Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA
Abstract
1. Introduction
2. Study Area
3. Methods
3.1. Runoff Collection and Chloride Measurement
3.2. Historical Chloride Data for Lake Winona
3.3. Data Analyses
4. Results
5. Discussion
5.1. Chloride Runoff
5.2. In-Lake Chloride Levels and Stormwater Management
5.3. Chloride Infiltration
5.4. Chloride Reduction and Management
5.5. Chloride in Groundwater
5.6. Limitations of the Present Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman, C.R.; Horne, A.J. Limnology, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Mundahl, N.; Borsari, B.; Meyer, C.; Wheeler, P.; Siderius, N.; Harmes, S. Sustainable management of water quality in southeastern Minnesota, USA: History, citizen attitudes, and future implications. In Sustainable Water Use and Management: Examples of New Approaches and Perspectives; Filho, W.L., Sümer, V., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Allan, J.D.; Castillo, M.M.; Capps, K.A. Stream Ecology: Structure and Function of Running Waters, 3rd ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021. [Google Scholar]
- Bhaduri, B.; Grove, M.; Lowry, C.; Harbor, J. Assessing long-term hydrologic effects of land use change. J. Am. Water Work. Assoc. 1997, 89, 94–106. [Google Scholar]
- Mao, D.; Cherkauer, K.A. Impacts of land-use on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar]
- Cañedo-Argüelles, M.; Kefford, B.; Schäfer, R. Salt in freshwaters: Causes, effects and prospects—Introduction to the theme issue. Philos. Trans. R. Soc. B 2019, 374, 20180002. [Google Scholar]
- Maas, C.M.; Kaushal, S.S.; Rippy, M.A.; Mayer, P.M.; Grant, S.B.; Shatkay, R.R.; Malin, J.T.; Bhide, S.V.; Vikesland, P.; Krauss, L.; et al. Freshwater salinization syndrome limits management efforts to improve water quality. Front. Environ. Sci. 2023, 11, 1106581. [Google Scholar]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. USA 2018, 115, E574–E583. [Google Scholar]
- Kaushal, S.S.; Reimer, J.E.; Mayer, P.M.; Shatkay, R.R.; Maas, C.M.; Nguyen, W.D.; Boger, W.L.; Yaculak, A.M.; Doody, T.R.; Pennino, M.J.; et al. Freshwater salinization syndrome alters retention and release of ‘chemical cocktails’ along flowpaths: From stormwater management to urban streams. Freshw. Sci. 2022, 41, 420–441. [Google Scholar] [CrossRef]
- Fremling, C.R.; Heins, G.A. A Lake Winona Compendium: Information Concerning the Reclamation of an Urban Winter-Kill Lake at Winona, Minnesota, 2nd ed.; Winona State University: Winona, MN, USA, 1986. [Google Scholar]
- Trimble, S.W. Historical Agriculture and Soil Erosion in the Upper Mississippi Valley Hill Country; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Søndergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; Van Nes, E.H.; Roijackers, R.; Lammens, E.; Portielje, R. Lake restoration: Successes, failures and long-term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Hunt, R.L. Trout Stream Therapy; University of Wisconsin Press: Madison, WI, USA, 1993. [Google Scholar]
- Hunter, C.J. Better Trout Habitat: A Guide to Stream Restoration and Management; Island Press: Washington, DC, USA, 1991. [Google Scholar]
- Roni, P.; Hanson, K.; Beechie, T. Global review of the physical and biological effectiveness of stream rehabilitation techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar]
- Bakker, E.S.; Van Donk, E.; Immers, A.K. Lake restoration by in-lake iron addition: A synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquat. Ecol. 2016, 50, 121–135. [Google Scholar]
- Tammeorg, O.; Chorus, I.; Spears, B.; Nõges, P.; Nürnberg, G.K.; Tammeorg, P.; Søndergaard, M.; Jeppesen, E.; Paerl, H.; Huser, B.; et al. Sustainable lake restoration: From challenges to solutions. WIREs Water 2024, 11, e1689. [Google Scholar]
- Dunalska, J.A.; Wiśniewski, G. Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol. Eng. 2016, 95, 714–722. [Google Scholar]
- Riley, A.L. Restoring Streams in Cities: A Guide for Planners, Policymakers, and Citizens; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater salinization syndrome: From emerging global problem to managing risks. Biogeochemistry 2021, 154, 255–292. [Google Scholar]
- Kaushal, S.S.; Mayer, P.M.; Likens, G.E.; Reimer, J.E.; Maas, C.M.; Rippy, M.A.; Grant, S.B.; Hart, I.; Utz, R.M.; Shatkay, R.R.; et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 2023, 8, 190–211. [Google Scholar] [CrossRef]
- Szklarek, S.; Górecka, A.; Wojtal-Frankiewicz, A. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution—A review. Sci. Total Environ. 2022, 805, 150289. [Google Scholar]
- Evans, M.; Frick, C. The Effects of Road Salts on Aquatic Ecosystems; Environment Canada Water Science and Technology Directorate Contribution No. 02-308; National Water Research Institute: Saskatoon, SK, Canada, 2001. [Google Scholar]
- Schuler, M.S.; Relyea, R.A. A review of the combined threats of road salts and heavy metals to freshwater systems. BioScience 2018, 68, 327–335. [Google Scholar]
- Corsi, S.R.; Graczyk, D.J.; Geis, S.W.; Booth, N.L.; Richards, K.D. A fresh look at road salt: Aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ. Sci. Technol. 2010, 44, 7376–7382. [Google Scholar]
- Jones, D.K.; Mattes, B.M.; Hintz, W.D.; Schuler, M.S.; Stoler, A.B.; Lind, L.A.; Cooper, R.O.; Relyea, R.A. Investigation of road salts and biotic stressors on freshwater wetland communities. Environ. Pollut. 2017, 221, 159–167. [Google Scholar]
- Minnesota Pollution Control Agency. Statewide Chloride Management Plan: Effectively Managing Salt Use to Protect Minnesota’s Lakes and Streams; Minnesota Pollution Control Agency: Saint Paul, MN, USA, 2020; Available online: https://www.pca.state.mn.us/water/draft-statewide-chloride-management-plan (accessed on 21 January 2025).
- Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar]
- United States Environmental Protection Agency. Winter Is Coming! And with It, Tons of Salt on Our Roads; United States Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/snep/winter-coming-and-it-tons-salt-our-roads (accessed on 22 January 2025).
- Marsalek, J. Road salts in urban stormwater: An emerging issue in stormwater management in cold climates. Water Sci. Technol. 2003, 48, 61–70. [Google Scholar]
- Novotny, E.V.; Murphy, D.; Stefan, H.G. Increase of urban lake salinity by road deicing salt. Sci. Total Environ. 2008, 406, 131–144. [Google Scholar] [PubMed]
- Perera, N.; Gharabaghi, B.; Howard, K. Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years. J. Hydrol. 2013, 479, 159–168. [Google Scholar]
- Anning, D.W.; Finn, M.E. Dissolved-Solids Sources, Loads, Yields, and Concentrations in Streams of the Conterminous United States; Scientific Investigations Report 2014–5012; U.S. Geological Survey: Tucson, AZ, USA, 2014. Available online: https://pubs.usgs.gov/sir/2014/5012/ (accessed on 19 January 2025).
- Procell, C. Road Salt Use. USA Today Network. 2025. Available online: https://infogram.com/road-salt-use-by-state-1h8n6m1971nm6xo (accessed on 19 January 2025).
- Minnesota Pollution Control Agency. Minnesota Stormwater Manual, Chloride Management Plan Combined; Minnesota Pollution Control Agency: Saint Paul, MN, USA, 2022; Available online: https://stormwater.pca.state.mn.us/index.php?title=Chloride_Management_Plan_combined (accessed on 19 January 2025).
- City of Madison. Road Salt in Our Lakes, Waterways, and Drinking Water; City of Madison: Madison, WI, USA, 2025; Available online: https://www.cityofmadison.com/live-work/winter/snow-removal/salt-sustainability/our-lakes-drinking-water (accessed on 19 January 2025).
- United States Environmental Protection Agency. National Recommended Water Quality Criteria—Aquatic Life Criteria Table; United States Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 21 January 2025).
- Jackson, R.B.; Jobbágy, E.G. From icy roads to salty streams. Proc. Natl. Acad. Sci. USA 2005, 201, 14487–14488. [Google Scholar]
- Kelly, V.R.; Lovett, G.M.; Weathers, K.C.; Findlay, S.E.G.; Strayer, D.L.; Burns, D.J.; Likens, G.E. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 2008, 42, 410–415. [Google Scholar]
- Trenouth, W.R.; Gharabaghi, B.; Perera, N. Road salt application planning tool for winter de-icing operations. J. Hydrol. 2015, 524, 401–410. [Google Scholar]
- Gardeshi, M.E.; Arab, H.; Benguit, A.; Drogui, P. Runoff water loaded with road de-icing salts: Occurrence, environmental impact and treatment processes. Water Environ. J. 2024, 38, 20–31. [Google Scholar]
- City of Madison. Road Salt Background and History; City of Madison: Madison, WI, USA, 2025; Available online: https://www.cityofmadison.com/live-work/winter/snow-removal/salt-sustainability/background-history (accessed on 18 March 2025).
- Government of Canada. Road Salts Overview; Government of Canada: Ottawa, ON, Canada, 2025. Available online: https://www.canada.ca/en/environment-climate-change/services/pollutants/road-salts/overview.html (accessed on 18 March 2025).
- United States Environmental Protection Agency. National Pollutant Discharge Elimination System (NPDES): Stormwater Discharges from Municipal Sources; United States Environmental Protection Agency: Washington, DC, USA, 2024. Available online: https://www.epa.gov/npdes/stormwater-discharges-municipal-sources (accessed on 20 January 2025).
- Burns, M.J.; Fletcher, T.M.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar]
- Jefferson, A.J.; Bhaskar, A.S.; Hopkins, K.G.; Fanelli, R.; Avellaneda, P.M.; McMillan, S.K. Stormwater management network effectiveness and implications for urban watershed function: A critical review. Hydrol. Process. 2017, 31, 4056–4080. [Google Scholar]
- Costa, C.S.; Norton, C.; Domene, E.; Hoyer, J.; Marull, J.; Salminen, O. Water as an element of urban design: Drawing lessons from four European case studies. In Sustainable Water Use and Management: Examples of New Approaches and Perspectives; Filho, W.L., Sümer, V., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Zhang, Y.; Zhao, W.; Jun, C.; Hao, J.; Tang, X.; Zhai, J. Assessment on the effectiveness of urban stormwater management. Water 2021, 13, 4. [Google Scholar]
- Walsh, C.J.; Booth, D.B.; Burns, M.J.; Fletcher, T.D.; Hale, R.L.; Hoang, L.N.; Livingston, G.; Rippy, M.A.; Roy, A.H.; Scoggins, M.; et al. Principles for urban stormwater management to protect stream ecosystems. Freshw. Sci. 2016, 35, 398–411. [Google Scholar]
- Hernández-Hernández, M.; Olcina, J.; Morote, Á.-F. Urban stormwater management, a tool for adapting to climate change: From risk to resource. Water 2020, 12, 2616. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.-G.; Di, D.-R.; Shi, W.-Y. Separating the impacts of climate change and human activities on runoff: A review of method and application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Liao, K.-H.; Deng, S.; Tan, P.Y. Blue-green infrastructure: New frontier for sustainable urban stormwater management. In Greening Cities: Forms and Functions; Tan, P.Y., Jim, C.Y., Eds.; Springer Nature: Singapore, 2017. [Google Scholar]
- Khurelbaatar, G.; van Afferden, M.; Ueberham, M.; Stefan, M.; Geyler, S.; Müller, R.A. Management of urban stormwater at block-level (MUST-B): A new approach for potential analysis of decentralized stormwater management systems. Water 2021, 13, 378. [Google Scholar] [CrossRef]
- Maiolo, M.; Palermo, S.A.; Brusco, A.C.; Pirouz, B.; Turco, M.; Vinci, A.; Spezzano, G.; Piro, P. On the use of a real-time control approach for urban stormwater management. Water 2020, 12, 2842. [Google Scholar] [CrossRef]
- Boller, M. Towards sustainable urban stormwater management. Water Sci. Technol. Water Supply 2004, 4, 55–65. [Google Scholar] [CrossRef]
- Cettner, A.; Ashley, R.; Viklander, M.; Nilsson, K. Stormwater management and urban planning: Lessons from 40 years of innovation. J. Environ. Plan. Manag. 2013, 56, 786–801. [Google Scholar] [CrossRef]
- Jusić, S.; Hadžić, E.; Milišić, H. Urban stormwater management—New technologies. In New Technologies, Development and Application II. NT 2019. Lecture Notes in Networks and Systems; Karabegović, I., Ed.; Springer International Publishing: Cham, Switzerland; Volume 76, 2020; Available online: https://link.springer.com/chapter/10.1007/978-3-030-18072-0_90 (accessed on 22 January 2025).
- Dusbabek, I.; Franz, J. Chloride Contamination in Natural Water Sources; Winona State University: Winona, MN, USA, 2023; Available online: https://openriver.winona.edu/cgi/viewcontent.cgi?article=1083&context=wsurrc (accessed on 18 March 2025).
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Rentachintala, L.R.N.P.; Reddy, M.G.M.; Mohapatra, P.K. Urban stormwater management for sustainable and resilient measures and practices: A review. Water Sci. Technol. 2022, 85, 1120. [Google Scholar] [CrossRef]
- City of Winona. Stormwater; City of Winona: Winona, MN, USA, 2025; Available online: https://www.cityofwinona.com/341/Stormwater (accessed on 23 January 2025).
- Izaak Walton League of America. Salt Watch; Izaak Walton League of America: Gaithersburg, MD, USA, 2025; Available online: https://www.iwla.org/water/stream-monitoring/salt-watch (accessed on 13 March 2025).
- Water Rangers. Chloride; Water Rangers: Ottawa, ON, Canada, 2025; Available online: https://waterrangers.com/testkits/tests/chloride/?v=0b3b97fa6688 (accessed on 13 March 2025).
- Laceby, J.P.; Kerr, J.G.; Zhu, D.; Chung, C.; Situ, Q.; Abbasi, S.; Orwin, J.F. Chloride inputs to the North Saskatchewan River watershed: The role of road salts as a potential driver of salinization downstream of North America’s northern most major city (Edmonton, Canada). Sci. Total Environ. 2019, 688, 1056–1068. [Google Scholar] [CrossRef]
- Soper, J.J.; Guzman, C.D.; Kumpel, E.; Tobiason, J.E. Long-term analysis of road salt loading and transport in a rural drinking water reservoir watershed. J. Hydrol. 2021, 603, 127005. [Google Scholar] [CrossRef]
- Canadian Council of Ministers. Canadian Water Quality Guidelines: Chloride Ion Scientific Criteria Document; Canadian Council of Ministers of the Environment: Winnipeg, ON, Canada, 2011. [Google Scholar]
- Szklarek, S.; Stolarska, M.; Wagner, I.; Mankiewicz-Boczek, J. The microbiotest battery as an important component in the assessment of snowmelt toxicity in urban watercourses—Preliminary studies. Environ. Monit. Assess. 2015, 187, 16. [Google Scholar] [CrossRef] [PubMed]
- Minnesota Department of Natural Resources. Climate Trends; Minnesota Department of Natural Resources: Saint Paul, MN, USA, 2025; Available online: https://www.dnr.state.mn.us/climate/climate_change_info/climate-trends.html (accessed on 31 January 2025).
- Barr Engineering. Lake Winona Water Quality Improvement Plan: A Targeted, Prioritized, and Measurable Implementation Plan to Effectively Restore Lake Winona; Barr Engineering: Minneapolis, MN, USA, 2020. [Google Scholar]
- de Santiago-Martin, A.; Michaux, A.; Guesdon, G.; Constantin, B.; Despréaux, M.; Galvez-Cloutier, R. Potential of anthracite, dolomite, limestone and pozzolan as reactive media for de-icing salt removal from road runoff. Int. J. Environ. Sci. Technol. 2016, 13, 2313–2324. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Audorff, V.; Beierkuhnlein, C. Salt in the wound: The interfering effect of road salt on acidified forest catchments. Sci. Total Environ. 2015, 532, 595–604. [Google Scholar] [CrossRef]
- Salminen, J.M.; Nystén, T.H.; Tuominen, S. Review of approaches to reducing adverse impacts of road deicing on groundwater in Finland. Water Qual. Res. J. Can. 2011, 46, 166–173. [Google Scholar] [CrossRef]
- Patenaude, J. Changing Winter Driving Habits Could Reduce Salt Use, Ill Effects of Road Salt; Wisconsin Public Radio: Madison, WI, USA, 2025; Available online: https://www.wpr.org/environment/winter-driving-reduce-ill-effects-road-salt (accessed on 21 February 2025).
- Minnesota Pollution Control Agency. Mississippi River—Winona Watershed Pollutant Reduction Project (Total Maximum Daily Load Study) for Nutrients, Sediment and Bacteria; wq-iw9-18e; Minnesota Pollution Control Agency: Saint Paul, MN, USA, 2016. [Google Scholar]
Event Type | 2021 | 2023 |
---|---|---|
Snowmelt | 22 February–9 March | 11–13 February |
16–22 March | 1–3 March | |
13–17 March | ||
Rainfall | 10–11 March (0.76 cm) | 14–15 February (1.22 cm) |
23 March (0.97 cm) | 26–27 February (1.40 cm) | |
8 April (1.07 cm) | 6 March (0.81 cm) | |
22–24 March (0.28 cm) |
Statistics | Lake Winona Samples | Runoff Outfall Samples |
---|---|---|
n | 25 | 143 |
Mean | 43 ppm | 190 ppm |
Standard deviation | 14 ppm | 191 ppm |
Standard error | 3 ppm | 16 ppm |
Median | 38 ppm | 112 ppm |
Minimum | 25 ppm | 6 ppm |
Maximum | 80 ppm | 711 ppm |
Basin/Year | n (Snowmelt, Rainfall) | Mann–Whitney U Values | p Value |
---|---|---|---|
East 2021 | 15, 17 | 145, 111 | 0.535 |
West 2021 | 21, 16 | 132, 205 | 0.271 |
East 2023 | 17, 22 | 172, 203 | 0.675 |
West 2023 | 15, 16 | 88, 153 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundahl, N.D.; Howard, J. Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA. Hydrology 2025, 12, 76. https://doi.org/10.3390/hydrology12040076
Mundahl ND, Howard J. Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA. Hydrology. 2025; 12(4):76. https://doi.org/10.3390/hydrology12040076
Chicago/Turabian StyleMundahl, Neal D., and John Howard. 2025. "Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA" Hydrology 12, no. 4: 76. https://doi.org/10.3390/hydrology12040076
APA StyleMundahl, N. D., & Howard, J. (2025). Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA. Hydrology, 12(4), 76. https://doi.org/10.3390/hydrology12040076