Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = hippo signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11277 KB  
Article
Hippo and Wnt as Early Initiators: Integrated Multi-Omics Reveals the Signaling Basis for Corona-Induced Diapause Termination in Silkworm
by Quan Sun, Xinghui Liu, Guizheng Zhang, Xinxiang Chen, Wenxin Xie, Pingyang Wang, Xia Wang, Qiuying Cui and Yuli Zhang
Insects 2026, 17(1), 123; https://doi.org/10.3390/insects17010123 - 21 Jan 2026
Abstract
Embryonic diapause, a state of developmental arrest in silkworm (Bombyx mori) eggs, poses a challenge for year-round sericulture. While physical stimuli like corona discharge can effectively terminate diapause, the underlying molecular mechanisms, particularly the initial events, remain poorly understood. This study [...] Read more.
Embryonic diapause, a state of developmental arrest in silkworm (Bombyx mori) eggs, poses a challenge for year-round sericulture. While physical stimuli like corona discharge can effectively terminate diapause, the underlying molecular mechanisms, particularly the initial events, remain poorly understood. This study employed an integrated transcriptomic and proteomic approach to analyze silkworm eggs within 48 h after corona treatment. Our time-series analysis revealed that the Hippo and Wnt signaling pathways were specifically activated as early as 1 h post-treatment, preceding the previously reported FoxO pathway response. We identified two temporally distinct gene clusters within the Hippo pathway, including immediate–early genes (e.g., Dachs_17/25/29, Ft_10) and late-phase effector genes, coordinating the exit from cell cycle arrest. Concurrently, the Wnt pathway was rapidly initiated, marked by the sustained upregulation of key regulators Notum and Pontin52, suggesting its role in unlocking the cell cycle. We propose a synergistic model wherein corona discharge triggers the concurrent, early activation of Hippo and Wnt signaling, which collectively reprogram the cell cycle and reinstate the developmental trajectory by promoting proliferation and suppressing apoptosis. These findings provide crucial insights into the initial molecular events of diapause termination, identifying Hippo and Wnt pathways as master regulators in transducing the physical corona stimulus into a developmental signal. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

18 pages, 6743 KB  
Article
Differential Toxicity of Water-Soluble Versus Water-Insoluble Components of Cowshed PM2.5 on Ovarian Granulosa Cells and the Regulatory Role of Txnip in Overall Toxicity
by Zhenhua Ma, Xiqing Zhang, Xiaohui Du, Cuizhu Zhao, Yunna Jia, Ye Wang, Xintian Li, Xiuzhen Yu and Yunhang Gao
Antioxidants 2026, 15(1), 138; https://doi.org/10.3390/antiox15010138 - 21 Jan 2026
Abstract
Fine particulate matter (PM2.5)-induced ovarian damage has attracted widespread attention, but differences in cytotoxicity and underlying mechanisms of water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions are unclear. To investigate potential effects of PM2.5 from livestock farming environments on animal ovaries, PM2.5 samples were collected [...] Read more.
Fine particulate matter (PM2.5)-induced ovarian damage has attracted widespread attention, but differences in cytotoxicity and underlying mechanisms of water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions are unclear. To investigate potential effects of PM2.5 from livestock farming environments on animal ovaries, PM2.5 samples were collected from large-scale cattle barns. There were significant differences between fractions regarding elemental composition, proportion of water-soluble ions, polycyclic aromatic hydrocarbon content, and endotoxin concentrations. Based on transcriptome sequencing results, in a cowshed PM2.5 exposure model (rats), differentially expressed ovarian mRNAs were significantly enriched in signaling pathways such as cytokine interaction and the Hippo pathway, with the expression of thioredoxin-interacting protein (Txnip) significantly increased. In vitro (primary rat ovarian granulosa cells), short-term exposure to WS-PM2.5 (12 h) significantly induced inflammatory factor release, acute oxidative stress, mitochondrial dysfunction, and intracellular Ca2+ overload, with characteristics of rapid acute injury. However, extended (24 h) WIS-PM2.5 exposure had greater disruptive effects on estrogen homeostasis, intracellular enzyme release (LDH), and mitochondrial structure (subacute characteristics). Furthermore, downregulating Txnip expression via inhibitors effectively mitigated cowshed PM2.5-induced ovarian granulosa cell toxicity, oxidative stress, and mitochondrial and hormonal dysfunction. In summary, solubility of cowshed PM2.5 components affected cytotoxic characteristics, and Txnip was a key factor linking oxidative stress to granulosa cell damage. The study provided a mechanistic basis and potential targets for preventing and controlling PM2.5-induced ovarian damage in livestock environments. Full article
Show Figures

Figure 1

26 pages, 3226 KB  
Review
The Regulatory Role of m6A Modification in the Function and Signaling Pathways of Animal Stem Cells
by Xiaoguang Yang, Yongjie Xu, Suaipeng Zhu, Mengru Wang, Hongguo Cao and Lizhi Lu
Cells 2026, 15(2), 181; https://doi.org/10.3390/cells15020181 - 19 Jan 2026
Viewed by 40
Abstract
As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m6A (N6-methyladenosine modification) is one of the most abundant [...] Read more.
As a type of cell with self-renewal ability and multi-directional differentiation potential, stem cells are closely related to their functions, such as reprogramming transcription factors, histone modifications, and energy metabolism. m6A (N6-methyladenosine modification) is one of the most abundant modifications in RNA, and dynamic reversible m6A modification plays an important role in regulating stem cell function. This review moves beyond listing isolated functions and instead adopts an integrated perspective, viewing m6A as a temporal regulator of cellular state transitions. We discuss how m6A dynamically regulates stem cell pluripotency, coordinates epigenetic and metabolic reprogramming, and serves as a central hub integrating key signaling pathways (Wnt, PI3K-AKT, JAK-STAT, and Hippo). Finally, using somatic reprogramming as an example, we elucidate the stage-specific role of m6A in complex fate transitions. This comprehensive exposition not only clarifies the context-dependent logic of m6A regulation but also provides a precise framework for targeting the m6A axis in regenerative medicine and cancer therapy. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

13 pages, 853 KB  
Article
Dysregulated MicroRNAs in Parkinson’s Disease: Pathogenic Mechanisms and Biomarker Potential
by Yasemin Ünal, Dilek Akbaş, Çilem Özdemir and Tuba Edgünlü
Int. J. Mol. Sci. 2026, 27(2), 930; https://doi.org/10.3390/ijms27020930 - 17 Jan 2026
Viewed by 124
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate miRNAs—miR-15a-5p, miR-16-5p, miR-139-5p, and miR-34a-3p—in patients with PD compared with healthy controls. A total of 47 PD patients and 45 age- and sex-matched controls were enrolled. Plasma miRNA levels were quantified using standardized RNA extraction, cDNA synthesis, and qPCR protocols. We observed marked upregulation of miR-15a-5p and robust downregulation of both miR-139-5p and miR-34a-3p in PD patients, whereas miR-16-5p showed no significant difference between groups. Target gene prediction and functional enrichment analysis identified 432 unique genes, with enrichment in biological processes related to protein ubiquitination and catabolic pathways, and signaling cascades such as mTOR, PI3K-Akt, MAPK, and Hippo pathways, all of which are implicated in neurodegeneration. Elevated miR-15a-5p may contribute to pro-apoptotic mechanisms, while reduced miR-139-5p and miR-34a-3p expression may reflect impaired mitochondrial function, diminished neuroprotection, or compensatory regulatory responses. Together, these dysregulated circulating miRNAs provide novel insight into PD pathophysiology and highlight their potential as accessible, non-invasive biomarkers. Further longitudinal studies in larger and more diverse cohorts are warranted to validate their diagnostic and prognostic value and to explore their utility as therapeutic targets. Full article
Show Figures

Figure 1

22 pages, 2780 KB  
Review
Hippo Signaling in the Lung: A Tale of Two Effectors—Yap Drives Airway Fate and Taz Drives Alveolar Differentiation
by Rachel Warren and Stijn P. J. De Langhe
Cells 2026, 15(2), 143; https://doi.org/10.3390/cells15020143 - 13 Jan 2026
Viewed by 328
Abstract
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its [...] Read more.
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its downstream effectors remain underappreciated. This review synthesizes recent genetic and mechanobiological advances to propose a “Tale of Two Effectors” model, arguing for the functional non-redundancy of YAP and TAZ. We posit that YAP functions to drive airway progenitor expansion, mechanical force generation, and maladaptive remodeling. Conversely, TAZ—regulated uniquely via transcriptional mechanisms and mechanotransduction—acts as an obligate driver of alveolar differentiation and adaptive repair through an NKX2-1 feed-forward loop. Furthermore, we introduce the “See-Saw” model of tissue fitness, where mesenchymal niche collapse releases the mechanical brake on the epithelium, triggering the bronchiolization characteristic of pulmonary fibrosis. Finally, we extend this framework to malignancy, illustrating how Small Cell Lung Cancer (SCLC) subtypes mirror these developmental and regenerative states. This integrated framework offers new therapeutic distinct targets for modulating tissue fitness and resolving fibrosis. Full article
(This article belongs to the Special Issue Mechanisms of Lung Growth and Regeneration)
Show Figures

Figure 1

36 pages, 2843 KB  
Review
Bone Metastasis in Estrogen Receptor-Positive Breast Cancer: Molecular Insights and Therapeutic Advances
by Zhuoran Huang, Yi Wu and Yanshu Li
Int. J. Mol. Sci. 2026, 27(2), 785; https://doi.org/10.3390/ijms27020785 - 13 Jan 2026
Viewed by 151
Abstract
Estrogen receptor-positive (ER+) breast cancer represents the most prevalent molecular subtype of breast cancer, characterized by hormone-dependent growth, relatively indolent progression, and a pronounced tendency to metastasize to bone. While endocrine therapies remain the cornerstone of treatment, a significant proportion of [...] Read more.
Estrogen receptor-positive (ER+) breast cancer represents the most prevalent molecular subtype of breast cancer, characterized by hormone-dependent growth, relatively indolent progression, and a pronounced tendency to metastasize to bone. While endocrine therapies remain the cornerstone of treatment, a significant proportion of ER+ tumors eventually develop resistance, culminating in distant metastases—most frequently to the bone. Bone metastasis substantially compromises patient survival and quality of life, highlighting the critical need to elucidate its molecular underpinnings. Recent multi-omics and mechanistic studies have shed light on the complex interplay between tumor-intrinsic signaling pathways, such as dysregulated ER signaling, PI3K/AKT/mTOR, TGF-β, and Hippo pathways, and the bone microenvironment, including osteoclast activation, immune suppression, and stromal remodeling. This review systematically summarizes the current understanding of the molecular mechanisms driving bone metastasis in ER+ breast cancer, with a particular focus on tumor–bone microenvironment crosstalk and key regulatory pathways. Additionally, we discuss recent advances in therapeutic strategies, encompassing next-generation endocrine therapies, CDK4/6 inhibitors, bone-targeted agents, and pathway-specific inhibitors. Together, these insights pave the way for more effective and personalized interventions against ER+ breast cancer with bone involvement. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 3413 KB  
Article
The Whole Transcriptome Sequencing Profile of Serum-Derived Exosomes and Potential Pathophysiology of Age-Related Hearing Loss
by Guijun Yang, Zhongqin Xie, Yu Huang, Jing Ke, Ziyi Tang, Zhiji Chen, Shaojing Kuang, Feixian Li, Huan Luo, Qin Lai, Bo Wang, Juhong Zhang and Wei Yuan
Diagnostics 2026, 16(2), 248; https://doi.org/10.3390/diagnostics16020248 - 12 Jan 2026
Viewed by 216
Abstract
Objectives: To systematically analyze the expression profiles of long non-coding RNAs (lncRNAs) in serum-derived exosomes from patients with age-related hearing loss (ARHL), and to further identify key regulatory lncRNAs involved in the pathogenesis and progression of ARHL. Methods: Peripheral blood samples were collected [...] Read more.
Objectives: To systematically analyze the expression profiles of long non-coding RNAs (lncRNAs) in serum-derived exosomes from patients with age-related hearing loss (ARHL), and to further identify key regulatory lncRNAs involved in the pathogenesis and progression of ARHL. Methods: Peripheral blood samples were collected from patients with ARHL and age-matched normal-hearing controls. Serum was separated and exosomes were extracted. The exosomes were identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blot. Subsequently, total RNA was extracted from the purified exosomes for lncRNA transcriptome sequencing. Based on the sequencing results, we identified differentially expressed lncRNAs and mRNAs and conducted multi-dimensional functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway database (Reactome), and Disease Ontology (DO). Finally, four key mRNAs (THAP2, ZNF225, MED12, and RNF141) and four differentially expressed lncRNAs (DE-lncRNAs), namely MSTRG.150961.7, ENSG00000273015, MSTRG.336598.1, and ENSG00000273493, were experimentally verified by quantitative real-time polymerase chain reaction (RT-qPCR) technology. Results: Exosomes were successfully isolated from serum and confirmed by particle size, morphological examination, and the expression of exosome-labeled proteins. A total of 2874 DE-lncRNAs were identified, among which 988 were downregulated and 1886 were upregulated. Similarly, 2132 DE-mRNAs were detected, among which 882 were downregulated and 1250 were upregulated. GO analysis revealed significant enrichment in biological processes such as “phospholipid binding”, “phosphatidylinositol binding”, “phosphatase binding”, “phosphatidylinositol bisphosphate binding”, “phosphatidylinositol-4,5-bisphosphate binding”, “phosphatidylinositol-3,5-bisphosphate phosphatase activity”. KEGG is significantly enriched in signaling pathways including “Wnt signaling pathway”, “Hippo signaling pathway”, “Cushing syndrome”, and “Nucleocytoplasmic transport”. The functional annotations of Reactome were significantly enriched in biomolecular pathways including “tRNA processing”, “Cellular response to heat stress”, “Extra-nuclear estrogen signaling”, “Metabolism of non-coding RNA”, and “CTNNB1 T41 mutants aren’t phosphorylated”. DO is significantly enriched in diseases or pathological conditions such as “hepatitis”, “bacterial infectious disease”, “cystic fibrosis”, and “vasculitis”. Conclusions:THAP2, ZNF225, MED12, and RNF141 may serve as potential candidate biomarker for ARHL. Additionally, lncRNA MSTRG.150961.7, lncRNA MSTRG.336598.1, and lncRNA ENSG00000273493 may play significant roles in the pathogenesis of this condition. Full article
Show Figures

Figure 1

20 pages, 30451 KB  
Article
A Comprehensive Atlas of Testicular lncRNAs Reveals Dynamic Changes and Regulatory Networks During Sexual Maturation in Tibetan Sheep
by Taotao Li, Huihui Wang, Ruirui Luo, Juanjuan Song, Yi Wu, Meng Jia, Yong Zhang and Youji Ma
Animals 2026, 16(2), 176; https://doi.org/10.3390/ani16020176 - 7 Jan 2026
Viewed by 217
Abstract
Tibetan sheep, a dominant livestock species on the Qinghai–Tibet Plateau, is characterized by late sexual maturity and low reproductive efficiency. Although long non-coding RNAs (lncRNAs) are known to play critical regulatory roles in mammalian testicular development and spermatogenesis, their expression dynamics and functions [...] Read more.
Tibetan sheep, a dominant livestock species on the Qinghai–Tibet Plateau, is characterized by late sexual maturity and low reproductive efficiency. Although long non-coding RNAs (lncRNAs) are known to play critical regulatory roles in mammalian testicular development and spermatogenesis, their expression dynamics and functions in Tibetan sheep remain poorly understood. In this study, we integrated histological and transcriptomic analyses to profile testicular lncRNAs across three developmental stages: pre-pubertal (3 months), sexually mature (1 year), and adult (3 years). Histological examination showed progressive structural maturation of seminiferous tubules, accompanied by significant increases in testicular weight and serum testosterone levels. RNA sequencing identified 10,857 high-confidence lncRNAs and uncovered extensive reprogramming of the lncRNA transcriptome during sexual maturation, with 7784 lncRNAs differentially expressed between pre-pubertal and post-pubertal stages. Functional enrichment analyses of cis- and antisense-target genes indicated that these lncRNAs were involved in key biological processes, including cell cycle regulation, TGF-β and Hippo signaling pathways, extracellular matrix organization, glycolysis, and apoptosis. Co-expression network analysis further linked upregulated lncRNAs to spermatogenesis-related genes involved in processes such as sperm nuclear condensation (e.g., TNP1) and metabolic support (e.g., PFKP). Our findings demonstrated that lncRNAs coordinate testicular development and spermatogenesis in Tibetan sheep by modulating transcriptional networks, remodeling the cellular microenvironment, and reprogramming energy metabolism. This study provides the first comprehensive atlas of testicular lncRNAs in Tibetan sheep and offers novel insights into the epigenetic regulation of male reproduction in high-altitude mammals. Full article
(This article belongs to the Special Issue Male Germ Cell Development in Animals)
Show Figures

Figure 1

14 pages, 938 KB  
Article
Autonomous Normal–Cancer Discrimination by a LATS/pLATS-Explicit Hippo–YAP/TAZ Reaction System
by Toshihito Umegaki and Takashi Suzuki
Mathematics 2026, 14(1), 99; https://doi.org/10.3390/math14010099 - 26 Dec 2025
Viewed by 253
Abstract
In this study, we propose a minimal reaction system for the Hippo–YAP/TAZ pathway that explicitly includes inactive LATS, active pLATS, cytoplasmic and nuclear YAP/TAZ, and phosphorylated YAP/TAZ. Local cell density is incorporated into the LATS activation term, and nuclear YAP/TAZ controls a threshold-type [...] Read more.
In this study, we propose a minimal reaction system for the Hippo–YAP/TAZ pathway that explicitly includes inactive LATS, active pLATS, cytoplasmic and nuclear YAP/TAZ, and phosphorylated YAP/TAZ. Local cell density is incorporated into the LATS activation term, and nuclear YAP/TAZ controls a threshold-type switch between proliferative and quiescent cell states. This five-variable system of ordinary differential equations is coupled to a three-dimensional molecular dynamics model that provides time-dependent cell positions and densities. We define normal-like and cancer-like conditions by varying only the LATS phosphorylation rate while keeping the initial distribution of YAP/TAZ identical. Under normal-like parameters, increasing cell density leads to rapid accumulation of pLATS and suppression of nuclear YAP/TAZ below the proliferative threshold, resulting in a contact-inhibited epithelium dominated by quiescent cells. In contrast, under cancer-like parameters with delayed LATS activation, nuclear YAP/TAZ in a subset of cells remains above the threshold, and proliferative clusters persist even in high-density regions. These simulations show that, even without any bias in initial concentrations, modest changes in the kinetics of LATS phosphorylation alone can induce a clear bifurcation between normal-like and cancer-like growth at the tissue scale. The results provide a mechanistic bridge linking molecular-level dysregulation of the Hippo pathway to macroscopic tumor expansion. Full article
Show Figures

Figure 1

19 pages, 2902 KB  
Communication
Unraveling Resistance Mechanisms to Gαq Pathway Inhibition in Uveal Melanoma: Insights from Signaling-Activation Library Screening
by Simone Lubrano, Rodolfo Daniel Cervantes-Villagrana, Nadia Arang, Elena Sofia Cardenas-Alcoser, Kuniaki Sato, Gabriela Cuesta-Margolles, Justine S. Paradis, Monica Acosta and J. Silvio Gutkind
Cancers 2026, 18(1), 74; https://doi.org/10.3390/cancers18010074 - 25 Dec 2025
Viewed by 377
Abstract
Background/Objectives: Uveal melanoma (UVM), the leading primary intraocular cancer in adults, is driven by GNAQ/GNA11 mutations, encoding the active forms of Gαq proteins. While local treatments like surgery or radiation can control primary tumors, nearly half of patients die from metastasis. [...] Read more.
Background/Objectives: Uveal melanoma (UVM), the leading primary intraocular cancer in adults, is driven by GNAQ/GNA11 mutations, encoding the active forms of Gαq proteins. While local treatments like surgery or radiation can control primary tumors, nearly half of patients die from metastasis. Our aim was identifying potential pathways involved in resistance to targeted therapy in UVM. Methods: Here, we screened 100 pathway-activating mutant complementary DNAs by lentiviral overexpression to identify those that enhance the survival of cancer cells in the presence of clinically relevant targeted therapies, using BAP1 wild-type UVM cells and validated the most significant results in BAP1-mutant cells. Results: This revealed JAK/STAT activation, overexpression of anti-apoptotic BCL2/BCL-XL, and dysregulated PI3K/mTOR or Hippo pathways as escape routes under MEK-ERK or FAK inhibition. Bioinformatic analysis of UVM transcriptome in TCGA further showed that high expression of the hallmark PI3K/AKT/mTOR pathway and IL6/JAK/STAT signaling correlates with poor prognosis. A similar correlation was shown by YAP and anti-apoptotic signatures. The analysis of individual representative genes from these signatures revealed that MTOR, BCL2L1 (BCL-XL), and TEAD4 gene expression are linked to poorer survival, underscoring the potential clinical impact of these adaptive pathways. Proliferation and apoptosis assay demonstrated that aberrant activation of AKT and YAP promotes resistance to FAK and MEK inhibitors. Conclusions: These findings support the adaptability of UVM lesions and suggest rational combination therapies targeting both primary GNAQ/GNA11-driven oncogenic signals and their compensatory networks as a more effective, personalized treatment approach for advanced UVM. Full article
(This article belongs to the Special Issue Advances in Uveal Melanoma)
Show Figures

Figure 1

35 pages, 3144 KB  
Review
Ferroptosis-Mediated Cell-Specific Damage: Molecular Cascades and Therapeutic Breakthroughs in Diabetic Retinopathy
by Yan Chen, Rongyu Wang, Nannan Zhang and Liangzhi Xu
Antioxidants 2026, 15(1), 1; https://doi.org/10.3390/antiox15010001 - 19 Dec 2025
Viewed by 679
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients, involves complex pathological mechanisms including neurodegeneration, microvascular damage, inflammation, and oxidative stress. Recent studies have identified ferroptosis—a ferrodependent cell death mechanism—as playing a pivotal role in DR development. Existing evidence indicates [...] Read more.
Diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients, involves complex pathological mechanisms including neurodegeneration, microvascular damage, inflammation, and oxidative stress. Recent studies have identified ferroptosis—a ferrodependent cell death mechanism—as playing a pivotal role in DR development. Existing evidence indicates that oxidative stress and mitochondrial dysfunction induced by hyperglycemia may contribute to retinal damage through the ferroptosis pathway in DR. Ferroptosis inhibitors such as Ferostatin-1 have demonstrated protective effects against DR in animal models. The core mechanisms of ferroptosis involve iron homeostasis imbalance and lipid peroxidation, with key regulatory pathways including GPX4-dependent and non-dependent mechanisms (such as FSP1-CoQ10). Within the signaling network, Nrf2 inhibits ferroptosis, p53 promotes it, while Hippo/YAP functions are environment-dependent. Non-coding RNAs and epigenetic modifications (e.g., DNA methylation and histone modifications) also participate in regulation. In DR, iron overload, GPX4 dysfunction, and p53 upregulation collectively induce ferroptosis in various types of retinal cells, making these pathways potential therapeutic targets. This review not only elaborates the role of iron metabolism imbalance and ferroptosis pathway in the occurrence and development of DR but also summarizes the new therapeutic approaches of DR targeting ferroptosis pathway. Investigating the relationship between ferroptosis and DR not only helps unravel its core pathophysiological mechanisms but also provides theoretical foundations for developing novel therapeutic approaches. Full article
Show Figures

Figure 1

16 pages, 2397 KB  
Article
CircRNA_01754 Regulates Milk Fat Production Through the Hippo Signaling Pathway
by Xiaofen Li, Jiahao Chen, Rui Gao, Ye Feng, Zhifeng Zhang and Zhi Chen
Animals 2025, 15(24), 3606; https://doi.org/10.3390/ani15243606 - 15 Dec 2025
Viewed by 303
Abstract
Background: Milk fat metabolism is a complex process regulated by non-coding RNAs. circRNAs (circRNAs) can act as miRNA sponges to regulate target gene expression. Purpose: This study aimed to investigate the role and mechanism of the circRNA_01754/miR-302c/LATS2 axis in regulating milk fat metabolism [...] Read more.
Background: Milk fat metabolism is a complex process regulated by non-coding RNAs. circRNAs (circRNAs) can act as miRNA sponges to regulate target gene expression. Purpose: This study aimed to investigate the role and mechanism of the circRNA_01754/miR-302c/LATS2 axis in regulating milk fat metabolism in bovine mammary epithelial cells (BMECs). Methods: mRNA sequencing was performed on bovine mammary gland tissues from different lactation stages to analyze the expression profiles. The interactions between circRNA_01754, miR-302c, and LATS2 were verified using dual-luciferase reporter assays, qRT-PCR, and Western blot. The functional effects on triglyceride (TAG) and cholesterol synthesis were assessed. Results: CircRNA_01754 was identified as a direct sponge for miR-302c. Overexpression of circRNA_01754 increased LATS2 expression by sequestering miR-302c. Functional experiments showed that circRNA_01754 and LATS2 promoted TAG synthesis, whereas miR-302c inhibited it. Furthermore, miR-302c was found to regulate the expression of YAP1, a key effector of the Hippo pathway, through LATS2. Conclusions: Our findings reveal that circRNA_01754 promotes milk fat synthesis by acting as a ceRNA for miR-302c to upregulate LATS2. This study lays the groundwork for producing high-quality milk and opens up new avenues for enhancing public dietary health. Full article
(This article belongs to the Special Issue Advances in Cattle Genetics and Breeding)
Show Figures

Figure 1

22 pages, 4484 KB  
Article
Transcriptomic Insights Reveal PRTFDC1 as a Novel Regulator of Myogenic Differentiation in Sujiang Pig Satellite Cells
by Li Zhang, Xiaowei Ye, Suyi Sun, Lei Zhang, Yixin Gu, Shinuo Cao, Mo Zhou, Weixiang Sun, Changyao Fu, Qingqing Zhang, Mei Li, Ziyue Xu, Wei Miao, Qinse Xu and Shanyuan Zhu
Vet. Sci. 2025, 12(12), 1197; https://doi.org/10.3390/vetsci12121197 - 14 Dec 2025
Viewed by 383
Abstract
Sujiang pigs, a high-quality local Chinese breed, represent a valuable model for investigating muscle development and improving meat production through genetic selection. Skeletal muscle satellite cells (MuSCs) are essential regulators of muscle growth, with differentiation tightly controlled by specific genes and signaling pathways. [...] Read more.
Sujiang pigs, a high-quality local Chinese breed, represent a valuable model for investigating muscle development and improving meat production through genetic selection. Skeletal muscle satellite cells (MuSCs) are essential regulators of muscle growth, with differentiation tightly controlled by specific genes and signaling pathways. In this study, MuSCs were isolated from the gastrocnemius muscle and subjected to mRNA sequencing during proliferation (GM) and differentiation stages (DM1, DM2, and DM4, collectively referred to as DM). A total of 2790 differentially expressed genes (DEGs) were identified, including 1551 upregulated and 1239 downregulated genes. Time-series analysis revealed 16 significant expression patterns. These DEGs were primarily associated with muscle development and differentiation and were enriched in Wnt, PI3K–Akt, JAK–STAT, p53, Hippo, and Apelin signaling pathways. Among them, phosphoribosyl transferase domain containing 1 (PRTFDC1) exhibited pronounced downregulation during differentiation. Functional validation demonstrated that PRTFDC1 overexpression promoted myotube formation and upregulated MYOD1, MYOG, and MYH1 expression, whereas knockdown significantly inhibited differentiation. Furthermore, PRTFDC1 enhanced phosphorylation of key proteins in the cGAS–STING signaling pathway. Collectively, this study elucidates the temporal transcriptional regulation of MuSC differentiation in Sujiang pigs and identifies PRTFDC1 as a novel regulatory factor, providing a molecular foundation for breeding strategies and meat quality improvement. Full article
Show Figures

Figure 1

13 pages, 702 KB  
Article
Molecular Drivers of Chromophobe Renal Cell Carcinoma Revealed Through Genomic Analysis Using AACR Project GENIE
by Abbi Gobel, Grace S. Saglimbeni, Eugene Manu, Nikhita Tandon, Tyson J Morris, Akaash Surendra, Beau Hsia, Peter T. Silberstein, Khalid Bashir and Abubakar Tauseef
Life 2025, 15(12), 1909; https://doi.org/10.3390/life15121909 - 13 Dec 2025
Viewed by 394
Abstract
Chromophobe renal cell carcinoma (chRCC) is a distinct subtype of non–clear cell renal cell carcinoma (ncRCC), arising from intercalated cells of the distal nephron collecting ducts. No standard treatments are specifically approved for chRCC, which is further hindered by lack of a universally [...] Read more.
Chromophobe renal cell carcinoma (chRCC) is a distinct subtype of non–clear cell renal cell carcinoma (ncRCC), arising from intercalated cells of the distal nephron collecting ducts. No standard treatments are specifically approved for chRCC, which is further hindered by lack of a universally accepted grading system. This study sought to find molecular drivers that may aid in the diagnosis or development of treatments for chRCC. A retrospective analysis of chRCC was conducted using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) repository, accessed through cBioPortal (version 17.0-public) on 21 July 2025. The study examined recurrent somatic mutations and assessed co-occurrence with Benjamini–Hochberg False Discovery Rate (FDR) correction. Additional analyses evaluated mutation by sex and race, with significance set at p < 0.05. The cohort included 180 tumor samples from 170 chRCC patients. Most patients were adults (n = 167, 98.2%) and White (n = 115, 67.6%). Recurrent alterations occurred in genes part of the p53, PI3K/mTOR, Hippo, and NOTCH signaling pathway. Exploratory demographic analyses identified isolated single-patient mutations in select genes across sex and race; however, these rare events are not interpretable as population-level differences. This study provides a comprehensive genomic profile of chRCC across multiple demographic categories. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1117 KB  
Review
miRNA as a Prognostic Marker in Small Lung Cell Carcinoma
by Michał Bednarz, Aleksandra Osińska, Julia Durda, Milena Kędra, Michalina Boruch, Julia Gontarz, Alicja Petniak, Janusz Kocki and Paulina Gil-Kulik
Genes 2025, 16(12), 1465; https://doi.org/10.3390/genes16121465 - 8 Dec 2025
Viewed by 473
Abstract
Small-cell lung carcinoma (SCLC) is one of the most aggressive and therapeutically challenging malignancies. It is characterised by rapid progression, early metastasis and frequent relapse. Despite considerable advances in molecular oncology, effective biomarkers for prognosis and treatment response remain elusive. In this review, [...] Read more.
Small-cell lung carcinoma (SCLC) is one of the most aggressive and therapeutically challenging malignancies. It is characterised by rapid progression, early metastasis and frequent relapse. Despite considerable advances in molecular oncology, effective biomarkers for prognosis and treatment response remain elusive. In this review, we summarise and discuss recent evidence on microRNAs (miRNAs) as central regulators of SCLC biology and their potential clinical applications. A narrative review of the literature was conducted. Search of PubMed and Scopus databases identified 14 miRNAs, including miR-7-5p, miR-22-3p, miR-134, miR-181b, miR-200b, miR-335, miR-335-5p, miR-495, miR-24-3p, miR-30a-5p, miR-30a-3p, miR-100, miR-1 and miR-494, which are linked to tumour progression, therapy resistance and metastasis. These molecules influence several signalling cascades, including PI3K/Akt, Hippo, TGF-β, PARP1-mediated DNA repair and autophagy. Their abnormal expression correlates with patient outcome and may enable plasma- or exosome-based non-invasive monitoring. In particular, strategies that restore or inhibit miRNA activity using mimics or antagomiRs show promise in improving drug sensitivity and complementing current treatment options. Overall, emerging evidence supports the integration of miRNA profiling into precision oncology for SCLC, with the aim of refining diagnosis, risk assessment and therapeutic decision-making. Full article
(This article belongs to the Special Issue Function and Regulatory Mechanism of MicroRNAs in Cancers)
Show Figures

Figure 1

Back to TopTop