Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = highway runoff

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16639 KiB  
Article
Hydraulic Modeling of Newtonian and Non-Newtonian Debris Flows in Alluvial Fans: A Case Study in the Peruvian Andes
by David Chacon Lima, Alan Huarca Pulcha, Milagros Torrejon Llamoca, Guillermo Yorel Noriega Aquise and Alain Jorge Espinoza Vigil
Water 2025, 17(14), 2150; https://doi.org/10.3390/w17142150 - 19 Jul 2025
Viewed by 595
Abstract
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic [...] Read more.
Non-Newtonian debris flows represent a critical challenge for hydraulic infrastructure in mountainous regions, often causing significant damage and service disruption. However, current models typically simplify these flows as Newtonian, leading to inaccurate design assumptions. This study addresses this gap by comparing the hydraulic behavior of Newtonian and non-Newtonian flows in an alluvial fan, using the Amoray Gully in Apurímac, Peru, as a case study. This gully intersects the Interoceánica Sur national highway via a low-water crossing (baden), making it a relevant site for evaluating debris flow impacts on critical road infrastructure. The methodology integrates hydrological analysis, rheological characterization, and hydraulic modeling. QGIS 3.16 was used for watershed delineation and extraction of physiographic parameters, while a high-resolution topographic survey was conducted using an RTK drone. Rainfall-runoff modeling was performed in HEC-HMS 4.7 using 25 years of precipitation data, and hydraulic simulations were executed in HEC-RAS 6.6, incorporating rheological parameters and calibrated with the footprint of a historical event (5-year return period). Results show that traditional Newtonian models underestimate flow depth by 17% and overestimate velocity by 54%, primarily due to unaccounted particle-collision effects. Based on these findings, a multi-barrel circular culvert was designed to improve debris flow management. This study provides a replicable modeling framework for debris-prone watersheds and contributes to improving design standards in complex terrain. The proposed methodology and findings offer practical guidance for hydraulic design in mountainous terrain affected by debris flows, especially where infrastructure intersects active alluvial fans. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

27 pages, 1827 KiB  
Review
Stormwater Pollution of Non-Urban Areas—A Review
by Antonia Potreck and Jens Tränckner
Water 2025, 17(11), 1704; https://doi.org/10.3390/w17111704 - 4 Jun 2025
Viewed by 553
Abstract
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, [...] Read more.
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, types of pollution parameters and their associated concentration ranges across various non-urban land use types, including industrial and commercial zones, transportation infrastructure (ports, airports, highways, railways) and agricultural areas. Studies differed in sample strategy, investigated phase (water, sediment) and analyzed chemical parameters. The latter can be grouped into sum parameters (e.g., total suspended solids (TSS), chemical oxygen demand (COD)), metals (e.g., nickel, copper, zinc, lead), nutrients (e.g., nitrogen, phosphorus), organic micropollutants (e.g., polycyclic aromatic hydrocarbons (PAH), perfluoroalkyl acids (PFAA)) and microbial contaminants. Results indicate that pollutant loads vary widely depending on land use, with industrial and railway areas showing the highest metal contamination, while agricultural and livestock farming areas exhibit elevated nutrient and microbial concentrations. The heterogeneity of the sampling, analysis and subsequent data processing hindered the statistical condensation of data from different studies. The findings underscore the need for standardized monitoring methods and tailored stormwater treatment strategies to mitigate pollution impact effectively. Full article
(This article belongs to the Special Issue Advances in Sustainable Management of Contaminated Stormwater)
Show Figures

Figure 1

20 pages, 7282 KiB  
Article
Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA
by Neal D. Mundahl and John Howard
Hydrology 2025, 12(4), 76; https://doi.org/10.3390/hydrology12040076 - 28 Mar 2025
Cited by 1 | Viewed by 717
Abstract
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and [...] Read more.
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and rainfall events flowing into an urban Minnesota, USA, lake during two different years, predicting that specific stormwater drainages with greater concentrations of roadways and parking lots would produce higher chloride loads during runoff than other drainages with fewer impervious surfaces. Chloride levels were measured in runoff draining into Lake Winona via 11 stormwater outfalls, a single channelized creek inlet, and two in-lake locations during each snowmelt or rainfall event from mid-February through early April in 2021 and 2023. In total, 33% of outfall runoff samples entering the lake collected over two years had chloride concentrations exceeding the 230 ppm chronic standard for aquatic life in USA surface waters, but no sample exceeded the 860 ppm acute standard. Chloride concentrations in outfall runoff (mean ± SD; 190 ± 191 ppm, n = 143) were significantly higher than in-lake concentrations (43 ± 14 ppm, n = 25), but chloride levels did not differ significantly between snowmelt and rainfall runoff events. Runoff from highway locations had higher chloride concentrations than runoff from residential areas. Site-specific chloride levels were highly variable both within and between years, with only a single monitored outfall displaying high chloride levels in both years. There are several possible avenues available within the city to reduce deicer use, capture and treat salt-laden runoff, and prevent or reduce the delivery of chlorides to the lake. Full article
Show Figures

Figure 1

28 pages, 34904 KiB  
Article
Evaluation of the Soil Conservation Service Curve Number (SCS-CN) Method for Flash Flood Runoff Estimation in Arid Regions: A Case Study of Central Eastern Desert, Egypt
by Mohammed I. Khattab, Mohamed E. Fadl, Hanaa A. Megahed, Amr M. Saleem, Omnia El-Saadawy, Marios Drosos, Antonio Scopa and Maha K. Selim
Hydrology 2025, 12(3), 54; https://doi.org/10.3390/hydrology12030054 - 8 Mar 2025
Viewed by 1837
Abstract
Flash floods are highly destructive natural disasters, particularly in arid and semi-arid regions like Egypt, where data scarcity poses significant challenges for analysis. This study focuses on the Wadi Al-Barud basin in Egypt’s Central Eastern Desert (CED), where a severe flash flood occurred [...] Read more.
Flash floods are highly destructive natural disasters, particularly in arid and semi-arid regions like Egypt, where data scarcity poses significant challenges for analysis. This study focuses on the Wadi Al-Barud basin in Egypt’s Central Eastern Desert (CED), where a severe flash flood occurred on 26–27 October 2016. This flash flood event, characterized by moderate rainfall (16.4 mm/day) and a total volume of 8.85 × 106 m3, caused minor infrastructure damage, with 78.4% of the rainfall occurring within 6 h. A significant portion of floodwaters was stored in dam reservoirs, reducing downstream impacts. Multi-source data, including Landsat 8 OLI imagery, ALOS-PALSAR radar data, Global Precipitation Measurements—Integrated Multi-satellite Retrievals for Final Run (GPM-FR) precipitation data, geologic maps, field measurements, and Triangulated Irregular Networks (TINs), were integrated to analyze the flash flood event. The Soil Conservation Service Curve Number (SCS-CN) method integrated with several hydrologic models, including the Hydrologic Modelling System (HEC-HMS), Soil and Water Assessment Tool (SWAT), and European Hydrological System Model (MIKE-SHE), was applied to evaluate flood forecasting, watershed management, and runoff estimation, with results cross-validated using TIN-derived DEMs, field measurements, and Landsat 8 imagery. The SCS-CN method proved effective, with percentage differences of 5.4% and 11.7% for reservoirs 1 and 3, respectively. High-resolution GPM-FR rainfall data and ALOS-derived soil texture mapping were particularly valuable for flash flood analysis in data-scarce regions. The study concluded that the existing protection plan is sufficient for 25- and 50-year return periods but inadequate for 100-year events, especially under climate change. Recommendations include constructing additional reservoirs (0.25 × 106 m3 and 1 × 106 m3) along Wadi Kahlah and Al-Barud Delta, reinforcing the Safaga–Qena highway, and building protective barriers to divert floodwaters. The methodology is applicable to similar flash flood events globally, and advancements in geomatics and datasets will enhance future flood prediction and management. Full article
Show Figures

Figure 1

16 pages, 5976 KiB  
Article
Updated Talbot Method for Culvert Design Discharge Prediction
by Özay Uslu, Abdullah Hilmi Lav and Zekâi Şen
Water 2024, 16(14), 1972; https://doi.org/10.3390/w16141972 - 12 Jul 2024
Cited by 1 | Viewed by 2406
Abstract
Surface runoff flows must be drained safely through culverts in ephemeral flow streams and bridges in perennial streams without any damage to the road or highway infrastructure stability. In practice, bridges cross drainage basin channels reliably, and they are more carefully planned, designed, [...] Read more.
Surface runoff flows must be drained safely through culverts in ephemeral flow streams and bridges in perennial streams without any damage to the road or highway infrastructure stability. In practice, bridges cross drainage basin channels reliably, and they are more carefully planned, designed, constructed, and maintained against extreme water passages, but culverts are subject to even less frequent and intensive rainfall consequent surface runoff occurrences with higher risk potential. It is, therefore, necessary to design culverts more carefully in such a way that they drain down the upstream surface water without any critical problem to the road downstream of the road stream channels. Most of the hydrological, hydraulic, and sedimentological formulations are empirical expressions that are widely valid for locations where culverts are suitably developed based on simple bivalent logical rules between factors involved in upstream inlet locations of culverts. One of the first logic rule-based methods in the literature is Talbot’s procedural approach to culvert design. This approach is based not only on an explicit equation, but also on a set of linguistically proposed design rules that are expressed deterministically to effectively eliminate most of the ambiguities. This paper proposes a modified approach with additional logistic structural features based on a bivalent logic inference system, which is an improved version of the Talbot procedure and leads to better culvert transition surface flow prediction. The proposed method is applied to a local area in Tekirdağ City, Türkiye, where a serious train accident occurred due to a poorly maintained culvert. Full article
Show Figures

Figure 1

27 pages, 4416 KiB  
Article
Water Quality and the First-Flush Effect in Roof-Based Rainwater Harvesting, Part I: Water Quality and Soil Accumulation
by Jessica J. Lay, Jason R. Vogel, Jason B. Belden, Glenn O. Brown and Daniel E. Storm
Water 2024, 16(10), 1402; https://doi.org/10.3390/w16101402 - 14 May 2024
Cited by 3 | Viewed by 3100
Abstract
Rainfall runoff may be captured and stored for later use, but the quality of this water can be detrimental in some uses without the use of appropriately designed first-flush diverters. The rainfall runoff water quality was measured on nineteen new small-scale and two [...] Read more.
Rainfall runoff may be captured and stored for later use, but the quality of this water can be detrimental in some uses without the use of appropriately designed first-flush diverters. The rainfall runoff water quality was measured on nineteen new small-scale and two aged commercial roofs located near high traffic highways. Roof coverings included asphalt shingles, sheet metal, clay tiles, and tar and gravel. Runoff samples were evaluated for polycyclic aromatic hydrocarbons (PAHs), phosphorus flame retardants (PFRs), and pyrethroid insecticides. Eighteen small-scale roofs were subjected to a range of simulated rainfall events, while natural runoff was sampled on the commercial roofs and one small-scale roof. Runoff was analyzed for pH, conductivity, turbidity, total suspended solids, boron, iron, copper, zinc, manganese, sodium adsorption ratio, nitrate-nitrogen, seventeen PAHs, tris(2-chloroethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate, bifenthrin, cypermethrin, and lambda-cyhalothrin. Samples from four natural storm events were also analyzed for total coliforms and Escherichia coli. In addition, soils below seventeen existing gutter downspouts were sampled to determine long-term pollutant accumulation. Atmospheric deposition was the main contributor of pollutants in the roof runoff. A majority of samples fell within the U.S. EPA guidelines for non-potable urban and agricultural water reuse. Trace levels of PAHs, PFRs, and insecticides were detected, but all detections were three orders of magnitude below the USGS health-based screening level benchmark concentrations. Results indicate that diverting the first flush, based on turbidity, total suspended solids, or conductivity, can improve the overall water quality and reduce the concentrations of PAHs in harvested rainwater. Downspout soil sampling showed potential for the long-term accumulation of PAHs at concentrations exceeding the minimum human-health risk-based screening levels at these high runoff-loading locations. Full article
Show Figures

Figure 1

18 pages, 4028 KiB  
Article
Quantification and Chemical Characterization of Plastic Additives and Small Microplastics (<100 μm) in Highway Road Dust
by Beatrice Rosso, Barbara Bravo, Elena Gregoris, Carlo Barbante, Andrea Gambaro and Fabiana Corami
Toxics 2023, 11(11), 936; https://doi.org/10.3390/toxics11110936 - 17 Nov 2023
Cited by 6 | Viewed by 3275
Abstract
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a [...] Read more.
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs’ average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health. Full article
Show Figures

Figure 1

19 pages, 2701 KiB  
Article
Design of Drainage Downspouts Systems over a Road Embankment
by José Ángel Aranda, Martí Sánchez-Juny, Marcos Sanz-Ramos and Carles Beneyto
Water 2023, 15(20), 3529; https://doi.org/10.3390/w15203529 - 10 Oct 2023
Cited by 4 | Viewed by 3676
Abstract
Numerous studies have examined the complex relationship between factors like embankment downspout spacing, height, slope, and rainfall characteristics in the quest to find the best spacing for embankment downspouts. Defining the correct spacing between road drainage elements is of utmost importance in minimizing [...] Read more.
Numerous studies have examined the complex relationship between factors like embankment downspout spacing, height, slope, and rainfall characteristics in the quest to find the best spacing for embankment downspouts. Defining the correct spacing between road drainage elements is of utmost importance in minimizing water flow on roadways. This paper presents a methodology based on numerical methods for the design of road drainage systems using the Iber model. The objective of the work is to propose a tool and criteria for analyzing the hydraulic behavior of runoff on highways, determine the appropriate drainage behavior, and apply the methodology in a case study. This case study is based on a straight highway section with slopes up to 5%, according to Spanish road design regulations. Different dimensions are considered for the chute, drainage channel, collection nozzle, and downspout over the embankment. Tests are carried out to evaluate the separation between downspouts, the longitudinal slope, and the size of the nozzles. The results show the suitable hydraulic performance of the model, besides providing the absorption capacity of each downspout. The influence of the nozzle size, the slope, and the width of the causeway on the draughts and velocities is analyzed. The influence of downspout spacing and nozzle type on road drainage design is determined. In summary, this article presents a methodology and criteria for the design of road drainage systems and shows the results obtained in a case study using the Iber model. The results help in understanding the influence of different variables on the hydraulic behavior of road runoff and provide relevant information for proper drainage design. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 9323 KiB  
Article
Experimental Study on Pore Pressure Variation and Erosion Stability of Sandy Slope Model under Microbially Induced Carbonate Precipitation
by Mingjuan Huang, Youliang Zhang, Jinning Hu, Yunpeng Hei, Zikun Xu and Jinchen Su
Sustainability 2023, 15(16), 12650; https://doi.org/10.3390/su151612650 - 21 Aug 2023
Cited by 6 | Viewed by 1937
Abstract
With the development of a free trade port on Hainan Island, the construction of tourist roads around the island is currently underway. However, the weather conditions on Hainan Island, which include strong typhoons and rainstorms, pose challenges for the construction of highway-cutting slopes [...] Read more.
With the development of a free trade port on Hainan Island, the construction of tourist roads around the island is currently underway. However, the weather conditions on Hainan Island, which include strong typhoons and rainstorms, pose challenges for the construction of highway-cutting slopes on the coastal weak sandy terraces. These slopes are susceptible to sand loss and erosion from rainfall. To address this issue, MICP green spray irrigation solidification technology is used to strengthen the sandy cutting, and pore water pressure monitoring is carried out on the slope model during MICP solidification and rainfall scour. Combined with the model pore water pressure and flow slip failure pattern, a dynamic analysis was conducted. The results show that MICP sprinkler irrigation technology can solidify the surface of the slope model in a short time, and after three sets of rotation reinforcement, the model achieved a cementation depth of 4 cm, with a well-reinforced surface and closely connected sand samples. Under the erosion effect of simulated rainfall intensity, the sand loss of the slope was weakened, without damage to the sand binding, and the integrity was enhanced. The cementation between the sand grains facilitated the conversion of most of the rainfall into runoff. However, despite these efforts, the slope eventually slid after 150 s. During the sliding process, the leading edge of the slope model lost sand and became unloaded, and the failure mode was graded a creep slip failure. Finally, the slope was divided into several blocks due to the continuous expansion of cracks following the slope failure. The erosion stability of the sandy slope under heavy rains was optimized and the sand loss was prevented effectively. This study proposes a new method of MICP remediation techniques that serve as a new test basis for the practical application of MICP technology in engineering projects. Full article
Show Figures

Figure 1

19 pages, 9829 KiB  
Article
Exploring Applicability of Different Ecological Protection Measures for Soil and Water Loss Control of Highway Slope in the Permafrost Area: A Case Study of Qinghai-Tibet Highway in China
by Xiaochun Qin, Anchen Ni, Dongxiao Yang, Bing Chen and Shiliang Liu
Int. J. Environ. Res. Public Health 2023, 20(6), 4907; https://doi.org/10.3390/ijerph20064907 - 10 Mar 2023
Cited by 1 | Viewed by 2252
Abstract
A variety of slope water and soil conservation measures have been taken along the Qinghai-Tibet Highway, but the systematic comparison of their erosion control ability needs to be strengthened, especially in the permafrost area. To explore the applicability of different measures to control [...] Read more.
A variety of slope water and soil conservation measures have been taken along the Qinghai-Tibet Highway, but the systematic comparison of their erosion control ability needs to be strengthened, especially in the permafrost area. To explore the applicability of different measures to control runoff and sediment yield, field scouring experiments were conducted for different ecologically protected slopes, including turfing (strip, block, full), slope covering (gravel, coconut fiber blanket), and comprehensive measures (three-dimensional net seeding). Compared with the bare slope, the bulk density of the plots with the ecological protection measure decreased, the moisture-holding capacity and the organic matter increased correspondingly, and the average runoff velocity also decreased. The soil loss and runoff had a similar trend of different ecological protection measures. The relationship between the cumulative runoff and sediment yield of different measures exhibited a power function, with the increase of scouring flow and the runoff reduction benefit and sediment reduction benefit in different ecological protection-measured plots showing a decreasing trend. The average runoff reduction benefit decreased from 37.06% to 6.34%, and the average sediment reduction benefit decreased from 43.04% to 10.86%. The comprehensive protection measures had the greatest protection efficiency, followed by turfing, while the cover measure had limited improvement. Soil characteristics, vegetation coverage, and the scouring inflow rate are key factors that influence protection efficiency. The results suggest that comprehensive measures and turfing be taken rather than cover measures or bare slopes. This work provides an experimental reference for ecological protection methods for highway slopes in the permafrost area. Full article
Show Figures

Figure 1

19 pages, 3617 KiB  
Article
Field-Monitoring Sediment Basin Performance during Highway Construction
by Jaime C. Schussler, Michael A. Perez, Jarrell Blake Whitman and Bora Cetin
Water 2022, 14(23), 3858; https://doi.org/10.3390/w14233858 - 27 Nov 2022
Cited by 3 | Viewed by 4366
Abstract
Stormwater regulations require erosion and sediment control practices to be implemented during construction to prevent discharging polluted water offsite and mitigate downstream effects. Sediment basins are a common practice used to detain suspended sediment from stormwater runoff by providing residence time and storage [...] Read more.
Stormwater regulations require erosion and sediment control practices to be implemented during construction to prevent discharging polluted water offsite and mitigate downstream effects. Sediment basins are a common practice used to detain suspended sediment from stormwater runoff by providing residence time and storage to promote gravitational settling. Sediment basin design, and thus pollutant removal efficiency, vary regionally due to local design standards and preferences. This manuscript presents the results of a case study from Highway U.S. 30 construction in Tama County, Iowa, USA where two sediment basin systems were created within a conveyance channel by constructing an earthen berm across the channel to detain sediment-laden stormwater. A dewatering riser pipe was routed through the earthen berm to provide primary dewatering. The in-channel sediment basin was constructed with a 3% slope and a 10 ft. bottom width. The first system consisted of one basin created by a single earthen berm damming sediment-laden runoff, whereas the second system included two earthen berms, creating two in-channel sediment basins in series. Field monitoring was conducted on in-situ basins by deploying a rain gauge and automated water samplers positioned at the inflow and discharge points of a (a) single basin and (b) two basins in series within a roadside channel. During the monitoring period, no maintenance or dredging was recorded. Water samples were taken from the monitored basins at regular time intervals and analyzed for turbidity. Inflow turbidities often reached magnitudes up to the 103 NTU and discharge samples indicated negligible turbidity reduction after residence. On several occasions, the in-channel sediment basins acted as a sediment source, with discharge turbidities measuring higher than inflow. Despite their initial performance, there was interest in improving the in-channel basin design due to the potential to maximize length-to-width flow ratios, and use of existing infrastructure, which reduced the amount of right of way needed for basin construction, installation time and cost. As a result, several potential design improvements and techniques were recommended to enhance in-channel sediment basin performance. Full article
(This article belongs to the Special Issue Water Quality Modeling and Monitoring)
Show Figures

Figure 1

21 pages, 6927 KiB  
Article
Spatial Heterogeneity of CDOM, Optical Brighteners, and Oils in Mesohaline Tidal Creeks Using Self-Organizing Maps
by Andrew C. Muller and Diana Lynn Muller
Water 2022, 14(16), 2533; https://doi.org/10.3390/w14162533 - 18 Aug 2022
Cited by 1 | Viewed by 2544
Abstract
Shallow tidal creek systems or triblets are often overlooked when documenting and measuring the spatial extent of pollutants of emerging concern despite much of the population living in and around these areas. An innovative in situ fluorometric instrument coupled with a Self-Organi21zing Map [...] Read more.
Shallow tidal creek systems or triblets are often overlooked when documenting and measuring the spatial extent of pollutants of emerging concern despite much of the population living in and around these areas. An innovative in situ fluorometric instrument coupled with a Self-Organi21zing Map was utilized in Chesapeake Bay’s mesohaline tidal creek system to analyze CDOM, dissolved oxygen, optical brighteners, and oils. The in situ fluorometer proved helpful as a rapid reconnaissance tool complementing the investigation when attached to a CTD instrument. This baseline research showed that CDOM follows non-conservative properties in spring and more conservative behavior in the fall. The results show that the Self-Organizing Map method is a suitable alternative to traditional statistical techniques and may be better at finding key patterns that might otherwise have been obscured by high variability. For example, oils revealed a pattern with residual runoff from highways or boating, while optical brighteners displayed a pattern consistent with septic systems. Optical brighteners also revealed lag effects after the passing of heavy rainfall and were consistent with the lab effect of turbidity. The study also reveals that CDOM is the dominant control on light penetration, one of the limiting factors on underwater grass growth. The results also suggest that CDOM should not be overlooked when measuring the effects of restoration in these systems and should be implemented in regular monitoring and TMDLs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 3703 KiB  
Article
Design of Constructed Wetland Treatment Measures for Highway Runoff in a Water Source Protection Area
by Guoping Qian, Chang Wang, Xiangbing Gong, Hongyu Zhou and Jun Cai
Sustainability 2022, 14(10), 5951; https://doi.org/10.3390/su14105951 - 13 May 2022
Cited by 5 | Viewed by 3262
Abstract
Road runoff contains high levels of pollutants, such as heavy metals and hydrocarbons. If they are directly discharged into sensitive water bodies, they will cause irreversible pollution and damage to the water environment. Furthermore, the leakage of hazardous chemicals into sensitive waters will [...] Read more.
Road runoff contains high levels of pollutants, such as heavy metals and hydrocarbons. If they are directly discharged into sensitive water bodies, they will cause irreversible pollution and damage to the water environment. Furthermore, the leakage of hazardous chemicals into sensitive waters will lead to serious consequences, so determining how to deal with road surface runoff has become an urgent problem. This research adopts a scheme for collecting and processing road runoff in a water source protection area using artificial wetlands. After optimizing and improving the general vertical flow of the wetland structure, a composite wetland structure and a relatively novel tandem wetland structure are proposed. An indoor model is established for experiments on various main wetland structure schemes. The results show that the two newly proposed wetland structures improve the possibility of water level control in general vertical flow structures. At the same time, the movement distance of the water flow in the wetland structure is changed to improve the treatment effect of runoff. The removal effect of composite and tandem wetland structures for heavy metals, petroleum substances, and COD (chemical oxygen demand) is significantly better than that of general vertical flow structures. Among them, the composite structure is better than the tandem structure at removing heavy metals, petroleum substances, and COD. However, due to the water discharge method of the structures, the latter has a better effect than the former in the treatment of suspended substances. Full article
(This article belongs to the Topic Sustainable Built Environment)
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
Prediction of Run-Off Road Crash Severity in South Korea’s Highway through Tree Augmented Naïve Bayes Learning
by Hyungkyu Kim, Jin-Tae Kim, Somyoung Shin, Hyerin Lee and Joonbeom Lim
Appl. Sci. 2022, 12(3), 1120; https://doi.org/10.3390/app12031120 - 21 Jan 2022
Cited by 6 | Viewed by 2849
Abstract
The run-off road crash (RORC) is a representative type of lethal crash. The severity of RORC has increased owing to a combination of factors, such as roadside geometry, traffic conditions, and weather/climatic conditions. In this study, a model for estimating the RORC severity [...] Read more.
The run-off road crash (RORC) is a representative type of lethal crash. The severity of RORC has increased owing to a combination of factors, such as roadside geometry, traffic conditions, and weather/climatic conditions. In this study, a model for estimating the RORC severity was developed based on various factors, including fixed objects, roadway geometry, traffic conditions, and road traffic environment. To develop the model, the accident data of crashes with roadside fixed objects on highways, as well as information on fixed object-related variables and roadway geometry-related variables, were collected. To improve the model in terms of implementing a close reflection of the real world, a learning method with tree augmented naïve Bayes (TAN), which takes into account the causal links between variables, was applied. The results of the analysis showed that the severity of crashes with roadside fixed objects increased sharply when the vertical slope was ≥4%, the radius of the curve was ≥250 m, the distance between the fixed object and the roadway was less than 3 m, or the density of fixed objects installation was greater than 2 for every 10 m. The proposed model allows for an analysis of sections with a high RORC severity on the roadways in operation and provides improvement measures to reduce the severity of RORC. Full article
Show Figures

Figure 1

15 pages, 3617 KiB  
Article
Integrated Runoff-Storm Surge Flood Hazard Mapping Associated with Tropical Cyclones in the Suburbs of La Paz, Baja California Sur, México
by Miguel Angel Imaz-Lamadrid, Jobst Wurl, Ernesto Ramos-Velázquez and Jaqueline Rodríguez-Trasviña
GeoHazards 2022, 3(1), 1-15; https://doi.org/10.3390/geohazards3010001 - 28 Dec 2021
Cited by 1 | Viewed by 4220
Abstract
Floods are amongst the most frequent and destructive type of disaster, causing significant damage to communities. Globally, there is an increasing trend in the damage caused by floods generated by several factors. Flooding is characterized by the overflow of water onto dry land. [...] Read more.
Floods are amongst the most frequent and destructive type of disaster, causing significant damage to communities. Globally, there is an increasing trend in the damage caused by floods generated by several factors. Flooding is characterized by the overflow of water onto dry land. Tropical cyclones generate floods due to excess water in rivers and streams and storm surges; however, the hazard of both phenomena is presented separately. In this research we present a methodology for the estimation of flood hazards related to tropical cyclones, integrating runoff and storm surge floods. As a case study, we selected the south-western suburbs of the city of La Paz, the capital of the state of Baja California Sur in northwest Mexico. The city has experienced in recent years an expansion of the urban area. In addition, there is an infrastructure of great importance such as the transpeninsular highway that connects the capital with the north of the state, as well as the international airport. Our results indicate that urban areas, agricultural lands, as well as the air force base, airport, and portions of the transpeninsular highway are in hazardous flood areas, making necessary to reduce the exposure and vulnerability to these tropical cyclone-related events. A resulting map was effective in defining those areas that would be exposed to flooding in the face of the impact of tropical cyclones and considering climate change scenarios, which represents an invaluable source of information for society and decision-makers for comprehensive risk management and disaster prevention. Full article
Show Figures

Figure 1

Back to TopTop