Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (612)

Search Parameters:
Keywords = high-resolution DEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 332
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 312
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 353
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 258
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

16 pages, 7396 KiB  
Article
Analysis of Doline Microtopography in Karst Mountainous Terrain Using UAV LiDAR: A Case Study of ‘Gulneomjae’ in Mungyeong City, South Korea
by Juneseok Kim and Ilyoung Hong
Sensors 2025, 25(14), 4350; https://doi.org/10.3390/s25144350 - 11 Jul 2025
Viewed by 240
Abstract
This study utilizes UAV-based LiDAR to analyze doline microtopography within a karst mountainous terrain. The study area, ‘Gulneomjae’ in Mungyeong City, South Korea, features steep slopes, limited accessibility, and abundant vegetation—conditions that traditionally hinder accurate topographic surveying. UAV LiDAR data were acquired using [...] Read more.
This study utilizes UAV-based LiDAR to analyze doline microtopography within a karst mountainous terrain. The study area, ‘Gulneomjae’ in Mungyeong City, South Korea, features steep slopes, limited accessibility, and abundant vegetation—conditions that traditionally hinder accurate topographic surveying. UAV LiDAR data were acquired using the DJI Matrice 300 RTK equipped with a Zenmuse L2 sensor, enabling high-density point cloud generation (98 points/m2). The point clouds were processed to remove non-ground points and generate a 0.25 m resolution DEM using TIN interpolation. A total of seven dolines were detected and delineated, and their morphometric characteristics—including area, perimeter, major and minor axes, and elevation—were analyzed. These results were compared with a 1:5000-scale DEM derived from the 2013 National Basic Map. Visual and numerical comparisons highlighted significant improvements in spatial resolution and feature delineation using UAV LiDAR. Although the 1:5000-scale DEM enables general doline detection, UAV LiDAR facilitates more precise boundary extraction and morphometric analysis. The study demonstrates the effectiveness of UAV LiDAR for detailed topographic mapping in complex karst terrains and offers a foundation for future automated classification and temporal change analysis. Full article
Show Figures

Figure 1

30 pages, 25009 KiB  
Article
Advancing Scalable Methods for Surface Water Monitoring: A Novel Integration of Satellite Observations and Machine Learning Techniques
by Megan Renshaw and Lori A. Magruder
Geosciences 2025, 15(7), 255; https://doi.org/10.3390/geosciences15070255 - 3 Jul 2025
Viewed by 212
Abstract
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral [...] Read more.
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral imagery via machine learning to improve the vertical resolution of a digital elevation model (DEM) to improve the accuracy of SWV estimates. The machine learning approach provides a significant improvement in terrain accuracy relative to the DEM, reducing RMSE by ~66% and 78% across the two models, respectively, over the initial data product fidelity. Assessing the resulting SWV estimates relative to GRACE-FO terrestrial water storage in parts of the Amazon Basin, we found strong correlations and basin-wide drying trends. Notably, the high correlation (r > 0.8) between our surface water estimates and the GRACE-FO signal in the Manaus region highlights our method’s ability to resolve key hydrological dynamics. Our results underscore the value of improved vertical DEM availability for global hydrological studies and offer a scalable framework for future applications. Future work will focus on expanding our DEM dataset, further validation, and scaling this methodology for global applications. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 3232 KiB  
Article
From Clusters to Communities: Enhancing Wetland Vegetation Mapping Using Unsupervised and Supervised Synergy
by Li Wen, Shawn Ryan, Megan Powell and Joanne E. Ling
Remote Sens. 2025, 17(13), 2279; https://doi.org/10.3390/rs17132279 - 3 Jul 2025
Viewed by 303
Abstract
High thematic resolution vegetation mapping is essential for monitoring wetland ecosystems, supporting conservation, and guiding water management. However, producing accurate, fine-scale vegetation maps in large, heterogeneous floodplain wetlands remains challenging due to complex hydrology, spectral similarity among vegetation types, and the high cost [...] Read more.
High thematic resolution vegetation mapping is essential for monitoring wetland ecosystems, supporting conservation, and guiding water management. However, producing accurate, fine-scale vegetation maps in large, heterogeneous floodplain wetlands remains challenging due to complex hydrology, spectral similarity among vegetation types, and the high cost of extensive field surveys. This study addresses these challenges by developing a scalable vegetation classification framework that integrates cluster-guided sample selection, Random Forest modelling, and multi-source remote-sensing data. The approach combines multi-temporal Sentinel-1 SAR, Sentinel-2 optical imagery, and hydro-morphological predictors derived from LiDAR and hydrologically enforced SRTM DEMs. Applied to the Great Cumbung Swamp, a structurally and hydrologically complex terminal wetland in the lower Lachlan River floodplain of Australia, the framework produced vegetation maps at three hierarchical levels: formations (9 classes), functional groups (14 classes), and plant community types (PCTs; 23 classes). The PCT-level classification achieved an overall accuracy of 93.2%, a kappa coefficient of 0.91, and a Matthews correlation coefficient (MCC) of 0.89, with broader classification levels exceeding 95% accuracy. These results demonstrate that, through targeted sample selection and integration of spectral, structural, and terrain-derived data, high-accuracy, high-resolution wetland vegetation mapping is achievable with reduced field data requirements. The hierarchical structure further enables broader vegetation categories to be efficiently derived from detailed PCT outputs, providing a practical, transferable tool for wetland monitoring, habitat assessment, and conservation planning. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

23 pages, 25599 KiB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 361
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

12 pages, 1538 KiB  
Technical Note
Flood and Rice Damage Mapping for Tropical Storm Talas in Vietnam Using Sentinel-1 SAR Data
by Pepijn van Rutten, Irene Benito Lazaro, Sanne Muis, Aklilu Teklesadik and Marc van den Homberg
Remote Sens. 2025, 17(13), 2171; https://doi.org/10.3390/rs17132171 - 25 Jun 2025
Viewed by 412
Abstract
In the Asia–Pacific, where rice is an essential crop for food security and economic activity, tropical cyclones and consecutive floods can cause substantial damage to rice fields. Humanitarian organizations have developed impact-based forecasting models to be able to trigger early actions before floods [...] Read more.
In the Asia–Pacific, where rice is an essential crop for food security and economic activity, tropical cyclones and consecutive floods can cause substantial damage to rice fields. Humanitarian organizations have developed impact-based forecasting models to be able to trigger early actions before floods arrive. In this study we show how Sentinel-1 SAR data and Otsu thresholding can be used to estimate flooding and damage caused to rice fields, using the case study of tropical storm Talas (2017). The current most accurate global Digital Elevation Model FABDEM was used to derive flood depths. Subsequently, rice yield loss curves and rice field maps were used to estimate economic damage. Our analysis results in a total of 475 km2 of inundated rice fields in seven Northern Vietnam provinces. Flood depths were mostly shallow, with 2 km2 having a flood depth of more than 0.5 m. Using these flood extent and depth values with rice damage curves results in lower damage values than the ones based on ground reporting, indicating a likely underestimation of flood depth. However, this study demonstrates that Sentinel-1-derived flood maps with the high-resolution DEM can deliver rapid damage estimates, also for those areas where there is no ground-based reporting of rice damage, showing its potential to be used in impact-based forecasting model training. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Graphical abstract

20 pages, 13445 KiB  
Article
Improving Tropical Forest Canopy Height Mapping by Fusion of Sentinel-1/2 and Bias-Corrected ICESat-2–GEDI Data
by Aobo Liu, Yating Chen and Xiao Cheng
Remote Sens. 2025, 17(12), 1968; https://doi.org/10.3390/rs17121968 - 6 Jun 2025
Viewed by 713
Abstract
Accurately estimating the forest canopy height is essential for quantifying forest biomass and carbon storage. Recently, the ICESat-2 and GEDI spaceborne LiDAR missions have significantly advanced global canopy height mapping. However, due to inherent sensor limitations, their footprint-level estimates often show systematic bias. [...] Read more.
Accurately estimating the forest canopy height is essential for quantifying forest biomass and carbon storage. Recently, the ICESat-2 and GEDI spaceborne LiDAR missions have significantly advanced global canopy height mapping. However, due to inherent sensor limitations, their footprint-level estimates often show systematic bias. Tall forests tend to be underestimated, while short forests are often overestimated. To address this issue, we used coincident G-LiHT airborne LiDAR measurements to correct footprint-level canopy heights from both ICESat-2 and GEDI, aiming to improve the canopy height retrieval accuracy across Puerto Rico’s tropical forests. The bias-corrected LiDAR dataset was then combined with multi-source predictors derived from Sentinel-1/2 and the 3DEP DEM. Using these inputs, we trained a canopy height inversion model based on the AutoGluon stacking ensemble method. Accuracy assessments show that, compared to models trained on uncorrected single-source LiDAR data, the new model built on the bias-corrected ICESat-2–GEDI fusion outperformed in both overall accuracy and consistency across canopy height gradients. The final model achieved a correlation coefficient (R) of 0.80, with a root mean square error (RMSE) of 3.72 m and a relative RMSE of 0.22. The proposed approach offers a robust and transferable approach for high-resolution canopy structure mapping and provides valuable support for carbon accounting and tropical forest management. Full article
(This article belongs to the Special Issue Machine Learning in Global Change Ecology: Methods and Applications)
Show Figures

Graphical abstract

27 pages, 16706 KiB  
Article
Examination of Landslide Susceptibility Modeling Using Ensemble Learning and Factor Engineering
by Lizhou Zhang, Siqiao Ye, Deping He, Linfeng Wang, Weiping Li, Bijing Jin and Taorui Zeng
Appl. Sci. 2025, 15(11), 6192; https://doi.org/10.3390/app15116192 - 30 May 2025
Viewed by 488
Abstract
Current research lacks an in-depth exploration of ensemble learning and factor engineering applications in regard to landslide susceptibility modeling. In the Three Gorges Reservoir area of China, a region prone to frequent landslides that endanger lives and infrastructure, this study advances landslide susceptibility [...] Read more.
Current research lacks an in-depth exploration of ensemble learning and factor engineering applications in regard to landslide susceptibility modeling. In the Three Gorges Reservoir area of China, a region prone to frequent landslides that endanger lives and infrastructure, this study advances landslide susceptibility prediction by integrating ensemble learning with systematic factor engineering. Four homogeneous ensemble models (random forest, XGBoost, LightGBM, and CatBoost) and two heterogeneous ensembles (bagging and stacking) were implemented to evaluate 14 influencing factors. The key results demonstrate the Digital Elevation Model (DEM) as the dominant factor, while the stacking ensemble achieved superior performance (AUC = 0.876), outperforming single models by 4.4%. Iterative factor elimination and hyperparameter tuning increased the high-susceptibility zones in the stacking predictions to 42.54% and enhanced XGBoost’s low-susceptibility classification accuracy from 12.96% to 13.57%. The optimized models were used to generate a high-resolution landslide susceptibility map, identifying 23.8% of the northern and central regions as high-susceptibility areas, compared to only 9.3% as eastern and southern low-susceptibility zones. This methodology improved the prediction accuracy by 12–18% in comparison to a single model, providing actionable insights for landslide risk mitigation. Full article
Show Figures

Figure 1

16 pages, 4467 KiB  
Article
Forest Fire Risk Prediction in South Korea Using Google Earth Engine: Comparison of Machine Learning Models
by Jukyeong Choi, Youngjo Yun and Heemun Chae
Land 2025, 14(6), 1155; https://doi.org/10.3390/land14061155 - 27 May 2025
Viewed by 1011
Abstract
Forest fires pose significant threats to ecosystems, economies, and human lives. However, existing forest fire risk assessments are over-reliant on field data and expert-derived indices. Here, we assessed the nationwide forest fire risk in South Korea using a dataset of 2289 and 4578 [...] Read more.
Forest fires pose significant threats to ecosystems, economies, and human lives. However, existing forest fire risk assessments are over-reliant on field data and expert-derived indices. Here, we assessed the nationwide forest fire risk in South Korea using a dataset of 2289 and 4578 fire and non-fire events between 2020 and 2023. Twelve remote sensing-based environmental variables were exclusively derived from Google Earth Engine, including climate, vegetation, topographic, and socio-environmental factors. After removing the snow equivalent variable owing to high collinearity, we trained three machine learning models: random forest, XGBoost, and artificial neural network, and evaluated their ability to predict forest fire risks. XGBoost showed the best performance (F1 = 0.511; AUC = 0.76), followed by random forest (F1 = 0.496) and artificial neural network (F1 = 0.468). DEM, NDVI, and population density consistently ranked as the most influential predictors. Spatial prediction maps from each model revealed consistent high-risk areas with some local prediction differences. These findings demonstrate the potential of integrating cloud-based remote sensing with machine learning for large-scale, high-resolution forest fire risk modeling and have implications for early warning systems and effective fire management in vulnerable regions. Future predictions can be improved by incorporating seasonal, real-time meteorological, and human activity data. Full article
Show Figures

Figure 1

19 pages, 8687 KiB  
Article
Assessment of Coastal Zone Vulnerability in Context of Sea-Level Rise and Inundation Risk in Qatar
by Abdulaziz Ali M. Al-Mannai, Sarra Ouerghi and Mohamed Elhag
Atmosphere 2025, 16(5), 622; https://doi.org/10.3390/atmos16050622 - 19 May 2025
Viewed by 607
Abstract
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated [...] Read more.
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated by high-intensity human activities and urban expansion. The ongoing challenges posed by rising sea levels and climate change necessitate robust scientific assessments of coastal vulnerability to ensure effective disaster prevention and environmental protection. This paper introduces a comprehensive evaluation system for assessing coastal zone vulnerability, utilizing multi-source data to address ecological vulnerabilities stemming from sea-level rise and climate change impacts. This system is applied to examine the specific case of Qatar, where rapid urban development and a high population density in coastal areas heighten the risk of flooding and inundation. Employing remote sensing data and Geographic Information Systems (GISs), this research leverages spatial interpolation techniques and high-resolution digital elevation models (DEMs) to identify and evaluate high-risk zones susceptible to sea-level rise. In this study, the hydrological connectivity model, bathtub technique, and CVI are interconnected tools that complement each other to assess future flooding risks under various climate change projections, highlighting the increased probability of coastal hazards. The findings underscore the urgent need for adaptive planning and regulatory frameworks to mitigate these risks, providing technical support for the sustainable development of coastal communities globally and in Qatar. This approach not only informs policy makers, but also aids in the strategic planning required to foster resilient coastal infrastructure capable of withstanding both current and future environmental challenges. Full article
Show Figures

Figure 1

28 pages, 2816 KiB  
Article
Enhancing Urban Understanding Through Fine-Grained Segmentation of Very-High-Resolution Aerial Imagery
by Umamaheswaran Raman Kumar, Toon Goedemé and Patrick Vandewalle
Remote Sens. 2025, 17(10), 1771; https://doi.org/10.3390/rs17101771 - 19 May 2025
Viewed by 649
Abstract
Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban studies. While hyperspectral [...] Read more.
Despite the growing availability of very-high-resolution (VHR) remote sensing imagery, extracting fine-grained urban features and materials remains a complex task. Land use/land cover (LULC) maps generated from satellite imagery often fall short in providing the resolution needed for detailed urban studies. While hyperspectral imagery offers rich spectral information ideal for material classification, its complex acquisition process limits its use on aerial platforms such as manned aircraft and unmanned aerial vehicles (UAVs), reducing its feasibility for large-scale urban mapping. This study explores the potential of using only RGB and LiDAR data from VHR aerial imagery as an alternative for urban material classification. We introduce an end-to-end workflow that leverages a multi-head segmentation network to jointly classify roof and ground materials while also segmenting individual roof components. The workflow includes a multi-offset self-ensemble inference strategy optimized for aerial data and a post-processing step based on digital elevation models (DEMs). In addition, we present a systematic method for extracting roof parts as polygons enriched with material attributes. The study is conducted on six cities in Flanders, Belgium, covering 18 material classes—including rare categories such as green roofs, wood, and glass. The results show a 9.88% improvement in mean intersection over union (mIOU) for building and ground segmentation, and a 3.66% increase in mIOU for material segmentation compared to a baseline pyramid attention network (PAN). These findings demonstrate the potential of RGB and LiDAR data for high-resolution material segmentation in urban analysis. Full article
(This article belongs to the Special Issue Applications of AI and Remote Sensing in Urban Systems II)
Show Figures

Figure 1

Back to TopTop