Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (291)

Search Parameters:
Keywords = high-power-density motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 5472 KB  
Review
A Review of Configurations and Control Strategies for Linear Motor-Based Electromagnetic Suspension
by Renkai Ding, Xuwen Chen, Ruochen Wang and Dong Jiang
Machines 2026, 14(1), 2; https://doi.org/10.3390/machines14010002 - 19 Dec 2025
Abstract
This paper presents a systematic review of linear motor-based electromagnetic suspension, a key technology for reconciling vehicle comfort, handling stability, and energy consumption. The review focuses on two core areas: actuator configuration and control strategy. In configuration design, a comparison of moving-coil, permanent [...] Read more.
This paper presents a systematic review of linear motor-based electromagnetic suspension, a key technology for reconciling vehicle comfort, handling stability, and energy consumption. The review focuses on two core areas: actuator configuration and control strategy. In configuration design, a comparison of moving-coil, permanent magnet synchronous (PMSLM), and switched-reluctance linear motors identifies the PMSLM as the mainstream approach due to its high-power density and performance. Key design challenges for meeting stringent vehicle operating conditions, such as mass-volume optimization, thermal management, and high reliability, are also analyzed. Regarding control strategy, the review outlines the evolutionary path from classical to advanced and intelligent control. It also examines the energy-efficiency trade-off between vibration suppression and energy recovery. Furthermore, the paper summarizes three core challenges for industrialization: nonlinear issues like thrust fluctuation and friction, the coupling of electromagnetic–mechanical–thermal multi-physical fields, and bottlenecks related to high costs and reliability verification. Finally, future research directions are envisioned, including new materials, sensorless control, and active safety integration for autonomous driving. Full article
Show Figures

Figure 1

34 pages, 3381 KB  
Review
Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges
by Norliza Ismail, Nadhiya Liyana Mohd Kamal, Nurhakimah Norhashim, Sabarina Abdul Hamid, Zulhilmy Sahwee and Shahrul Ahmad Shah
Drones 2025, 9(12), 846; https://doi.org/10.3390/drones9120846 - 10 Dec 2025
Viewed by 479
Abstract
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, particularly the combination of solar cells and advanced battery technologies to overcome this limitation. This review presents a comprehensive analysis of the latest advancements in electric propulsion architecture, solar-based power integration, and hybrid energy management strategies for UAVs. Key components, including motors, electronic speed controllers (ESCs), propellers, and energy storage systems, are examined alongside emerging technologies such as wireless charging and flexible photovoltaic (PV) materials. Power management techniques, including maximum power point tracking (MPPT) and intelligent energy control algorithms, are also discussed in the context of long-endurance missions. Challenges related to energy density, weight constraints, environmental adaptability, and component integration are highlighted, with insights into potential solutions and future directions. The findings of this review aim to guide the development of efficient, sustainable, and high-endurance UAV platforms leveraging electric-solar hybrid propulsion systems. Full article
Show Figures

Figure 1

35 pages, 10299 KB  
Review
A Review of BLDC Motors: Types, Application, Failure Modes and Detection
by Mehmet Şen and Mümtaz Mutluer
Energies 2025, 18(24), 6402; https://doi.org/10.3390/en18246402 - 8 Dec 2025
Viewed by 519
Abstract
Brushless DC (BLDC) motors are widely used in many engineering fields such as transportation, industrial automation, pumping systems, household devices, and renewable energy applications. Their popularity mainly arises from advantages like high power density, low noise, long service life, and high efficiency. This [...] Read more.
Brushless DC (BLDC) motors are widely used in many engineering fields such as transportation, industrial automation, pumping systems, household devices, and renewable energy applications. Their popularity mainly arises from advantages like high power density, low noise, long service life, and high efficiency. This study contributes to the literature by comprehensively addressing the types, applications, faults, and diagnostic methods of BLDC motors. This review systematically examines recent studies to identify and classify common mechanical, electrical, magnetic, thermal, and sensor-related faults. Diagnostic approaches reported in these studies are then analyzed and compared. The methods are grouped into several categories, including signal processing, model-based, data driven, artificial intelligence-supported, and thermal or magnetic monitoring techniques. The review results show that hybrid and intelligent diagnostic strategies, which combine different analysis methods, significantly improve the accuracy of fault detection and enable earlier fault identification. These improvements also contribute to higher reliability and safer operation of BLDC systems. In the discussion, attention is given to the growing use of artificial intelligence and data fusion in fault diagnosis. These trends are likely to guide the next generation of condition monitoring systems for BLDC motors. Overall, this study emphasizes the importance of developing reliable and sustainable diagnostic frameworks to enhance energy efficiency and system performance. The results can provide a useful reference for researchers and engineers working on BLDC motor technologies. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 3307 KB  
Article
Identification of Static Eccentricity and Load Current Unbalance via Space Vector Stray Flux in Permanent Magnet Synchronous Generators
by Ilyas Aladag, Taner Goktas, Muslum Arkan and Bulent Yaniktepe
Electronics 2025, 14(24), 4788; https://doi.org/10.3390/electronics14244788 - 5 Dec 2025
Viewed by 250
Abstract
Permanent Magnet Synchronous Generators (PMSGs) have become increasingly important in industrial applications such as wind turbine systems due to their high efficiency and power density. However, their operational reliability can be affected by asymmetries such as static eccentricity (SE) and load current unbalance [...] Read more.
Permanent Magnet Synchronous Generators (PMSGs) have become increasingly important in industrial applications such as wind turbine systems due to their high efficiency and power density. However, their operational reliability can be affected by asymmetries such as static eccentricity (SE) and load current unbalance (UnB), which exhibit similar spectral features and are therefore difficult to differentiate using conventional techniques such as Motor Current Signature Analysis (MCSA). Stray flux analysis provides an alternative diagnostic approach, yet single-point measurements often lack the sensitivity required for accurate fault discrimination. This study introduces a diagnostic methodology based on the Space Vector Stray Flux (SVSF) for identifying static eccentricity (SE) and load current unbalance (UnB) faults in PMSG-based systems. The SVSF is derived from three external stray flux sensors placed 120° electrical degrees apart and analyzed through symmetrical component decomposition, focusing on the +5fs positive-sequence harmonic. Two-dimensional Finite Element Analysis (FEA) conducted on a 36-slot/12-pole PMSG model shows that the amplitude of the +5fs harmonic increases markedly under static eccentricity, while it remains nearly unchanged under load current unbalance. To validate the simulation findings, comprehensive experiments have been conducted on a dedicated test rig equipped with high-sensitivity fluxgate sensors. The experimental results confirm the robustness of the proposed SVSF method against practical constraints such as sensor placement asymmetry, 3D axial flux effects, and electromagnetic interference (EMI). The identified harmonic thus serves as a distinct and reliable indicator for differentiating static eccentricity from load current unbalance faults. The proposed SVSF-based approach significantly enhances the accuracy and robustness of fault detection and provides a practical tool for condition monitoring in PMSG. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Graphical abstract

21 pages, 14302 KB  
Article
Improved Post-Assembly Magnetization Performance of Spoke-Type PMSM Using a 5-Times Divided Magnetizer with Auxiliary Pole Winding
by Seung-Heon Lee, Jong-Hyun Kim and Won-Ho Kim
Mathematics 2025, 13(23), 3866; https://doi.org/10.3390/math13233866 - 2 Dec 2025
Viewed by 174
Abstract
Due to the reinforcement of energy efficiency regulations and the pursuit of sustainable development goals, the demand for high-efficiency electric motors has been steadily increasing. Rare-earth permanent magnets such as neodymium (Nd) and samarium (Sm) provide high power density, but their high cost [...] Read more.
Due to the reinforcement of energy efficiency regulations and the pursuit of sustainable development goals, the demand for high-efficiency electric motors has been steadily increasing. Rare-earth permanent magnets such as neodymium (Nd) and samarium (Sm) provide high power density, but their high cost and unstable supply chains have led to growing interest in ferrite-based motors. Ferrite magnets offer excellent cost-effectiveness; however, their relatively low remanent flux density and coercivity result in reduced motor performance. To compensate for these limitations, a spoke-type flux-concentrating structure is commonly employed to enhance the air-gap flux density. Nevertheless, in spoke-type motors, the magnets are deeply embedded within the rotor, making it difficult to achieve a sufficient magnetization rate during post-assembly magnetization. In this study, an optimized magnetizing yoke is proposed to achieve a post-assembly magnetization rate of over 99% while suppressing the irreversible demagnetization of untargeted magnets. Finite element analysis (FEA) results for a 10-pole ferrite rotor confirm that the proposed structure demonstrates excellent magnetization performance and effectively mitigates irreversible demagnetization. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

31 pages, 6234 KB  
Article
Research on Cavitation Characteristics of the Fluid Domain of the Single-Plunger Two-Dimensional Electro-Hydraulic Pump
by Xinguo Qiu, Jiahui Wang and Haodong Lu
Machines 2025, 13(12), 1100; https://doi.org/10.3390/machines13121100 - 27 Nov 2025
Viewed by 307
Abstract
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight [...] Read more.
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight ratio has made high-speed operation and high-pressure output persistent research priorities. However, during the iterative design process of electro-hydraulic pumps, cavitation has been identified as a common issue, leading to difficulties in oil suction and even severe backflow. Based on the structure and motion characteristics of the single-plunger two-dimensional electro-hydraulic pump, a CFD numerical model was established to analyze the influence of different working conditions on the cavitation characteristics inside the pump. The study shows that cavitation mainly occurs in the plunger chamber, the distribution groove, and the triangular damping groove. The location and intensity of cavitation are directly reflected by the gas volume fraction. The simulation analysis of variable operating conditions has verified that suction pressure and rotational speed have a significant impact on cavitation—an increase in suction pressure can effectively suppress cavitation, while an increase in rotational speed will exacerbate cavitation development. Specifically, the non-cavitation working boundary of this type of pump was determined through theoretical derivation, and the coupling relationship between critical suction pressure and critical speed was clarified. This work provides an important theoretical basis for the optimization design of the new integrated electro-hydraulic pump. Full article
(This article belongs to the Special Issue Unsteady Flow Phenomena in Fluid Machinery Systems)
Show Figures

Figure 1

28 pages, 3911 KB  
Review
Traction Synchronous Motors with Rotor Field Winding: A Literature Review
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Eduard Valeev and Victor Goman
World Electr. Veh. J. 2025, 16(11), 633; https://doi.org/10.3390/wevj16110633 - 20 Nov 2025
Viewed by 656
Abstract
Synchronous motors with a field winding in the rotor, known as wound-rotor synchronous motors (WRSMs) or electrically excited synchronous motors (EESMs), are claimed to be a good alternative to induction motors and even permanent-magnet synchronous motors (PMSMs) in electric traction applications. WRSMs do [...] Read more.
Synchronous motors with a field winding in the rotor, known as wound-rotor synchronous motors (WRSMs) or electrically excited synchronous motors (EESMs), are claimed to be a good alternative to induction motors and even permanent-magnet synchronous motors (PMSMs) in electric traction applications. WRSMs do not require expensive rare-earth magnets and potentially have high power and torque density, and lower inverter power and cost, especially in applications demanding a wide constant-power speed range. Designing WRSMs for electric traction imposes some challenges and requires careful analysis. This paper provides an overview of commercial WRSMs for ground electric transport over the past 40 years, a comparison of WRSMs with other types of electric motors suitable for electric traction, and an overview of optimization methods and brushless excitation technologies for such machines. The goals of this paper are to present and discuss design approaches for traction WRSMs, to benchmark WRSMs against other motor types used in ground electric transport, and to highlight the most promising WRSM topologies and design techniques. Full article
Show Figures

Figure 1

14 pages, 5353 KB  
Article
Slot Number Optimization for Motorcycle Traction Motor Considering Driving Duty Cycle
by Yang Gu, Hui Yi, Huimin Ouyang, Lei Mei, Qiang Sun and Zichong Zhu
Machines 2025, 13(11), 1046; https://doi.org/10.3390/machines13111046 - 12 Nov 2025
Viewed by 276
Abstract
Due to their compact dimensions, high torque density, high efficiency, and superior flux-weakening capabilities, permanent magnet synchronous machines with tooth-coil winding (TC-PMSMs) are highly suitable for low-power electric transportation applications. This study incorporates the actual duty cycle of an electric motorcycle in the [...] Read more.
Due to their compact dimensions, high torque density, high efficiency, and superior flux-weakening capabilities, permanent magnet synchronous machines with tooth-coil winding (TC-PMSMs) are highly suitable for low-power electric transportation applications. This study incorporates the actual duty cycle of an electric motorcycle in the optimization of the slot number for the drive machine. The proposed methodology addresses the shortcomings of conventional design strategies, which typically consider only a limited set of operating points, leading to suboptimal round-trip efficiency under real driving conditions. Firstly, the influence of slot number on torque output, electromagnetic losses, and flux-weakening performance is examined for 10-pole TC-PMSMs using finite element analysis. Subsequently, the optimal slot number is identified by integrating the real duty cycle of the drive motor into the evaluation. To verify the accuracy and effectiveness of the analytical results and design approach, prototypes of stator assemblies with varying slot numbers were fabricated and experimentally tested. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

27 pages, 2961 KB  
Article
Mechanical Parameter Identification of Permanent Magnet Synchronous Motor Based on Symmetry
by Xing Ming, Xiaoyu Wang, Fucong Liu, Yi Qu, Bingyin Zhou, Shuolin Zhang and Ping Yu
Symmetry 2025, 17(11), 1929; https://doi.org/10.3390/sym17111929 - 11 Nov 2025
Cited by 1 | Viewed by 400
Abstract
Permanent Magnet Synchronous Motors (PMSMs) have been widely applied across various electrical systems due to their significant advantages, including high power density, high-efficiency conversion, and easy controllability. However, the issue of ‘parameter asymmetry’ (a mismatch between the controller’s preset parameters and the actual [...] Read more.
Permanent Magnet Synchronous Motors (PMSMs) have been widely applied across various electrical systems due to their significant advantages, including high power density, high-efficiency conversion, and easy controllability. However, the issue of ‘parameter asymmetry’ (a mismatch between the controller’s preset parameters and the actual system parameters) in PMSMs can lead to performance problems, such as delayed speed response and increased overshoot. The destruction of symmetry, including the asymmetric weight distribution between new and old data in the moment-of-inertia identification algorithm and the asymmetry between “measured values and true values” caused by sampling delay, is the core factor limiting the system’s control performance. All these factors significantly affect the accuracy of parameter identification and the system’s stability. To address this, this study focuses on the mechanical parameter identification of PMSMs with the core goal of “symmetric matching between set values and true values”. Firstly, a current-speed dual closed-loop vector control system model is constructed. The PI parameters are tuned to meet the symmetric tracking requirements of “set value-feedback” in the dual loops, and the influence of the PMSM’s moment of inertia on the loop symmetry is analyzed. Secondly, the symmetry defects of traditional algorithms are highlighted, such as the imbalance between “data weight and working condition characteristics” in the least-squares method and the mismatch between “set inertia and true inertia” caused by data saturation. Finally, a Forgetting Factor Recursive Least Squares (FFRLS) scheme is proposed: the timing asymmetry of signals is corrected via a first-order inertial link, a forgetting factor λ is introduced to balance data weights, and a recursive structure is adopted to avoid data saturation. Simulation results show that when λ = 0.92, the identification accuracy reaches +5% with a convergence time of 0.39 s. Moreover, dynamic symmetry can still be maintained under multiple multiples of inertia, thereby improving identification performance and ensuring symmetry in servo control. Full article
(This article belongs to the Special Issue Symmetry in Power System Dynamics and Control)
Show Figures

Figure 1

9 pages, 1974 KB  
Proceeding Paper
Replacing Rare Earth Permanent Magnets in Spoke-Type PMSMs for Light Electric Vehicles: A Study on Performance, Material Efficiency, and Cost Optimization
by Kitti Gálfi and Loránd Szabó
Eng. Proc. 2025, 113(1), 48; https://doi.org/10.3390/engproc2025113048 - 10 Nov 2025
Viewed by 345
Abstract
The growing demand for rare-earth-free electric machines, driven by supply shortages and price volatility of rare earth elements, has accelerated research into applying alternative hard magnetic materials. This study investigates the challenging complete replacement of high-performance rare earth permanent magnets with low-cost ferrites, [...] Read more.
The growing demand for rare-earth-free electric machines, driven by supply shortages and price volatility of rare earth elements, has accelerated research into applying alternative hard magnetic materials. This study investigates the challenging complete replacement of high-performance rare earth permanent magnets with low-cost ferrites, which exhibit significantly lower magnetic properties, in permanent magnet synchronous motors (PMSMs) for light electric vehicles (LEVs). While maintaining the original stator structure, output power, and speed requirements of a reference spoke-type PMSM, the research employs ANSYS Motor-CAD for comprehensive electromagnetic analysis and mass minimization of different design variants. The obtained results demonstrate the feasibility of ferrite-based designs while quantifying critical trade-offs in power density versus substantial cost and material availability advantages. This work provides valuable insights into the practical limitations and optimization approaches for rare-earth-free PMSM designs in sustainable mobility applications. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2025)
Show Figures

Figure 1

25 pages, 5356 KB  
Article
A Study on the Design Process of a 1.8 kW In-Wheel Type AFPMSM Motor
by Soo-Bum Kim, Min-Ki Hong, Hyo-Gu Kim, Seung-Hoon Ko and Won-Ho Kim
Energies 2025, 18(21), 5619; https://doi.org/10.3390/en18215619 - 26 Oct 2025
Cited by 1 | Viewed by 436
Abstract
Axial Flux Permanent Magnet Synchronous Motor (AFPMSM) offers high power density in structures with short axial lengths and large radial dimensions, making it attractive for applications that require thin structures, such as in-wheel motors. This study proposes an AFPMSM design process applicable under [...] Read more.
Axial Flux Permanent Magnet Synchronous Motor (AFPMSM) offers high power density in structures with short axial lengths and large radial dimensions, making it attractive for applications that require thin structures, such as in-wheel motors. This study proposes an AFPMSM design process applicable under fixed inner/outer diameter and axial length constraints. The proposed process is presented as step-by-step procedures: selection of pole/slot combinations, adjustment of slot depth, determination of stator/rotor dimensional ratios, and slot structure design. It is universally applicable to both bobbin-type rectangular wire windings and shoe-type round wire windings. The validity of the proposed process was verified through finite element method (FEM) analysis, and the differences between the two winding structures were examined through post-processing of the results. By presenting an AFPMSM design methodology that can be consistently applied under constrained spatial conditions, this study provides practical design guidelines for the development of in-wheel motors for next-generation mobility applications. Full article
Show Figures

Figure 1

15 pages, 11436 KB  
Article
Design of a Six-Phase Surface Permanent-Magnet Synchronous Motor with Chamfer-Shaped Magnet to Reduce Cogging Torque and Torque Ripple for Large-Ship Propulsion
by Do-Hyeon Choi, Chaewon Jo, Hyung-Sub Han, Hyo-Gu Kim, Won-Ho Kim and Hyunwoo Kim
Appl. Sci. 2025, 15(21), 11400; https://doi.org/10.3390/app152111400 - 24 Oct 2025
Cited by 1 | Viewed by 595
Abstract
Surface permanent-magnet synchronous motors (SPMSMs) have been widely adopted for ship propulsion due to their high power density and efficiency. However, conventional three-phase open-slot SPMSMs struggle to balance high efficiency with reductions in cogging torque and torque ripple. This paper proposes a design [...] Read more.
Surface permanent-magnet synchronous motors (SPMSMs) have been widely adopted for ship propulsion due to their high power density and efficiency. However, conventional three-phase open-slot SPMSMs struggle to balance high efficiency with reductions in cogging torque and torque ripple. This paper proposes a design of an SPMSM with a six-phase winding configuration and a chamfer-shaped permanent magnet to reduce cogging torque and torque ripple. Electromagnetic performance is evaluated through finite element analysis (FEA). A reference three-phase interior PMSM and three-phase SPMSMs with different magnet shapes are first compared to identify a suitable basic design. Based on the basic machine, three pole–slot combinations for the six-phase winding are analyzed, and the most efficient configuration is selected. A final model is designed to minimize cogging torque and torque ripple for the chamfer-shaped permanent magnet. Finally, the effectiveness of the final model is validated through FEA by comparing its performance with that of the reference model. Full article
Show Figures

Figure 1

23 pages, 5345 KB  
Article
Vibration Analysis of Aviation Electric Propulsion Test Stand with Active Main Rotor
by Rafał Kliza, Mirosław Wendeker, Paweł Drozd and Ksenia Siadkowska
Sensors 2025, 25(21), 6547; https://doi.org/10.3390/s25216547 - 24 Oct 2025
Viewed by 589
Abstract
This paper focuses on the vibration analysis of a prototype helicopter rotor test stand, with particular attention to the dynamic response of its electric propulsion system. The stand is driven by an induction motor and equipped with composite rotor blades of various geometries, [...] Read more.
This paper focuses on the vibration analysis of a prototype helicopter rotor test stand, with particular attention to the dynamic response of its electric propulsion system. The stand is driven by an induction motor and equipped with composite rotor blades of various geometries, including blades with shape memory alloy (SMA)-based torsion actuators for angle of attack (AoA) adjustment. These variable geometries significantly influence the system’s dynamic behavior, where resonance phenomena may pose risks to structural integrity. The objective was to investigate how selected operational parameters specifically motor speed and AoA affect the vibration response of the propulsion system. Structural vibrations were measured using a tri-axial piezoelectric accelerometer system integrated with calibrated signal conditioning and high-resolution data acquisition modules. This setup enabled precise, time-synchronized recording of dynamic responses along all three axes. Fast Fourier Transform (FFT) and Power Spectral Density (PSD) methods were applied to identify dominant frequency components, including those associated with rotor harmonics and SMA activation. The highest vibration amplitudes were observed at an AoA of 16°, but all results remained within the vibration limits defined by MIL-STD-810H for rotorcraft drive systems. The study confirms the importance of sensor-based diagnostics in evaluating electromechanical propulsion systems operating under dynamic loading conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

13 pages, 2155 KB  
Article
Analysis of Stator Material Influence on BLDC Motor Performance
by Daniel Ziemiański, Gabriela Chwalik-Pilszyk and Grzegorz Dudzik
Materials 2025, 18(19), 4630; https://doi.org/10.3390/ma18194630 - 7 Oct 2025
Cited by 1 | Viewed by 688
Abstract
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials [...] Read more.
Brushless DC (BLDC) motors are increasingly used in industrial applications due to their high efficiency, reliability, and low weight. However, their performance strongly depends on the electromagnetic properties of stator and rotor core materials. This study evaluates six BLDC motor configurations, employing materials such as M19 electrical steel, 1010 low-carbon steel, magnetic PLA, and ABS, and analyzes their impact using FEMM 4.2 finite element simulations. Key electromagnetic characteristics—including flux linkage, Back-EMF, torque, and torque ripple—were compared across configurations. The reference motor with M19 steel stator and 1010 steel rotor achieved ~7 mWb flux linkage, ~39 V pk–pk Back-EMF, and 1.44 Nm torque with ~49% ripple, confirming the suitability of laminated steels for high-power-density designs. Substituting M19 with 1010 steel in the stator reduced torque by less than 10%, indicating material interchangeability with minimal performance loss. By contrast, polymer-based designs exhibited drastic degradation: magnetic PLA yielded only 3.5% of the baseline torque with sixfold ripple increase, while ABS delivered nearly zero torque and >700% ripple. Hybrid configurations improved PLA-based results by 15–20%, though they remained far below ferromagnetic cores. Overall, results demonstrate a nearly linear relationship between material permeability and both flux linkage and Back-EMF, alongside a sharp rise in torque ripple at low permeability. The findings highlight the advantages of ferromagnetic and laminated steel cores for efficiency and stability, while polymer and hybrid cores are limited to lightweight demonstrator applications. Full article
Show Figures

Figure 1

50 pages, 6411 KB  
Article
AI-Enhanced Eco-Efficient UAV Design for Sustainable Urban Logistics: Integration of Embedded Intelligence and Renewable Energy Systems
by Luigi Bibbò, Filippo Laganà, Giuliana Bilotta, Giuseppe Maria Meduri, Giovanni Angiulli and Francesco Cotroneo
Energies 2025, 18(19), 5242; https://doi.org/10.3390/en18195242 - 2 Oct 2025
Cited by 4 | Viewed by 1317
Abstract
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic [...] Read more.
The increasing use of UAVs has reshaped urban logistics, enabling sustainable alternatives to traditional deliveries. To address critical issues inherent in the system, the proposed study presents the design and evaluation of an innovative unmanned aerial vehicle (UAV) prototype that integrates advanced electronic components and artificial intelligence (AI), with the aim of reducing environmental impact and enabling autonomous navigation in complex urban environments. The UAV platform incorporates brushless DC motors, high-density LiPo batteries and perovskite solar cells to improve energy efficiency and increase flight range. The Deep Q-Network (DQN) allocates energy and selects reference points in the presence of wind and payload disturbances, while an integrated sensor system monitors motor vibration/temperature and charge status to prevent failures. In urban canyon and field scenarios (wind from 0 to 8 m/s; payload from 0.35 to 0.55 kg), the system reduces energy consumption by up to 18%, increases area coverage by 12% for the same charge, and maintains structural safety factors > 1.5 under gust loading. The approach combines sustainable materials, efficient propulsion, and real-time AI-based navigation for energy-conscious flight planning. A hybrid methodology, combining experimental design principles with finite-element-based structural modelling and AI-enhanced monitoring, has been applied to ensure structural health awareness. The study implements proven edge-AI sensor fusion architectures, balancing portability and telemonitoring with an integrated low-power design. The results confirm a reduction in energy consumption and CO2 emissions compared to traditional delivery vehicles, confirming that the proposed system represents a scalable and intelligent solution for last-mile delivery, contributing to climate resilience and urban sustainability. The findings position the proposed UAV as a scalable reference model for integrating AI-driven navigation and renewable energy systems in sustainable logistics. Full article
Show Figures

Figure 1

Back to TopTop