Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = highly pathogenic avian influenza viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 509
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

15 pages, 5462 KiB  
Article
Clade 2.3.4.4b Highly Pathogenic Avian Influenza H5N1 Pathology in a Common Shorebird Species (Sanderling; Calidris alba) in Virginia, USA
by Victoria A. Andreasen, Emily G. Phillips, Aidan M. O’Reilly, C. Robert Stilz, Rebecca L. Poulson, Ruth Boettcher, John K. Tracey and Nicole M. Nemeth
Animals 2025, 15(14), 2057; https://doi.org/10.3390/ani15142057 - 12 Jul 2025
Viewed by 445
Abstract
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 [...] Read more.
Anseriformes (waterfowl) and Charadriiformes (shorebirds) are well-recognized natural reservoirs of low pathogenic (LP) influenza A viruses (IAVs). Historically, LP IAVs circulate among healthy individuals during seasonal, and often transcontinental, migrations. However, following the introduction of clade 2.3.4.4b highly pathogenic (HP) A/Goose/Guangdong/1/1996 lineage H5 IAV to North America in 2021, countless wild birds succumbed to fatal infections across the Western Hemisphere. Due to their small size and cryptic plumage patterns, opportunities for carcass recovery and postmortem evaluation in sanderlings (Calidris alba) and other shorebirds are rare. A multispecies mortality event in coastal Virginia, USA, in March–April 2024 included sanderlings among other wild bird species. Nine sanderlings underwent postmortem evaluation and clade 2.3.4.4b H5 IAV RNA was detected in pooled oropharyngeal-cloacal swabs from 11/11 individuals by real-time reverse transcription polymerase chain reaction. Histopathology was similar to that in waterfowl and included necrosis in the pancreas and brain and less commonly in the gonad, adrenal gland, spleen, liver, and intestine. Immunohistochemistry revealed IAV antigen labeling in necrotic neurons of the brain (neurotropism) and epithelial cells of the pancreas, gonad, and adrenal gland (epitheliotropism). Describing HP IAV-attributed pathology in shorebirds is key to understanding ecoepidemiology and population health threats in order to further document and compare pathogenesis among avian species. Full article
(This article belongs to the Section Birds)
Show Figures

Graphical abstract

23 pages, 3759 KiB  
Review
Highly Pathogenic Avian Influenza (H5N1) Clade 2.3.4.4b in Cattle: A Rising One Health Concern
by Ivan Camilo Sanchez-Rojas, D. Katterine Bonilla-Aldana, Catherin Lorena Solarte-Jimenez, Jorge Luis Bonilla-Aldana, Jaime David Acosta-España and Alfonso J. Rodriguez-Morales
Animals 2025, 15(13), 1963; https://doi.org/10.3390/ani15131963 - 3 Jul 2025
Viewed by 1036
Abstract
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the [...] Read more.
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the virus’s host range and raises serious public health and veterinary concerns. Infected cattle presented with clinical signs such as decreased milk production, thickened or discolored milk, respiratory issues, and lethargy. Pathological findings revealed inflammation of the mammary glands and the detection of a virus in nasal secretions and raw milk, suggesting a potential for both intra- and interspecies transmission. While the current risk of human-to-human transmission remains low, the detection of H5N1 in a human exposed to infected cattle highlights the need for heightened surveillance and protective measures. Moreover, the presence of infectious viruses in the food chain, particularly in unpasteurized milk, introduces a new dimension of zoonotic risk. This review synthesizes emerging evidence on the epidemiology, pathology, diagnostic findings, and zoonotic implications of HPAI H5N1 infection in cattle. It also highlights the importance of genomic surveillance, intersectoral collaboration, and One Health approaches in managing this evolving threat. As the virus continues to circulate and adapt across diverse hosts, including wild birds, domestic poultry, and now mammals, the potential for reassortment and emergence of novel strains remains a significant concern. Immediate actions to strengthen biosecurity, monitor viral evolution, and protect both animal and human populations are critical to mitigate the global risk posed by this expanding panzootic. Full article
(This article belongs to the Special Issue Infection Immunity, Diagnosis and Prevention of Avian Influenza)
Show Figures

Figure 1

10 pages, 3437 KiB  
Article
Phylogenetic and Mutation Analysis of Hemagglutinin Gene from Highly Pathogenic Avian Influenza Virus H5 Clade 2.3.4.4b in South America
by Alfredo Bruno, Domenica de Mora, Miguel Angel Garcia-Bereguiain and Juan Cristina
Viruses 2025, 17(7), 924; https://doi.org/10.3390/v17070924 - 28 Jun 2025
Viewed by 606
Abstract
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South [...] Read more.
The Highly Pathogenic Avian Influenza Virus (HPAIV) H5 clade 2.3.4.4b has caused severe outbreaks in domestic and wild birds worldwide since its emergence in 2014, and especially since 2020, with outbreaks in Europe and North America. The introduction of the virus into South America was reported for the first time in Colombia in October 2022, followed by outbreaks in other South American countries affecting poultry, wild birds, mammals, and humans. In this study, a phylogenetic and mutation analysis of the hemagglutinin (HA) gene of HPAIV H5N1 2.3.4.4b viruses isolated in South America was performed to analyze its evolution and its transmission and zoonotic potential. The analysis shows an increase in the viral effective population size between April and June 2022, which was followed by multiple outbreaks of HPAIV H5N1 clade 2.3.4.4b in South America. Moreover, the virus variants evolved from a recent common ancestor estimated to have existed in June 2017. The mean rate of evolution of the HA gene was 6.95 × 10−3 substitutions per site per year, and the sequence analysis of HA identified a mutation (D171N) located at antibody binding sites and viral oligomerization interfaces, with implications for immune response evasion and new host species infection. Additionally, viral strains from South America share the substitutions L104M, T156A, P181S, and V210A, compared to the vaccine strain A/chicken/Ghana/AVL763/2021. Understanding the dynamics of viral evolution and transmission is essential for effective prevention strategies to mitigate future outbreaks. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Immunogenicity of Matrix Protein 2 Ectodomain (M2e) Displayed on Nodavirus-like Particles as Avian Influenza Vaccine for Poultry
by Anis Suraya Mohamad Abir, Wen Siang Tan, Abdul Rahman Omar, Kok Lian Ho, Munir Iqbal and Abdul Razak Mariatulqabtiah
Vaccines 2025, 13(7), 701; https://doi.org/10.3390/vaccines13070701 - 27 Jun 2025
Viewed by 523
Abstract
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that [...] Read more.
Avian influenza is an economically significant disease affecting poultry worldwide and is caused by influenza A viruses that can range from low to highly pathogenic strains. These viruses primarily target the respiratory, digestive, and nervous systems of birds, leading to severe outbreaks that threaten poultry production and pose zoonotic risks. The ectodomain of the avian influenza virus (AIV) matrix protein 2 (M2e), known for its high conservation across influenza strains, has emerged as a promising candidate for developing a universal influenza vaccine in a mouse model. However, the efficacy of such expression against poultry AIVs remains limited. The objective of this study was to evaluate the immunogenicity of nodavirus-like particles displaying the M2e proteins. In this study, three synthetic heterologous M2e genes originated from AIV strains H5N1, H9N2 and H5N2 were fused with the nodavirus capsid protein (NVC) of the giant freshwater prawn Macrobrachium rosenbergii (NVC-3xAvM2e) prior to immunogenicity characterisations in chickens. The expression vector pTRcHis-TARNA2 carrying the NVC-3xAvM2e gene cassette was introduced into E. coli TOP-10 cells. The recombinant proteins were purified, inoculated into one-week-old specific pathogen-free chickens subcutaneously and analysed. The recombinant protein NVC-3xAvM2e formed virus-like particles (VLPs) of approximately 25 nm in diameter when observed under a transmission electron microscope. Dynamic light scattering (DLS) analysis revealed that the VLPs have a polydispersity index (PDI) of 0.198. A direct ELISA upon animal experiments showed that M2e-specific antibodies were significantly increased in vaccinated chickens after the booster, with H5N1 M2e peptides having the highest mean absorbance value when compared with those of H9N2 and H5N2. A challenge study using low pathogenic AIV (LPAI) strain A/chicken/Malaysia/UPM994/2018 (H9N2) at 106.5 EID50 showed significant viral load in the lung and cloaca, but not in the oropharyngeal of vaccinated animals when compared with the unvaccinated control group. Collectively, this study suggests that nodavirus-like particles displaying three heterologous M2e have the potential to provide protection against LPAI H9N2 in chickens, though the vaccine’s efficacy and cross-protection across different haemagglutinin (HA) subtypes should be further evaluated. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

12 pages, 570 KiB  
Article
The Seroprevalence of Influenza A Virus Infections in Polish Cats During a Feline H5N1 Influenza Outbreak in 2023
by Anna Golke, Tomasz Dzieciątkowski, Olga Szaluś-Jordanow, Michał Czopowicz, Lucjan Witkowski, Monika Żychska, Ewa Domańska, Dawid Jańczak, Tomasz Nalbert, Stephanie Lesceu, Marzena Paszkowska, Justyna Giergielewicz and Tadeusz Frymus
Viruses 2025, 17(6), 855; https://doi.org/10.3390/v17060855 - 16 Jun 2025
Viewed by 1115
Abstract
Recently, cats have emerged as potential incidental hosts for avian and human influenza A viruses (IAVs), including the highly pathogenic avian influenza (HPAI) H5N1 virus. Following an unprecedented outbreak of H5N1 HPAI in cats in Poland in June 2023, we conducted a cross-sectional [...] Read more.
Recently, cats have emerged as potential incidental hosts for avian and human influenza A viruses (IAVs), including the highly pathogenic avian influenza (HPAI) H5N1 virus. Following an unprecedented outbreak of H5N1 HPAI in cats in Poland in June 2023, we conducted a cross-sectional epidemiological study to assess the seroprevalence of IAV, especially H5Nx, infections in domestic cats. Eight hundred thirty-five serum samples collected in June 2023 were tested using a competitive ELISA for antibodies to IAV nucleoprotein. Positive or doubtful samples were further screened for H5-specific antibodies. The overall seropositivity for IAV was 8.5% (CI 95%: 6.8%, 10.6%; 71/835 cats), and 23/68 IAV-seropositive cats (33.8%) were also seropositive for H5 antigen. Multivariable analysis identified young age (≤8 years) and male sex as significant risk factors for H5 seropositivity, while non-H5-IAV seropositivity was more common in cats aged ≥12 years. These findings suggest different exposure pathways and host risk profiles for H5 and non-H5 IAVs and underscore the importance of enhanced surveillance in cats, particularly in regions affected by HPAI outbreaks. Given the susceptibility of cats to both avian and human IAVs, including subclinical infections, there is a theoretical risk for viral reassortment. Preventive measures, including vaccinating humans and restricting outdoor access for cats, should be considered in endemic areas. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Figure 1

37 pages, 5302 KiB  
Review
Biosecurity and Vaccines for Emerging Aquatic Animal RNA Viruses
by Sohrab Ahmadivand, Ayanna Carla N. Phillips Savage and Dušan Palic
Viruses 2025, 17(6), 768; https://doi.org/10.3390/v17060768 - 28 May 2025
Viewed by 901
Abstract
Emerging RNA viruses pose a critical threat to aquatic animals, leading to significant ecological and economic consequences. Their high mutation rates and genetic adaptability drive rapid evolution, cross-species transmission, and expanding host ranges, complicating disease management. In aquaculture, RNA viruses are responsible for [...] Read more.
Emerging RNA viruses pose a critical threat to aquatic animals, leading to significant ecological and economic consequences. Their high mutation rates and genetic adaptability drive rapid evolution, cross-species transmission, and expanding host ranges, complicating disease management. In aquaculture, RNA viruses are responsible for major outbreaks in fish, while DNA viruses predominate in crustaceans. Marine mammals are increasingly affected by morbilliviruses and highly pathogenic avian influenza (HPAI) H5N1, which has caused widespread mortality events in pinniped and cetacean populations, raising concerns about zoonotic spillover. The absence of effective antiviral treatments and the complexity of vaccine development highlight the urgent need for enhanced biosecurity measures. Furthermore, novel vaccine approaches, such as self-assembling protein nanocage platforms, offer promising solutions for RNA virus mitigation. This review provides a comprehensive analysis of the emergence and significance of RNA viruses in aquatic animals over the last two decades, with a particular focus on biosecurity and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 1939 KiB  
Article
Phylogenetic Analysis and Spread of HPAI H5N1 in Middle Eastern Countries Based on Hemagglutinin and Neuraminidase Gene Sequences
by Laith N. AL-Eitan, Diana L. Almahdawi and Iliya Y. Khair
Viruses 2025, 17(5), 734; https://doi.org/10.3390/v17050734 - 20 May 2025
Viewed by 1048
Abstract
Highly pathogenic avian influenza (HPAI) A/H5N1 viruses threaten animal and human health worldwide. The first documented cases in the Middle East were reported in 2005; however, despite extensive phylogenetic studies, there is limited information on the transmission dynamics of the virus within this [...] Read more.
Highly pathogenic avian influenza (HPAI) A/H5N1 viruses threaten animal and human health worldwide. The first documented cases in the Middle East were reported in 2005; however, despite extensive phylogenetic studies, there is limited information on the transmission dynamics of the virus within this region. We analyzed HA and NA gene sequences from various hosts to address this gap and to understand the virus’s spread and evolution in the Middle East. We hypothesized that H5N1 transmission exhibits host-specific or geographically influenced clade structures in this region. This study traced transmission pathways of HPAI A/H5N1 through a phylogenetic and amino acid sequence analysis of HA and NA gene segments from isolates across different hosts in Middle Eastern countries, using the MUSCLE algorithm for alignments and MEGA11 software for phylogenetic analysis. Sequences were selected from NCBI’s virus database based on geographic and host diversity, including those from birds, humans, and other mammals, and were collected at different time points, predominantly after the early 2000s. An amino acid phylogenetic tree was also constructed to examine the conservation of key HA and NA protein residues, identifying distinct clades linked to specific countries and host species, suggesting a possible interspecies transmission and cross-border spread distinct between Egypt and neighboring countries. These findings underscore the role of migratory birds in regional transmission and point to the need for more targeted surveillance and biosecurity efforts, offering more genomic insights into the spread of HPAI A/H5N1 and contributing valuable information for future prevention strategies. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Graphical abstract

18 pages, 2152 KiB  
Article
Development and Laboratory Validation of Rapid, Bird-Side Molecular Diagnostic Assays for Avian Influenza Virus Including Panzootic H5Nx
by Matthew Coopersmith, Remco Dijkman, Maggie L. Bartlett, Richard Currie, Sander Schuurman and Sjaak de Wit
Microorganisms 2025, 13(5), 1090; https://doi.org/10.3390/microorganisms13051090 - 8 May 2025
Viewed by 4662
Abstract
Avian influenza A viruses (AIV) significantly impact both animal and human health. Reliable diagnostics are crucial for controlling AIV, including the highly pathogenic strains like H5Nx. In this study, we developed and validated the on-site Alveo Sense Poultry Avian Influenza Tests to rapidly [...] Read more.
Avian influenza A viruses (AIV) significantly impact both animal and human health. Reliable diagnostics are crucial for controlling AIV, including the highly pathogenic strains like H5Nx. In this study, we developed and validated the on-site Alveo Sense Poultry Avian Influenza Tests to rapidly detect the AIV M-gene and subtypes H5, H7, and H9 in unprocessed samples using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and impedance-based measurements. The Alveo Sense tests, using single-use microfluidic cartridges, deliver results within 45 min. Each cartridge includes assays for the AIV M gene and specific H5 and H7 or H9 subtypes, with internal process controls. The laboratory validation involved specificity, limit of detection (LoD), diagnostic sensitivity, reproducibility, and robustness tests using various AIV strains, other avian pathogens, and field samples. The assays showed 100% specificity for AIV subtypes without cross-reactivity with non-AIV pathogens. The LoD95 for H5, H7, and H9 ranged between RT-PCR Ct values of 29–33 in both cloacal and oropharyngeal samples and were able to detect avian influenza virus in both spiked samples and field samples. Reproducibility and repeatability studies showed perfect agreement across operators and laboratories and remained stable and accurate under different pre-analytical conditions. The Alveo Sense tests offer rapid, accurate, and reliable on-site diagnostics for AIV subtypes H5, H7, and H9 on samples from fresh dead and sick birds, valuable for early flock-level detection and outbreak control. Further field validation will improve the understanding of their diagnostic performance across various avian species. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

23 pages, 4664 KiB  
Article
Dynamic Interaction Between SARS-CoV-2 and Influenza A Virus Infection in Human Respiratory Tissues and Cells
by John C. W. Ho, Kachun Ng, Rachel H. H. Ching, Malik Peiris, John M. Nicholls, Michael C. W. Chan and Kenrie P. Y. Hui
Microorganisms 2025, 13(5), 988; https://doi.org/10.3390/microorganisms13050988 - 25 Apr 2025
Viewed by 666
Abstract
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The [...] Read more.
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The intrinsic dynamic relationship and pathological significance for such co-infections remain largely unknown. The replication kinetics and innate immune responses from the co-infections of SARS-CoV-2 (Omicron BA.1 and D614G variant) and influenza A viruses (pandemic H1N1, seasonal H3N2 and highly pathogenic avian H5N1) were characterized in human respiratory tissue explants, human airway, and alveolar epithelial cells. SARS-CoV-2 reduced the replication of influenza A viruses, but not vice versa, during co-infections in human bronchial tissues and airway epithelial cells. In lung tissues, the co-infections showed minimal effects on each other, but the viral replications of the two viruses were mutually reduced except for H1N1pdm in the alveolar epithelial cells irrespective of the enhancement of the ACE2 receptor. Notably, the co-infections showed a significant upregulation of the innate immune responses of SARS-CoV-2 in comparison to single infections in both respiratory epithelial cells, suggesting that co-infections of influenza A viruses potentially lead to more severe damage to the host than SARS-CoV-2 single infections. Full article
(This article belongs to the Special Issue Infections, Immune Mechanisms and Host-Pathogen Interactions)
Show Figures

Figure 1

18 pages, 16235 KiB  
Article
Virological Passive Surveillance of Avian Influenza and Arboviruses in Wild Birds: A Two-Year Study (2023–2024) in Lombardy, Italy
by Maria Cristina Rapi, Ana Maria Moreno Martin, Davide Lelli, Antonio Lavazza, Stefano Raimondi, Marco Farioli, Mario Chiari and Guido Grilli
Microorganisms 2025, 13(5), 958; https://doi.org/10.3390/microorganisms13050958 - 22 Apr 2025
Viewed by 870
Abstract
Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae), poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poultry lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely impact wild bird populations, with implications for biodiversity and potential [...] Read more.
Avian influenza (AI), caused by Alphainfluenzavirus (family Orthomyxoviridae), poses significant threats to poultry, biodiversity, and public health. AI outbreaks in poultry lead to severe economic losses, while highly pathogenic strains (HPAIVs) severely impact wild bird populations, with implications for biodiversity and potential zoonotic risks. Similarly, arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonoses. WNV can cause severe neurological diseases in birds, humans, and other animals, while USUV significantly affects blackbird populations and has zoonotic potential, though human cases remain rare. This study investigated avian viruses in 1654 wild birds from 75 species that died at the Wildlife Rescue Center in Vanzago, Lombardy, during 2023–2024. Necropsies were conducted, and virological analyses were performed to detect avian influenza viruses, WNV, and USUV. Among the tested birds, 15 were positive for H5N1 HPAIV clade 2.3.4.4b, all in 2023, including 13 Chroicocephalus ridibundus, one Coturnix coturnix, and one Columba palumbus. Additionally, 16 tested positive for WNV (15 for lineage 2 and one for lineage 1), one for USUV, and 11 co-infections WNV/USUV were recorded in 2023–2024. These findings underscore the importance of avian viral passive surveillance in identifying epidemiological trends and preventing transmission to other species, including mammals and humans. Full article
(This article belongs to the Special Issue Emerging Viral Zoonoses, Second Edition)
Show Figures

Figure 1

21 pages, 1992 KiB  
Article
Comparative Mutational Analysis and the Glycosylation Patterns of a Peruvian Isolated Avian Influenza A Virus H5N1: Exploring Possible Viral Spillover Events Within One Health Approach
by Sandra Landazabal-Castillo, Lucero Alva-Alvarez, Dilan Suarez-Agϋero, Enrique Mamani-Zapana and Egma Mayta-Huatuco
Vet. Sci. 2025, 12(4), 392; https://doi.org/10.3390/vetsci12040392 - 21 Apr 2025
Viewed by 732
Abstract
(1) Background: The ongoing panzootic of highly pathogenic avian influenza virus (HPAIV) of subtype H5N1, clade 2.3.4.4b, has decimated wild/domestic birds and mammals’ populations worldwide with reports of sporadic cases in humans. (2) Methods: This study aimed to compare the mutational profile of [...] Read more.
(1) Background: The ongoing panzootic of highly pathogenic avian influenza virus (HPAIV) of subtype H5N1, clade 2.3.4.4b, has decimated wild/domestic birds and mammals’ populations worldwide with reports of sporadic cases in humans. (2) Methods: This study aimed to compare the mutational profile of H5N1 avian Influenza virus isolated from a Peruvian natural reserve, with recent data from other related international studies made in human and different species of domestic and wild birds and mammals. Briefly, the near complete protein sequences of the Influenza virus coming from a Calidris alba were analyzed at a multisegmented level, together with 55 samples collected between 2022 and 2024 in different countries. Moreover, the glycosylation patterns were also predicted in silico. (3) Results: A total of 603 amino acid changes were found among H5N1 viruses analyzed, underscoring the detection of critical mutations HA:11I, HA:211I, HA:336T, HA:492D, HA:527I, NA:10T, NA:269L, NA:405T, NP:377N, PA:57R, PA:68S, PA:322V/L, PA:432I, PB2:539V, PB1:207R, PB1:375N, PB1:264D, PB1:429R, PA-X:250Q, PB1-F2:65R, and PB1-F2:42Y, as well as PA:13V, PA-X:13V, PA20T, PA-X:20T, PA:36T PA-X:36T, PA:45S, PA-X:45S, PA:57Q, PA-X:57Q, PA:61I, PA-X:61I, PA:68S, PA-X:68S, PA:70V, PA-X:70V, PA:75Q, PA-X:75Q, PA:85T, PA-X:85T, PA:86I, PA-X:86I, PA:100I, PA-X:100I, PA:142E, PA-X:142E, PA:160E, PA-X:160E, PA:211I, PA-X:211Y, among others, considered of importance under the One Health perspective. Similarly, changes in the N-linked glycosylation sites (NLGs) predicted in both HA and NA proteins were found, highlighting the loss/acquisition or changes in some NLGs, such as 209NNTN, 100 NPTT, 302NSSM (HA) and 70NNTN, 68NISS, and 50NGSV (NA). (4) Conclusions: This study provides our understanding about the evolution of current Influenza A viruses H5N1 HPAIV circulating globally. These findings outline the importance of surveillance updating mutational profiles and glycosylation patterns of these highly evolved viruses. Full article
Show Figures

Figure 1

9 pages, 1078 KiB  
Brief Report
Genomic Characterization and Phylogenetic Analysis of Five Avian Influenza H5N1 Subtypes from Wild Anser indicus in Yunnan, China
by Lingsi Yang, Rui Wang, Qi Liu, Taif Shah, Jiuxuan Zhou, Wenhua Zhao, Yixuan Wang, Lulu Deng and Binghui Wang
Vet. Sci. 2025, 12(3), 280; https://doi.org/10.3390/vetsci12030280 - 17 Mar 2025
Viewed by 953
Abstract
Highly pathogenic avian influenza (HPAI) H5 viruses have been found to have a substantial geographic distribution since they were first reported in Guangdong Province, China. The emergence of new genotypes threatens the poultry industry and human health worldwide. Here, we report five HPAI [...] Read more.
Highly pathogenic avian influenza (HPAI) H5 viruses have been found to have a substantial geographic distribution since they were first reported in Guangdong Province, China. The emergence of new genotypes threatens the poultry industry and human health worldwide. Here, we report five HPAI H5N1 variants isolated from Anser indicus in Yunnan Province, China. A phylogenetic analysis of the hemagglutinin (HA) gene showed that all isolates belong to the highly pathogenic H5 clade 2.3.4.4b and formed two distinct genetic clusters. Bayesian phylogenetic analysis also revealed that the viruses were initially disseminated from wild birds to Anser indicus, implying that infected birds most likely contributed to viral transmission in the region. Genomic sequence analysis revealed several amino acid substitutions, also implying that the infected birds contributed to the spread of the virus throughout the region. Substitutions in the HA glycoprotein increased the virus’s binding affinity to human α-2,6 sialic acid residues. Substitutions in the PB1, PA, and PB2 motifs increased viral polymerase activity and replication in hosts, whereas substitutions in the NP, M1, and NS motifs increased viral pathogenicity in chickens and mice. Full article
Show Figures

Figure 1

13 pages, 1494 KiB  
Article
Dose-Dependent Effect of DNA Vaccine pVAX-H5 Encoding a Modified Hemagglutinin of Influenza A (H5N8) and Its Cross-Reactivity Against A (H5N1) Influenza Viruses of Clade 2.3.4.4b
by Andrey P. Rudometov, Victoria R. Litvinova, Andrei S. Gudymo, Ksenia I. Ivanova, Nadezhda B. Rudometova, Denis N. Kisakov, Mariya B. Borgoyakova, Lyubov A. Kisakova, Vladimir A. Yakovlev, Elena V. Tigeeva, Danil I. Vahitov, Kristina P. Makarova, Natalia P. Kolosova, Tatiana N. Ilyicheva, Vasiliy Yu. Marchenko, Artemiy A. Sergeev, Larisa I. Karpenko and Alexander A. Ilyichev
Viruses 2025, 17(3), 330; https://doi.org/10.3390/v17030330 - 27 Feb 2025
Viewed by 948
Abstract
Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b viruses are widespread in wild and domestic birds, causing severe economic damage to the global poultry industry. Moreover, viruses of this clade are known to cause infections in mammals, posing a potential pandemic threat. Due [...] Read more.
Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b viruses are widespread in wild and domestic birds, causing severe economic damage to the global poultry industry. Moreover, viruses of this clade are known to cause infections in mammals, posing a potential pandemic threat. Due to the ongoing evolution and change in the dominant strains of H5 clade 2.3.4.4b, it is important to investigate the cross-reactivity of vaccines in use and under development against clade 2.3.4.4b viruses. In this study, the immunogenicity of the previously developed DNA vaccine encoding a modified hemagglutinin of the influenza A/turkey/Stavropol/320-01/2020 (H5N8) virus, administered by jet injection at doses of 1, 10, 50, 100, and 200 μg, was investigated. The highest titer of specific to recombinant hemagglutinin antibodies was detected in the group of animals injected with 100 µg of DNA vaccine. The cross-reactivity study of sera of animals immunized with 100 µg of DNA vaccine in a microneutralization assay against the strains A/chicken/Astrakhan/321-05/2020 (H5N8), A/chicken/Komi/24-4V/2023 (H5N1), and A/chicken/Khabarovsk/24-1V/2022 (H5N1) showed the formation of cross-neutralizing antibodies. Moreover, the study of protective properties showed that the DNA vaccine protected animals from mortality after infection with A/chicken/Khabarovsk/24-1V/2022 (H5N1) virus. Full article
(This article belongs to the Special Issue H5N1 Influenza Viruses)
Show Figures

Figure 1

25 pages, 2775 KiB  
Review
Dynamics of a Panzootic: Genomic Insights, Host Range, and Epidemiology of the Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States
by Mohammad Jawad Jahid and Jacqueline M. Nolting
Viruses 2025, 17(3), 312; https://doi.org/10.3390/v17030312 - 25 Feb 2025
Cited by 2 | Viewed by 3358
Abstract
In late 2021, Eurasian-lineage highly pathogenic avian influenza (HPAI) A(H5N1) viruses from HA clade 2.3.4.4b were first detected in the United States. These viruses have caused severe morbidity and mortality in poultry and have been detected in numerous wild and domestic animals, including [...] Read more.
In late 2021, Eurasian-lineage highly pathogenic avian influenza (HPAI) A(H5N1) viruses from HA clade 2.3.4.4b were first detected in the United States. These viruses have caused severe morbidity and mortality in poultry and have been detected in numerous wild and domestic animals, including cows and humans. Notably, infected cows transmitted the virus to cats, causing extreme pathogenicity and death. While human-to-human spread of the virus has not been recorded, efficient transmission of the bovine-origin virus has also led to extreme pathogenicity and death in ferret models. Recently, markers in PB2 (E627K) and HA (E186D, Q222H), indicating mammalian adaptation mutations, were detected in an H5N1-infected patient manifesting critical illness in Canada. These, combined with instances of interspecies spread of the virus, have raised global public health concerns. This could highlight the potential for the virus to successfully adapt to mammals, posing a serious risk of a global outbreak. A One Health approach is, thereby, necessary to monitor and control the outbreak. This review aims to analyze the epidemiology, transmission, and ecological impacts of HPAI A(H5N1) clade 2.3.4.4b in the U.S., identify knowledge gaps, and inform strategies for effective outbreak management and mitigation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop