Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = high-speed data transmission technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 179
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

28 pages, 6374 KiB  
Review
Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
by Handan Xu, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui and Pengfei Tian
Photonics 2025, 12(7), 730; https://doi.org/10.3390/photonics12070730 - 18 Jul 2025
Viewed by 505
Abstract
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising [...] Read more.
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising light sources for high-speed VLC systems, owing to their high brightness, low power consumption, and high modulation bandwidth. Recent developments have also seen substantial progress in high-bandwidth GaN-based visible light detectors, which complement the transmission capabilities of micro-LEDs. This paper reviews the latest advancements in micro-LEDs as high-speed transmitters for VLC, detailing their capabilities in terms of bandwidth, data rates, modulation techniques, and diverse applications, including structured lighting systems that combine positioning, communication, and illumination. Additionally, the advantages of using micro-LEDs in GaN-based photodetectors (PDs) are discussed, highlighting their potential in enhancing bandwidth and data rates and facilitating high-speed communications across multifunctional applications. Therefore, this review will benefit the further development of micro-LEDs and their application in 6G communication and global interconnect. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

23 pages, 9638 KiB  
Article
A Study on the Influence Mechanism of the Oil Injection Distance on the Oil Film Distribution Characteristics of the Gear Meshing Zone
by Wentao Zhao, Lin Li and Gaoan Zheng
Machines 2025, 13(7), 606; https://doi.org/10.3390/machines13070606 - 14 Jul 2025
Viewed by 284
Abstract
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational [...] Read more.
Under the trend of lightweight and high-efficiency development in industrial equipment, precise regulation of lubrication in gear reducers is a key breakthrough for enhancing transmission system efficiency and reliability. This study establishes a three-dimensional numerical model for high-speed gear jet lubrication using computational fluid dynamics (CFD) and dynamic mesh technology. By implementing the volume of fluid (VOF) multiphase flow model and the standard k-ω turbulence model, the study simulates the dynamic distribution of lubricant in gear meshing zones and analyzes critical parameters such as the oil volume fraction, eddy viscosity, and turbulent kinetic energy. The results show that reducing the oil injection distance significantly enhances lubricant coverage and continuity: as the injection distance increases from 4.8 mm to 24 mm, the lubricant shifts from discrete droplets to a dense wedge-shaped film, mitigating lubrication failure risks from secondary atomization and energy loss. The optimized injection distance also improves the spatial stability of eddy viscosity and suppresses excessive dissipation of turbulent kinetic energy, enhancing both the shear-load capacity and thermal management. Dynamic data from monitoring point P show that reducing the injection distance stabilizes lubricant velocity and promotes more consistent oil film formation and heat transfer. Through multiphysics simulations and parametric analysis, this study elucidates the interaction between geometric parameters and hydrodynamic behaviors in jet lubrication systems. The findings provide quantitative evaluation methods for structural optimization and energy control in gear lubrication systems, offering theoretical insights for thermal management and reliability enhancement in high-speed transmission. These results contribute to the lightweight design and sustainable development of industrial equipment. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 283
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

33 pages, 5209 KiB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 712
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

21 pages, 2725 KiB  
Article
A Strategy for Improving Millimeter Wave Communication Reliability by Hybrid Network Considering Rainfall Attenuation
by Jiaqing Sun, Chunxiao Li, Junfeng Wei and Jiajun Shen
Symmetry 2025, 17(7), 1054; https://doi.org/10.3390/sym17071054 - 3 Jul 2025
Viewed by 316
Abstract
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. [...] Read more.
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. However, mmWave communication performance in vehicular networks is hindered by high path loss and frequent beam alignment updates, significantly degrading the coverage and connectivity of vehicle nodes (VNs). In addition, atmospheric propagation attenuation further deteriorates signal quality and limits system performance due to raindrop absorption and scattering. Therefore, the pure mmWave networks cannot meet the high requirements of highway vehicular communications. To address these challenges, this paper proposes a hybrid mmWave and microwave network architecture to improve VNs’ coverage and connectivity performances through the strategic deployment of Roadside Units (RSUs). Using Radio Access Technology (RAT), mmWave and microwave RSUs are symmetrically deployed on both sides of the road to communicate with VNs located at the road center. This symmetric RSUs deployment significantly improves the network reliability. Analytical expressions for coverage and connectivity in the proposed hybrid networks are derived and compared with the pure mmWave networks, accounting for rainfall attenuation. The study results show that the proposed hybrid network shows better performance than the pure mmWave network in both coverage and connectivity. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 321
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

17 pages, 1021 KiB  
Article
Compressive Sensing-Based Coding Iterative Channel Estimation Method for TDS-OFDM System
by Yuxiao Yang, Xinyue Zhao and Hui Wang
Electronics 2025, 14(12), 2338; https://doi.org/10.3390/electronics14122338 - 7 Jun 2025
Viewed by 322
Abstract
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency [...] Read more.
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency by using PN sequences instead of traditional CP cyclic prefixes. However, it also leads to time-domain aliasing between PN sequences and data symbols, posing a serious challenge to channel estimation. To solve this problem, a compressive sensing-based coding iterative channel estimation method for the TDS-OFDM system is proposed in this paper. This method innovatively combines compressive sensing channel estimation technology with the Reed–Solomon low-density parity-check cascade coding (RS-LDPC) scheme, and achieves performance improvements as follows: (1) Construct the iterative optimization mechanism for the compressive sensing algorithm and equalization feedback loop. (2) RS-LDPC cascaded coding is employed to enhance the anti-interference and error correction capability of system. (3) Design the recoding link of error-corrected data to improve the accuracy of sensing matrix. The simulation results demonstrate that compared with conventional methods, the proposed method can obviously converge on the mean squared errors (MSEs) of channel estimation and significantly reduce the bit error rate (BER) of the system. Full article
Show Figures

Graphical abstract

33 pages, 1633 KiB  
Article
Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Two-Speed Transmission and 800 V Technology of the Porsche Taycan
by Nico Rosenberger, Nicolas Wagner, Alexander Fredl, Linus Riederle and Markus Lienkamp
World Electr. Veh. J. 2025, 16(6), 296; https://doi.org/10.3390/wevj16060296 - 27 May 2025
Cited by 1 | Viewed by 832
Abstract
In the automotive industry, battery electric vehicles (BEVs) represent the future of individual mobility. To establish a long-term market presence, innovative vehicle and powertrain concepts are essential, and therefore, identifying the most promising concepts is crucial to determine where to focus research and [...] Read more.
In the automotive industry, battery electric vehicles (BEVs) represent the future of individual mobility. To establish a long-term market presence, innovative vehicle and powertrain concepts are essential, and therefore, identifying the most promising concepts is crucial to determine where to focus research and development further. Academia plays a significant role in this identification process; however, researchers often face restricted access to data from the industry, and identifying different technological approaches is often connected to significant costs. We present a comprehensive study of the Porsche Taycan Performance Battery Plus, which integrates two technological advancements: the first series-production implementation of a two-speed transmission in an electric vehicle allowing for high acceleration while reaching high top speeds and a 800 V battery system architecture providing more efficient charging capabilities. This study details vehicle dynamics, electric powertrain efficiencies, their impact on vehicle level, and the two technological advancements. This work aims to provide researchers access to vehicle dynamometer and real-world data from one of the most advanced and innovative battery electric sports cars. This allows for further analysis of cutting-edge technologies that have yet to reach the mass market. In addition to providing researchers with this study’s results, all data utilized in this study will be made available as open-access, enabling individual use of test data for parameter identification and the development of simulation models. Full article
Show Figures

Figure 1

33 pages, 2545 KiB  
Review
Research Progress on Modulation Format Recognition Technology for Visible Light Communication
by Shengbang Zhou, Weichang Du, Chuanqi Li, Shutian Liu and Ruiqi Li
Photonics 2025, 12(5), 512; https://doi.org/10.3390/photonics12050512 - 19 May 2025
Cited by 1 | Viewed by 553 | Correction
Abstract
As sixth-generation mobile communication (6G) advances towards ultra-high speed and global coverage, visible light communication (VLC) has emerged as a crucial complementary technology due to its ultra-high bandwidth, low power consumption, and immunity to electromagnetic interference. Modulation format recognition (MFR) plays a vital [...] Read more.
As sixth-generation mobile communication (6G) advances towards ultra-high speed and global coverage, visible light communication (VLC) has emerged as a crucial complementary technology due to its ultra-high bandwidth, low power consumption, and immunity to electromagnetic interference. Modulation format recognition (MFR) plays a vital role in the dynamic optimization and adaptive transmission of VLC systems, significantly influencing communication performance in complex channel environments. This paper systematically reviews the research progress in MFR for VLC, comparing the theoretical frameworks and limitations of traditional likelihood-based (LB) and feature-based (FB) methods. It also explores the advancements brought by deep learning (DL) technology, particularly in enhancing noise robustness, classification accuracy, and cross-scenario adaptability through automatic feature extraction and nonlinear mapping. The findings indicate that DL-based MFR substantially enhances recognition performance in intricate channels via multi-dimensional feature fusion, lightweight architectures, and meta-learning paradigms. Nonetheless, challenges remain, including high model complexity and a strong reliance on labeled data. Future research should prioritize multi-domain feature fusion, interdisciplinary collaboration, and hardware–algorithm co-optimization to develop lightweight, high-precision, and real-time MFR technologies that align with the 6G vision of space–air–ground–sea integrated networks. Full article
Show Figures

Figure 1

15 pages, 32541 KiB  
Article
A High-Speed 8-Bit Single-Channel SAR ADC with Tailored Bit Intervals and Split Capacitors
by Xinyu Li, Ruida Wang, Liulu He and Kentaro Yoshioka
Electronics 2025, 14(10), 2032; https://doi.org/10.3390/electronics14102032 - 16 May 2025
Viewed by 699
Abstract
As wireless communication systems continue to demand higher data transmission rates, the need for analog-to-digital converters (ADCs) with a higher sampling rate becomes increasingly critical. However, traditional successive approximation register (SAR) ADCs operating at 1 bit/cycle often face speed limitations due to the [...] Read more.
As wireless communication systems continue to demand higher data transmission rates, the need for analog-to-digital converters (ADCs) with a higher sampling rate becomes increasingly critical. However, traditional successive approximation register (SAR) ADCs operating at 1 bit/cycle often face speed limitations due to the fixed bit intervals and comparator regeneration delays, which constrain their scalability in advanced technology nodes. To address these challenges, this paper presents a high-speed 8-bit single-channel SAR ADC featuring a novel delay generation circuit that enables tailored bit intervals (TBIs) to reduce conversion latency. A split capacitive digital-to-analog converter (CDAC) is employed to suppress input common-mode voltage shifts, while inverted dynamic latch pairs and early capacitor reset techniques are introduced to improve conversion speed. The proposed ADC is implemented in a 16 nm CMOS process, occupying only 0.0012 mm2. Post-layout simulations across extreme process and temperature corners validate the robustness of the design. The TBI-ADC achieves an effective number of bits (ENOB) of 7.20 bits at Typical–Typical (TT) 25 °C with a power consumption of 6.94 mW. Furthermore, it reaches a sampling rate of 1.6 GS/s at Fast–Fast (FF) −40 °C, representing a 33% improvement over the fastest previously reported single-channel, 1 bit/cycle, 8-bit SAR ADC. Full article
(This article belongs to the Special Issue Advanced High-Performance Analog Integrated Circuits)
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 676
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 6467 KiB  
Article
Research on High-Precision Time–Frequency Phase-Synchronization Transmission Technology for Free-Space Optical Communication Systems on Mobile Platforms
by Fengrui Liu, Ning Sun, Jia Wei, Yingkai Zhao, Xingfa Wang, Weijie Zhang and Jianguo Liu
Photonics 2025, 12(5), 467; https://doi.org/10.3390/photonics12050467 - 10 May 2025
Viewed by 461
Abstract
This paper proposes a free-space time–frequency phase (TFP)-synchronization transmission architecture based on optoelectronic hybrid technology, addressing the high-precision TFP synchronization and high-speed communication requirements between mobile platforms in distributed collaborative positioning and other applications. The proposed scheme utilizes symmetric free-space optical (FSO) links [...] Read more.
This paper proposes a free-space time–frequency phase (TFP)-synchronization transmission architecture based on optoelectronic hybrid technology, addressing the high-precision TFP synchronization and high-speed communication requirements between mobile platforms in distributed collaborative positioning and other applications. The proposed scheme utilizes symmetric free-space optical (FSO) links to effectively suppress drift errors, integrating the high bandwidth of optical links and the high stability of microwave links, enabling one-to-many networking synchronization between mobile platforms. The system adopts optical wireless transmission technology based on pseudo-code regenerative ranging, integrating 1.5 Gbps high-speed data transmission with high-precision TFP-synchronization functionality. An experimental system consisting of a main station and two auxiliary stations was established in an outdoor mobile platform scenario. Experimental results show that while achieving high-speed communication, the frequency synchronization precision is 0.0131 ppb, frequency stability is in the order of 10−10@1 s, and phase synchronization precision is approximately 3.56°. The system achieves time synchronization precision at the picosecond level. The proposed technology is highly suitable for high-precision synchronization communication in scenarios lacking fiber-optic infrastructure, effectively fulfilling rigorous requirements in mobile platform applications such as distributed collaborative positioning. Full article
Show Figures

Figure 1

22 pages, 14134 KiB  
Article
Borehole Radar Experiment in a 7500 m Deep Well
by Huanyu Yang, Kaihua Wang, Yajie Liu, Cheng Guo and Qing Zhao
Sensors 2025, 25(10), 2991; https://doi.org/10.3390/s25102991 - 9 May 2025
Viewed by 431
Abstract
This paper presents the world’s first radar detection experiment conducted in a 7500-m ultra-deep well. By applying ground-penetrating radar technology to petroleum logging, the developed borehole radar system successfully achieved stratigraphic information detection in the 7200–7500 m section of Shunbei Well No. 2. [...] Read more.
This paper presents the world’s first radar detection experiment conducted in a 7500-m ultra-deep well. By applying ground-penetrating radar technology to petroleum logging, the developed borehole radar system successfully achieved stratigraphic information detection in the 7200–7500 m section of Shunbei Well No. 2. Utilizing electromagnetic wave reflection principles, the system acquires echo signals carrying medium characteristics through transmit–receive antenna arrays coupled with field-programmable gate array (FPGA)-based high-speed acquisition for real-time downhole data transmission. Experimental results demonstrate high consistency in Gamma Ray (GR) curves (correlation coefficient: 0.92) between radar data and Sinopec’s geological drilling data, particularly in key stratigraphic features such as casing reflections at a 7250-m depth (error of 0.013%). This breakthrough validates the operational stability and detection accuracy of borehole radar in complex subsurface environments, providing an innovative technological approach for ultra-deep hydrocarbon exploration. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

15 pages, 6837 KiB  
Article
Development of a Printed Sensor and Wireless Measurement System for Urination Monitoring
by Lan Zhang, En Takashi, Jian Lu and Sohei Matsumoto
Sensors 2025, 25(10), 2961; https://doi.org/10.3390/s25102961 - 8 May 2025
Viewed by 450
Abstract
The development of reliable and efficient sensors is essential for advances in health monitoring technologies. This study focused on the fabrication and evaluation of a multichannel printed sensor electrode designed for long-term stability and effective data acquisition. Using rapid printing technology, we created [...] Read more.
The development of reliable and efficient sensors is essential for advances in health monitoring technologies. This study focused on the fabrication and evaluation of a multichannel printed sensor electrode designed for long-term stability and effective data acquisition. Using rapid printing technology, we created a urine sensor array with extended electrodes for the measurement of urine volume and frequency. The ultrathin design of the sensor electrode, with an average thickness of only 30 microns, ensures both user comfort and measurement accuracy. The sensor electrode dimensions were meticulously designed, measured, and optimized through successful trial manufacturing of the sensor electrode and sensor array. Comprehensive evaluation of the fabricated sensor demonstrated excellent performance, including a high response speed of ≤1 s and long-term stability exceeding 5 weeks. In addition, wireless transmission capabilities and user interfaces were developed for field experiments. Finally, animal experiments were performed to evaluate the field performance of the fabricated sensor. Accordingly, we are confident that the sensor developed herein will contribute to enhancing healthcare in an aging society. Full article
Show Figures

Figure 1

Back to TopTop