short-Chain Fatty Acids Inhibit the Activation of THP-1 Cells by Mycoplasma Pneumoniae. Biosci. Biotechnol. Biochem. 2021, 85, 923–930. [Google Scholar] [CrossRef]
- Tagé, B.S.S.; Gonzatti, M.B.; Vieira, R.P.; Keller, A.C.; Bortoluci, K.R.; Aimbire, F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024, 47, 1386–1402. [Google Scholar] [CrossRef]
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef]
- Poli, V.; Pui-Yan Ma, V.; Di Gioia, M.; Broggi, A.; Benamar, M.; Chen, Q.; Mazitschek, R.; Haggarty, S.J.; Chatila, T.A.; Karp, J.M.; et al. Zinc-Dependent Histone Deacetylases Drive Neutrophil Extracellular Trap Formation and Potentiate Local and Systemic Inflammation. Iscience 2021, 24, 103256. [Google Scholar] [CrossRef]
- Yasuda, H.; Takishita, Y.; Morita, A.; Tsutsumi, T.; Nakagawa, N.; Sato, E.F. Sodium Acetate Enhances Neutrophil Extracellular Trap Formation via Histone Acetylation Pathway in Neutrophil-like HL-60 Cells. Int. J. Mol. Sci. 2024, 25, 8757. [Google Scholar] [CrossRef]
- Aoyama, M.; Kotani, J.; Usami, M. Butyrate and Propionate Induced Activated or Non-Activated Neutrophil Apoptosis via HDAC Inhibitor Activity but without Activating GPR-41/GPR-43 Pathways. Nutrition 2010, 26, 653–661. [Google Scholar] [CrossRef]
- Tsugawa, H.; Kabe, Y.; Kanai, A.; Sugiura, Y.; Hida, S.; Taniguchi, S.; Takahashi, T.; Matsui, H.; Yasukawa, Z.; Itou, H.; et al. Short-Chain Fatty Acids Bind to Apoptosis-Associated Speck-like Protein to Activate Inflammasome Complex to Prevent Salmonella Infection. PLoS Biol. 2020, 18, e3000813. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Hatanaka, E.; Sato, F.T.; Sampaio, S.C.; Curi, R. Suppressive Effect of Short-Chain Fatty Acids on Production of Proinflammatory Mediators by Neutrophils. J. Nutr. Biochem. 2011, 22, 849–855. [Google Scholar] [CrossRef]
- Mustafa, N.M.; Mustafa, M.T.; Abushanab, A.K.; Alakhras, H.M.; Abed, A.S.; Bani-Said, S.A.; Othman, L.S.; Shdaifat, A. Efficacy and Safety of Entinostat plus Exemestane in Hormone Receptor-Positive Breast Cancer: A Systematic Review Meta-Analysis of Randomized Controlled Trials. Breast Cancer Res. Treat. 2025, 212, 417–426. [Google Scholar] [CrossRef]
- Moore, E.; Fadel, A.; Lane, K.E. The Effects of Consuming a Mediterranean Style Diet on Associated COVID-19 Severity Biomarkers in Obese/Overweight Adults: A Systematic Review. Nutr. Health 2022, 28, 647–667. [Google Scholar] [CrossRef]
- Dejas, L.; Santoni, K.; Meunier, E.; Lamkanfi, M. Regulated Cell Death in Neutrophils: From Apoptosis to NETosis and Pyroptosis. Semin. Immunol. 2023, 70, 101849. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, Q.; Wang, L.; Wang, B.; Chen, J.; Cai, B.; Wu, C.; Zhu, X.; Liu, F.; Han, D.; et al. Jinhua Qinggan Granules Attenuates Acute Lung Injury by Promotion of Neutrophil Apoptosis and Inhibition of TLR4/MyD88/NF-κB Pathway. J. Ethnopharmacol. 2023, 301, 115763. [Google Scholar] [CrossRef]
- Alsabani, M.; Abrams, S.T.; Cheng, Z.; Morton, B.; Lane, S.; Alosaimi, S.; Yu, W.; Wang, G.; Toh, C.-H. Reduction of NETosis by Targeting CXCR1/2 Reduces Thrombosis, Lung Injury, and Mortality in Experimental Human and Murine Sepsis. Br. J. Anaesth. 2022, 128, 283–293. [Google Scholar] [CrossRef]
- Conus, S.; Perozzo, R.; Reinheckel, T.; Peters, C.; Scapozza, L.; Yousefi, S.; Simon, H.-U. Caspase-8 Is Activated by Cathepsin D Initiating Neutrophil Apoptosis during the Resolution of Inflammation. J. Exp. Med. 2008, 205, 685–698. [Google Scholar] [CrossRef]
Group | n | Feed (1–6 Days) | Atomization (4–6 Days) |
---|---|---|---|
N | 10 | Rat standard maintenance fodder | Physiologic saline |
G | 10 | High-calorie fodder | Physiologic saline |
P | 10 | Rat standard maintenance fodder | LPS solution |
GP | 10 | High-calorie fodder | LPS solution |
Gene | Primer | Sequence |
---|---|---|
HDAC1 | Forward Reverse | 5′-TTCCAACATGACCAACCAGA-3′ 5′- ACCACCTTCTCCCTCCTCAT-3′ |
HDAC2 | Forward Reverse | 5′-ACCCGGACAAAAGAATTTCC-3′ 5′-TTGGGGTCTGTTTTCTCACC-3′ |
HDAC3 | Forward Reverse | 5′-AATGTGCCCTTACGAGATGG-3′ 5′-GTAGCCACCACCTCCCAGTA-3′ |
HDAC6 | Forward Reverse | 5′-CTGGCTAAGGGAGTCAGTGC-3′ 5′-TAGCACGGCTTCTTCCACTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Liu, H.; Jiang, J.; Hu, L.; Ma, Q.; Li, S.; Liu, T.; Gu, X. High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps. Nutrients 2025, 17, 2242. https://doi.org/10.3390/nu17132242
Sun Y, Liu H, Jiang J, Hu L, Ma Q, Li S, Liu T, Gu X. High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps. Nutrients. 2025; 17(13):2242. https://doi.org/10.3390/nu17132242
Chicago/Turabian StyleSun, Yingqiu, Hui Liu, Jiyu Jiang, Leyan Hu, Qingpu Ma, Shuxuan Li, Tiegang Liu, and Xiaohong Gu. 2025. "High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps" Nutrients 17, no. 13: 2242. https://doi.org/10.3390/nu17132242
APA StyleSun, Y., Liu, H., Jiang, J., Hu, L., Ma, Q., Li, S., Liu, T., & Gu, X. (2025). High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps. Nutrients, 17(13), 2242. https://doi.org/10.3390/nu17132242