Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,220)

Search Parameters:
Keywords = high-power LED

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 6253 KiB  
Review
Progress on Sustainable Cryogenic Machining of Hard-to-Cut Material and Greener Processing Techniques: A Combined Machinability and Sustainability Perspective
by Shafahat Ali, Said Abdallah, Salman Pervaiz and Ibrahim Deiab
Lubricants 2025, 13(8), 322; https://doi.org/10.3390/lubricants13080322 - 23 Jul 2025
Abstract
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to [...] Read more.
The current research trends of production engineering are based on optimizing the machining process concerning human and environmental factors. High-performance materials, such as hardened steels, nickel-based alloys, fiber-reinforced polymer (FRP) composites, and titanium alloys, are classified as hard-to-cut due to their ability to maintain strength at high operating temperatures. Due to these characteristics, such materials are employed in applications such as aerospace, marine, energy generation, and structural. The purpose of this article is to investigate the machinability of these alloys under various cutting conditions. The purpose of this article is to compare cryogenic cooling and cryogenic processing from the perspective of machinability and sustainability in the manufacturing process. Compared to conventional machining, hybrid techniques, which mix cryogenic and minimal quantity lubricant, led to significantly reduced cutting forces of 40–50%, cutting temperatures and surface finishes by approximately 20–30% and more than 40%, respectively. A carbon footprint is determined by several factors including power consumption, energy requirements, and carbon dioxide emissions. As a result of the cryogenic technology, the energy consumption, power consumption, and CO2 emissions were reduced by 40%, 28%, and 35%. Full article
23 pages, 845 KiB  
Article
OSIRIS4CubeSat—The World’s Smallest Commercially Available Laser Communication Terminal
by Benjamin Rödiger, Christian Roubal, Fabian Rein, René Rüddenklau, Anil Morab Vishwanath and Christopher Schmidt
Aerospace 2025, 12(8), 655; https://doi.org/10.3390/aerospace12080655 - 23 Jul 2025
Abstract
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. [...] Read more.
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. Free-space optical communication overcomes these challenges and has been successfully demonstrated, with operational systems in orbit on large and small satellites. The next step is to miniaturize the technology of laser communication to make it usable on CubeSats. Thus, the German Aerospace Center (DLR) developed, together with Tesat-Spacecom GmbH & Co. KG in Backnang, Germany, a highly miniaturized and power-efficient laser terminal, which is based on a potential customer’s use case. OSIRIS4CubeSat uses a new patented design that combines electronics and optomechanics into a single system architecture to achieve a high compactness following the CubeSat standard. Interfaces and software protocols that follow established standards allowed for an easy transition to the industry for a commercial mass market. The successful demonstration of OSIRIS4CubeSat during the PIXL-1 mission proved its capabilities and the advantages of free-space optical communication in the final environment. This paper gives an overview of the system architecture and the development of the single subsystems. The system’s capabilities are verified by the already published in-orbit demonstration results. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
24 pages, 5578 KiB  
Article
Simplified Frequency Estimation of Prefabricated Electric Poles Through Regression-Based Modal Analysis
by Hakan Erkek, Ibrahim Karataş, Doğucan Resuloğulları, Emriye Çınar Resuloğullari and Şahin Tolga Güvel
Appl. Sci. 2025, 15(15), 8179; https://doi.org/10.3390/app15158179 - 23 Jul 2025
Abstract
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural [...] Read more.
Prefabricated construction elements are widely used in both large- and small-scale projects, serving structural and infrastructural purposes. One notable application is in power transmission poles, which ensure the safe and efficient delivery of electricity. Despite their importance, limited research exists on the structural and modal behavior of reinforced concrete power poles. This study presents a comprehensive modal analysis of such poles, focusing on how factors like modulus of elasticity, height, and lower/upper inner and outer diameters influence dynamic performance. A total of 3240 finite element models were created, with reinforced concrete poles partially embedded in the ground. Modal analyses were performed to evaluate natural frequencies, mode shapes, and modal mass participation ratios. Results showed that increasing the modulus of elasticity raised frequency values, while greater pole height decreased them. Enlarging the lower inner and upper outer radii also led to higher frequencies. Regression analysis yielded high accuracy, with R2 values exceeding 90% and an average error rate of about 6%. The study provides empirical formulas that allow for quick frequency estimations without the need for detailed finite element modeling, as long as the material and geometric properties remain consistent. The approach can be extended to other prefabricated structural elements. Full article
Show Figures

Figure 1

19 pages, 3984 KiB  
Article
Probabilistic Projections of South Korea’s Population Decline and Subnational Dynamics
by Jeongsoo Kim
Forecasting 2025, 7(3), 40; https://doi.org/10.3390/forecast7030040 - 22 Jul 2025
Abstract
This study adapts the United Nations’ methodology for national probabilistic population projections to subnational contexts. The Bayesian approach used by the UN addresses data collection complexities effectively. By applying hierarchical model assumptions, national projections can be extended to subnational levels. There is a [...] Read more.
This study adapts the United Nations’ methodology for national probabilistic population projections to subnational contexts. The Bayesian approach used by the UN addresses data collection complexities effectively. By applying hierarchical model assumptions, national projections can be extended to subnational levels. There is a significant demand for subnational projections with uncertainty measures, especially in South Korea, where low fertility rates have led to rapid population decline, impacting economic and social conditions. The Bayesian hierarchical model predicts South Korea’s population will peak in 2024 and then decline sharply, potentially reaching 30 million by 2100 or below 20 million in lower projections. Seoul’s population may reduce to one-third of its 2020 size by 2100. Persistently low fertility rates result in a high dependency ratio and accelerated aging, particularly in Seoul and Gyeonggi-do. Although old-age dependency ratios might improve slightly by 2100, economic challenges such as reduced purchasing power and socio-economic strain from an aging population and declining fertility remain significant. A probabilistic approach can enhance resource allocation strategies to support the aging population at both national and subnational levels. Full article
Show Figures

Figure 1

28 pages, 6374 KiB  
Review
Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
by Handan Xu, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui and Pengfei Tian
Photonics 2025, 12(7), 730; https://doi.org/10.3390/photonics12070730 - 18 Jul 2025
Viewed by 315
Abstract
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising [...] Read more.
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising light sources for high-speed VLC systems, owing to their high brightness, low power consumption, and high modulation bandwidth. Recent developments have also seen substantial progress in high-bandwidth GaN-based visible light detectors, which complement the transmission capabilities of micro-LEDs. This paper reviews the latest advancements in micro-LEDs as high-speed transmitters for VLC, detailing their capabilities in terms of bandwidth, data rates, modulation techniques, and diverse applications, including structured lighting systems that combine positioning, communication, and illumination. Additionally, the advantages of using micro-LEDs in GaN-based photodetectors (PDs) are discussed, highlighting their potential in enhancing bandwidth and data rates and facilitating high-speed communications across multifunctional applications. Therefore, this review will benefit the further development of micro-LEDs and their application in 6G communication and global interconnect. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

16 pages, 805 KiB  
Review
Heparin, Heparin-like Molecules, and Heparin Mimetics in Breast Cancer: A Concise Review
by Diego R. Gatica Portillo, Yishu Li, Navneet Goyal, Brian G. Rowan, Rami A. Al-Horani and Muralidharan Anbalagan
Biomolecules 2025, 15(7), 1034; https://doi.org/10.3390/biom15071034 - 17 Jul 2025
Viewed by 243
Abstract
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) [...] Read more.
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) and heparin mimetics as potential treatments is particularly interesting. Their use led to promising results in various breast cancer models by exhibiting anti-angiogenic and anti-metastatic properties. This article concisely reviews studies involving heparins and mimetics in both in vitro and in vivo breast cancer settings. We highlight molecules, conjugates, delivery systems, and combinations involving heparin or its mimetics. We also survey several potential biological targets such as VEGF, FGF-2, TGFβ-1, PDGF-B, NPP-1, CXCL12-CXCR4 axis, and CCR7-CCL21 axis. Overall, heparins and their mimetics, conjugates, and combinations represent a powerful strategy to effectively and safely treat breast cancer, which is the most common cancer diagnosed in women worldwide and the fifth leading cause of cancer-related deaths worldwide. Full article
(This article belongs to the Special Issue Advances in Glycosaminoglycans (GAGs) and Mimetics)
Show Figures

Figure 1

19 pages, 5795 KiB  
Article
Analysis and Design of a Multiple-Driver Power Supply Based on a High-Frequency AC Bus
by Qingqing He, Zhaoyang Tang, Wenzhe Zhao and Keliang Zhou
Energies 2025, 18(14), 3748; https://doi.org/10.3390/en18143748 - 15 Jul 2025
Viewed by 149
Abstract
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high [...] Read more.
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high costs and system complexity is a significant challenge. Leveraging the constant-current characteristics of the LCL-T network, this paper presents a multi-channel DC/DC LED driver comprising a full-bridge inverter, a transformer, and a passive resonant rectifier. The driver generates a high-frequency AC bus with series-connected diode rectifiers, a structure that guarantees excellent current sharing among all output channels using only a single control loop. Fully considering the impact of higher harmonics, this paper derives an exact solution for the output current. A step-by-step parameter design methodology ensures soft switching and enhanced switch utilization. Finally, experimental verification was conducted using a prototype with five channels and 200 W, confirming the correctness and accuracy of the theoretical analysis. The experimental results showed that within a wide input voltage range of 380 V to 420 V, the driver was able to provide a stable current of 700 mA to each channel, and the system could achieve a peak efficiency of up to 94.4%. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

23 pages, 5743 KiB  
Article
Impact of Low-Pressure in High-Altitude Area on the Aging Characteristics of NCM523/Graphite Pouch Cells
by Xiantao Chen, Zhi Wang, Jian Wang, Yichao Lin and Jian Li
Batteries 2025, 11(7), 261; https://doi.org/10.3390/batteries11070261 - 13 Jul 2025
Viewed by 264
Abstract
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, [...] Read more.
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, the influences and mechanisms of high-altitude and low-pressure environment (50 kPa) on the cycling performance of commercial pouch LIBs were systematically studied. The results showed that low air pressure caused a sharp decrease in battery capacity to 46.6% after 200 cycles, with a significant increase in charge transfer impedance by 70%, and the contribution rate of active lithium loss reached 74%. Low air pressure led to irreversible deformation of the battery, resulting in the expansion of the gap between the electrodes, poor electrolyte infiltration, and reduction of the effective lithium insertion area, which in turn induced multiple synergistic accelerated decay mechanisms, including obstructed lithium-ion transmission, reduced interfacial reaction efficiency, increased active lithium consumption, changes in heat generation structure, and a significant increase in heat generation. After applying external force, the deformation of the electrode was effectively suppressed, and the cycle capacity retention rate increased to 87.6%, which significantly alleviated the performance degradation of LIBs in low pressure environment. This work provides a key theoretical basis and engineering solutions for the design of power batteries in high-altitude areas. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

24 pages, 4771 KiB  
Article
Constant High-Voltage Triboelectric Nanogenerator with Stable AC for Sustainable Energy Harvesting
by Aso Ali Abdalmohammed Shateri, Salar K. Fatah, Fengling Zhuo, Nazifi Sani Shuaibu, Chuanrui Chen, Rui Wan and Xiaozhi Wang
Micromachines 2025, 16(7), 801; https://doi.org/10.3390/mi16070801 - 9 Jul 2025
Viewed by 340
Abstract
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert [...] Read more.
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert linear motion into rotational energy using a robust gear system, enabling a high voltage and reliable full cycle of alternating current (AC). The device features a radially patterned disk with triboelectric layers composed of polyimide. The SHLR-TENG achieves a peak-to-peak voltage of 1420 V, a short-circuit current of 117 µA, and an average power output of 41.5 mW, with a surface charge density of 110 µC/m2. Moreover, it demonstrates a power density per unit volume of 371.2 W·m−3·Hz−1. The device retains 80% efficiency after 1.5 million cycles, demonstrating substantial durability under mechanical stress. These properties enable the SHLR-TENG to directly power commercial LEDs and low-power circuits without the need for energy storage. This study presents an innovative approach to sustainable energy generation by integrating horizontal motion harvesting with rotational energy conversion. The compact and scalable design of the SHLR-TENG, coupled with its resilience to humidity (20–90% RH) and temperature fluctuations (10–70 °C), positions it as a promising next-generation energy source for Internet of Things (IoT) devices and autonomous systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

19 pages, 8722 KiB  
Article
Effect of Laser Power on Microstructure and Tribological Performance of Ni60/WC Bionic Unit Fabricated via Laser Cladding
by You Lv, Bo Cui, Zhaolong Sun and Yan Tong
Metals 2025, 15(7), 771; https://doi.org/10.3390/met15070771 - 8 Jul 2025
Viewed by 266
Abstract
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. [...] Read more.
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. Laser cladding technology was used to fabricate bionic units on the surface of 20CrMnTi steel. The alloy powder consisted of a Ni-based alloy with added WC particles. The influence of laser power (1.0 kW–3.0 kW) on the dimensions, microstructure, hardness, surface roughness, and tribological properties of the bionic units was investigated to enhance the tribological performance of the Ni60/WC bionic unit. The microstructure, phase composition, hardness, and tribological behavior of the bionic units were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), a microhardness tester, and a wear tester. Experimental results show that the dimensions of the bionic units increased with laser power. However, beyond a certain threshold, the growth rate of the width and height gradually slowed due to heat conduction and edge cooling effects. The microstructure primarily consisted of equiaxed and dendritic crystals, with grain refinement observed at higher laser powers. The addition of WC resulted in average hardness values of 791 HV0.2, 819 HV0.2, 835 HV0.2, and 848 HV0.2 across the samples. This enhancement in hardness was attributed to dispersion strengthening and grain refinement. Increasing the laser power also reduced the surface roughness of the bionic units, though excessively high laser power led to a roughness increase. The presence of WC altered the wear mechanism of the bionic units. Compared to the wear observed in the N60 sample, the wear amount of the WC-containing samples decreased by 73.7%, 142.1%, 157.5%, and 263.1%, respectively. Hard WC particles played a decisive role in enhancing tribological performance of the bionic unit. Full article
Show Figures

Figure 1

32 pages, 13821 KiB  
Article
Spatiotemporal Evolution and Driving Factors of Karst Rocky Desertification in Guangxi, China, Under Climate Change and Human Activities
by Jialei Su, Meiling Liu, Qin Yang, Xiangnan Liu, Zeyan Wu and Yanan Wen
Remote Sens. 2025, 17(13), 2294; https://doi.org/10.3390/rs17132294 - 4 Jul 2025
Cited by 1 | Viewed by 320
Abstract
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it [...] Read more.
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it is crucial to comprehensively analyze the spatiotemporal evolution of KRD in Guangxi and its driving forces. This study proposed a novel three-dimensional feature space model for monitoring KRD in Guangxi. We then applied transition matrices, dynamic degree indices, and landscape metrics to analyze the spatiotemporal evolution of KRD. We also proposed a Spatiotemporal Interaction Intensity Index (STII) to quantify mutual influences among KRD patches. Finally, we used GeoDetector to analyze the driving factors of KRD. The results indicate the following: (1) The three-dimensional model showed high applicability for large-scale KRD monitoring, with an overall accuracy of 92.86%. (2) KRD in Guangxi exhibited an overall recovery–deterioration–recovery trend from 2000 to 2023. The main recovery phases were 2005–2015 and 2020–2023. During these phases, both severe and moderate KRD showed strong signals of recovery, including significant declines in area, number of patches, and Landscape Shape Index, along with persistently low STII values. In contrast, from 2015 to 2020, KRD predominantly deteriorated, primarily characterized by transitions from no KRD to potential KRD and from potential KRD to light KRD. (3) For severe KRD patches, the intensity of interaction required from neighboring patches to promote recovery exceeded that which led to deterioration, indicating the difficulty of reversing severe KRD. (4) Slope, land use, and elevation were the main drivers of KRD in Guangxi from 2000 to 2023. Erosive rainfall exhibited a higher explanatory power for KRD than average precipitation. Two-factor interactions significantly enhanced the driving forces of KRD. These findings provide a scientific basis for KRD management. Full article
Show Figures

Figure 1

9 pages, 1077 KiB  
Proceeding Paper
Design and Simulation of Ripple Free Non-Inverting DC-DC Cuk Converter with Valley-Fill Circuit for LED Applications
by Lakshmi Praba Balakrishnan, Abhinaya Ravichandran, Seyezhai Ramalingam, Deeikshanyaa Sivasubramaniam and Harini Vasudevan Balamurugan
Eng. Proc. 2025, 93(1), 5; https://doi.org/10.3390/engproc2025093005 - 1 Jul 2025
Viewed by 208
Abstract
LED lighting plays a pivotal role in the illumination landscape owing to its substantial energy efficiency, prolonged operational lifespan, environmental advantages, superior light quality, and its capacity for advanced lighting control. Flicker in led lighting systems has emerged as a substantial concern and [...] Read more.
LED lighting plays a pivotal role in the illumination landscape owing to its substantial energy efficiency, prolonged operational lifespan, environmental advantages, superior light quality, and its capacity for advanced lighting control. Flicker in led lighting systems has emerged as a substantial concern and is appropriate to its potential opposing impacts on human health and visual comfort. Hence, this paper presents a comprehensive analysis, design, and mitigation strategy for flicker in a DC-DC led driver that incorporates a valley fill circuit. The initial stage of this investigation involves an analysis of a conventional cuk converter. However, it is noted that this converter produces an inverting output and experiences high current stress on the semiconductor switch. Consequently, to address these limitations, a non-inverting cuk converter (NICC) is introduced, resulting in a positive output, reduced voltage and current ripple and increased efficiency. To surmount these challenges, the implementation of a valley fill circuit is proposed. This addition facilitates the rapid attainment of a steady state, increases efficiency, and substantially reduces the output voltage and current ripple. An in-depth analysis of the stress imposed on the switch is conducted, leading to the development of a circuit designed to extend the operational life of the LED driver. Therefore, this paper compares the topologies of three different DC-DC cuk power converters. These converters include conventional cuk, non-inverting cuk (NICC), and non-inverting cuk with valley-fill. The performance metrics are examined and compared for all three topologies. The findings of this study affirm that the proposed driver circuit is highly effective in mitigating flicker, thereby enhancing the user experience and elevating the quality of led lighting, all while maintaining energy efficiency. The MATLAB simulations of these converters are performed to validate the theoretical results. Full article
Show Figures

Figure 1

15 pages, 2226 KiB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 443
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

20 pages, 8782 KiB  
Article
Laser Powder Bed Fusion of a Ti-16Nb-Based Alloy: Processability, Microstructure, and Mechanical Properties
by Azim Gökçe, Vamsi Krishna Balla, Subrata Deb Nath, Arulselvan Arumugham Akilan and Sundar V. Atre
Metals 2025, 15(7), 728; https://doi.org/10.3390/met15070728 - 29 Jun 2025
Viewed by 229
Abstract
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium [...] Read more.
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium alloys with lower elastic modulus are under development. In this study, Ti-based multi-element alloy with 16 wt.% Nb samples were fabricated using laser powder bed fusion (L-PBF) from a premixed powder blend of Ti6Al4V and Nb-Hf-Ti. Processing high-melting Nb-based alloys via L-PBF poses challenges, which were mitigated through optimized parameters, including a maximum laser power of 100 W. Eleven parameter sets were employed to evaluate printability, microstructure, and mechanical properties. Microstructural analysis revealed Widmanstätten structures composed of α and β phases, along with isolated spherical pores. Reduced hatch spacing and slower laser speed led to increased hardness. The highest hardness (~43 HRC) was observed at the highest energy density (266 J/mm3), while the lowest (~28 HRC) corresponded to 44 J/mm3. Elastic modulus values ranged from 30 to 35 GPa, closely matching that of bone. These results demonstrate the potential of the developed Ti-based alloy containing 16 wt.% Nb as a promising candidate for load-bearing biomedical implants. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

12 pages, 4460 KiB  
Article
Influence of Laser Energy Variation on the Composition and Properties of Gradient-Structured Cemented Carbide Layers Produced by LP-DED
by Yorihiro Yamashita, Kenta Kawabata, Hayato Mori, Eito Ose and Takahiro Kunimine
J. Manuf. Mater. Process. 2025, 9(7), 218; https://doi.org/10.3390/jmmp9070218 - 27 Jun 2025
Viewed by 263
Abstract
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either [...] Read more.
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either 30.5 wt.% or 42.9 wt.% WC and the second layer containing 63.7 wt.% WC. Crack formation was evaluated in situ using acoustic emission (AE) sensors, and elemental composition and Vickers hardness were measured across the cross-section of the deposited layers. The results showed that crack formation increased with higher laser power and higher WC content in the first layer. Elemental analysis revealed that higher laser input led to greater Co enrichment and reduced W content near the surface. Additionally, the formation of brittle structures was observed under high-energy conditions, contributing to increased hardness but decreased toughness. These findings indicate that both WC content and laser energy strongly influence the microstructural evolution and mechanical properties of graded cemented carbide layers. Optimizing the balance between WC content and laser parameters is essential for improving the crack resistance and performance of cemented carbide layers in additive manufacturing applications. Full article
Show Figures

Figure 1

Back to TopTop