Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = high-momentum transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 17358 KiB  
Article
Direct Numerical Simulation of Flow and Heat Transfer in a Compressor Blade Passage Across a Range of Reynolds Numbers
by Yang Liu, Chenchen Zhao, Lei Zhou, Duo Wang and Hongyi Xu
Aerospace 2025, 12(6), 563; https://doi.org/10.3390/aerospace12060563 - 19 Jun 2025
Viewed by 784
Abstract
This study employs Direct Numerical Simulation (DNS) to investigate the flow and heat transfer characteristics in a compressor blade passage at five Reynolds numbers (Re=1.091×105, 1.229×105, 1.367×105, [...] Read more.
This study employs Direct Numerical Simulation (DNS) to investigate the flow and heat transfer characteristics in a compressor blade passage at five Reynolds numbers (Re=1.091×105, 1.229×105, 1.367×105, 1.506×105, and 1.645×105). A recent method based on local inviscid velocity reconstruction is applied to define and calculate boundary layer parameters, whereas the Rortex vortex identification method is used to analyze turbulent vortical structures. Results indicate that Re significantly affects separation bubble size, transition location, and reattachment behavior, thereby altering wall heat transfer characteristics. On the pressure surface, separation and early transition are observed at higher Re, with the Nusselt number (Nu) remaining high after transition. On the suction surfaces, separation occurs such that large-scale separation at low Re reduces Nu, while reattachment combined with turbulent mixing at high Re significantly increases Nu. Turbulent vortical structures enhance near-wall fluid mixing through induced ejection and sweep events, thereby promoting momentum and heat transport. As Re increases, the vortical structures become denser with reduced scales and the peaks in heat flux move closer to the wall, thus improving convective heat transfer efficiency. Full article
Show Figures

Figure 1

23 pages, 12403 KiB  
Article
A Comprehensive Ensemble Model for Marine Atmospheric Boundary-Layer Prediction in Meteorologically Sparse and Complex Regions: A Case Study in the South China Sea
by Yehui Chen, Tao Luo, Gang Sun, Wenyue Zhu, Qing Liu, Ying Liu, Xiaomei Jin and Ningquan Weng
Remote Sens. 2025, 17(12), 2046; https://doi.org/10.3390/rs17122046 - 13 Jun 2025
Viewed by 649
Abstract
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, [...] Read more.
Marine atmospheric boundary-layer height (MABLH) is crucial for ocean heat, momentum, and substance transfer, affecting ocean circulation, climate, and ecosystems. Due to the unique geographical location of the South China Sea (SCS), coupled with its complex atmospheric environment and sparse ground-based observation stations, accurately determining the MABLH remains challenging. Coherent Doppler wind lidar (CDWL), as a laser-based active remote sensing technology, provides high-resolution wind profiling by transmitting pulsed laser beams and analyzing backscattered signals from atmospheric aerosols. In this study, we developed a stacking optimal ensemble model (SOEM) to estimate MABLH in the vicinity of the site by integrating CDWL measurements from a representative SCS site with ERA5 (fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts) data from December 2019 to May 2021. Based on the categorization of the total cloud cover data into weather conditions such as clear/slightly cloudy, cloudy/transitional, and overcast/rainy, the SOEM demonstrates enhanced performance with an average mean absolute percentage error of 3.7%, significantly lower than the planetary boundary-layer-height products of ERA5. The SOEM outperformed random forest, extreme gradient boosting, and histogram-based gradient boosting models, achieving a robustness coefficient (R2) of 0.95 and the lowest mean absolute error of 32 m under the clear/slightly cloudy condition. The validation conducted in the coastal city of Qingdao further confirmed the superiority of the SOEM in resolving meteorological heterogeneity. The predictions of the SOEM aligned well with CDWL observations during Typhoon Sinlaku (2020), capturing dynamic disturbances in MABLH. Overall, the SOEM provides a precise approach for estimating convective boundary-layer height, supporting marine meteorology, onshore wind power, and coastal protection applications. Full article
Show Figures

Graphical abstract

21 pages, 4590 KiB  
Article
Modeling of a High-Frequency Ultrasonic Wave in the Ultrasonic-Assisted Absorption System (UAAS) Using a Computational Fluid Dynamics (CFD) Approach
by Athirah Mohd Tamidi, Kok Keong Lau, Ven Chian Quek and Tengku M. Uzaini Tengku Mat
Processes 2025, 13(6), 1737; https://doi.org/10.3390/pr13061737 - 1 Jun 2025
Viewed by 480
Abstract
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement [...] Read more.
The propagation of high-frequency ultrasound waves will generate both physical and chemical effects as they propagate through a liquid medium, such as acoustic streaming, an acoustic fountain, and atomization. These phenomena are believed to be the main factors that contribute to the enhancement of mass transfer in the gas–liquid carbon dioxide (CO2) absorption system. Computational Fluid Dynamic (CFD) simulation is one of the powerful tools that can be used to model the complex hydrodynamic behavior induced by the propagation of ultrasound waves in the liquid medium. In this study, the ultrasonic irradiation forces were simulated via the momentum source term method using commercial CFD software (ANSYS Fluent V19.1). In addition, a parametric study was conducted to investigate the influences of absorber height and ultrasonic power on the hydrodynamic mixing performance. The simulation results indicated that enhanced mixing and a higher intensification factor were achieved with increased fountain flow velocity, particularly at the lowest absorber height and highest ultrasonic power. Conversely, the energy efficiency was improved with the increase of absorber height and decrease of ultrasonic power. To determine the optimal combination of absorber height and ultrasonic power, this trade-off between the energy efficiency and intensification in the ultrasonic-assisted absorption system (UAAS) is a crucial consideration during process scale-up. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

26 pages, 5185 KiB  
Article
Seamless Integration of UOWC/MMF/FSO Systems Using Orbital Angular Momentum Beams for Enhanced Data Transmission
by Mehtab Singh, Somia A. Abd El-Mottaleb, Hassan Yousif Ahmed, Medien Zeghid and Abu Sufian A. Osman
Photonics 2025, 12(5), 499; https://doi.org/10.3390/photonics12050499 - 16 May 2025
Viewed by 416
Abstract
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable [...] Read more.
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable wavelength conversion from 532 nm for UOWC to 1550 nm for MMF and FSO links. Four distinct OAM beams, each supporting a 5 Gbps data rate, are utilized to evaluate the system’s performance under two scenarios. The first scenario investigates the effects of absorption and scattering in five water types on underwater transmission range, while maintaining fixed MMF length and FSO link. The second scenario examines varying FSO propagation distances under different fog conditions, with a consistent underwater link length. Results demonstrate that water and atmospheric attenuation significantly impact transmission range and received optical power. The proposed hybrid system ensures reliable data transmission with a maximum overall transmission distance of 1125 m (comprising a 25 m UOWC link in Pure Sea (PS) water, a 100 m MMF span, and a 1000 m FSO range in clear weather) in the first scenario. In the second scenario, under Light Fog (LF) conditions, the system achieves a longer reach of up to 2020 m (20 m UOWC link + 100 m MMF span + 1900 m FSO range), maintaining a BER ≤ 10−4 and a Q-factor around 4. This hybrid design is well suited for applications such as oceanographic research, offshore monitoring, and the Internet of Underwater Things (IoUT), enabling efficient data transfer between underwater nodes and surface stations. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

20 pages, 2079 KiB  
Article
On-Ground Testing of Dual-Sided Release Mechanism of TianQin Test Mass Using a Pendulum
by Ji Wang, Diwen Shi, Chao Xue, Biao Yang, Bingwei Cai, Jie Chang, Zefan Zhou, Wenhai Tan and Shanqing Yang
Sensors 2025, 25(9), 2878; https://doi.org/10.3390/s25092878 - 2 May 2025
Viewed by 445
Abstract
The high-precision gravitational reference sensor, which hosts a heavy test mass (TM) surrounded by electrodes with a relatively large gap, is crucial in all high-sensitivity drag-free sensors. Consequently, a dedicated locking mechanism is needed to securely hold the TM during the launch phase. [...] Read more.
The high-precision gravitational reference sensor, which hosts a heavy test mass (TM) surrounded by electrodes with a relatively large gap, is crucial in all high-sensitivity drag-free sensors. Consequently, a dedicated locking mechanism is needed to securely hold the TM during the launch phase. After reaching the intended orbit, the TM is released to a free-falling state and subsequently captured by electrostatic actuation, which demands that the transferred momentum and angular momentum to the TM do not exceed 105kgm/s and 107kgm2/s, respectively. This paper introduces a three-level structural design of the locking-and-release mechanism. In order to investigate the release requirement, a pendulum system has been developed for on-ground testing. The mock-up of the TM is entirely consistent with the size and mass of TianQin TM, and the dual-sided release tips constrain the TM and then rapidly retract simultaneously, after which the transferred momentum and angular momentum are estimated from the free oscillations as 0.38(21)×105kgm/s and 0.15(14)×107kgm2/s with a preload force of 0.3 N. This proposes a feasible scheme for validating the release mechanism conducting impulse testing for the TianQin project. Full article
(This article belongs to the Special Issue Advanced Inertial Sensors: Advances, Challenges and Applications)
Show Figures

Figure 1

46 pages, 1618 KiB  
Review
Electroweak Form Factors of Baryons in Dense Nuclear Matter
by G. Ramalho, K. Tsushima and Myung-Ki Cheoun
Symmetry 2025, 17(5), 681; https://doi.org/10.3390/sym17050681 - 29 Apr 2025
Viewed by 440
Abstract
There is evidence that the properties of hadrons are modified in a nuclear medium. Information about the medium modifications of the internal structure of hadrons is fundamental for the study of dense nuclear matter and high-energy processes, including heavy-ion and nucleus–nucleus collisions. At [...] Read more.
There is evidence that the properties of hadrons are modified in a nuclear medium. Information about the medium modifications of the internal structure of hadrons is fundamental for the study of dense nuclear matter and high-energy processes, including heavy-ion and nucleus–nucleus collisions. At the moment, however, empirical information about medium modifications of hadrons is limited; therefore, theoretical studies are essential for progress in the field. In the present work, we review theoretical studies of the electromagnetic and axial form factors of octet baryons in symmetric nuclear matter. The calculations are based on a model that takes into account the degrees of freedom revealed in experimental studies of low and intermediate square transfer momentum q2=Q2: valence quarks and meson cloud excitations of baryon cores. The formalism combines a covariant constituent quark model, developed for a free space (vacuum) with the quark–meson coupling model for extension to the nuclear medium. We conclude that the nuclear medium modifies the baryon properties differently according to the flavor content of the baryons and the medium density. The effects of the medium increase with density and are stronger (quenched or enhanced) for light baryons than for heavy baryons. In particular, the in-medium neutrino–nucleon and antineutrino–nucleon cross-sections are reduced compared to the values in free space. The proposed formalism can be extended to densities above the normal nuclear density and applied to neutrino–hyperon and antineutrino–hyperon scattering in dense nuclear matter. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

14 pages, 488 KiB  
Article
A Theoretical Study of the Ionization States and Electrical Conductivity of Tantalum Plasma
by Shi Chen, Qishuo Zhang, Qianyi Feng, Ziyue Yu, Jingyi Mai, Hongping Zhang, Lili Huang, Chengjin Huang and Mu Li
Plasma 2025, 8(2), 16; https://doi.org/10.3390/plasma8020016 - 28 Apr 2025
Viewed by 819
Abstract
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization [...] Read more.
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization composition and electrical conductivity of tantalum plasma across a wide range of densities and temperatures is essential. In this study, we calculate the densities of ionization species and the electrical conductivity of partially ionized, nonideal tantalum plasma based on a simplified theoretical model that accounts for high ionization states up to the atomic number of the element and the lowering of ionization energies. A comparison of the ionization compositions between tantalum and copper plasmas highlights the significant role of ionization energies in determining species populations. Additionally, the average electron–neutral momentum transfer cross-section significantly influences the electrical conductivity calculations, and calibration with experimental measurements offers a method for estimating this atomic parameter. The impact of electrical conductivity in the intermediate-density range on the laser absorption coefficient is discussed using the Drude model. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

17 pages, 16712 KiB  
Article
Large-Eddy Simulation of Flows Past an Isolated Lateral Semi-Circular Cavity
by Yiqing Gong, Yun Xu, Jingqiao Mao, Jie Dai, Lei He, Hao Zhang and Qianshun Xu
J. Mar. Sci. Eng. 2025, 13(5), 859; https://doi.org/10.3390/jmse13050859 - 25 Apr 2025
Viewed by 364
Abstract
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental [...] Read more.
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental data confirmed the LES’s capability to capture both recirculating flow and turbulent structures accurately. The impact of Reynolds number was examined across three cases (Re = 12,000, 17,000, and 22,000). From Re = 12,000 to 17,000, a significant upstream shift of the primary vortex core occurred, accompanied by stronger shear layer turbulence and intensified secondary vortices. Between Re = 17,000 and 22,000, the flow features stabilized, indicating a transition toward quasi-equilibrium. These changes enhanced vertical momentum transfer and turbulence production within the cavity. Spectral analysis revealed dominant KH frequencies governing periodic momentum exchange and indicating a transition from viscosity-damped upstream turbulence to fully developed shedding downstream. Full article
Show Figures

Figure 1

14 pages, 2636 KiB  
Article
A Similarity Theory-Based Study on Natural Convection Condensation Boundary Layer Characteristics of Vertical Walls
by Jialei Liu, Yuqing Chen, Haifeng Gu, Yinxing Zhang, Wei Wang and Hongguang Xiao
Processes 2025, 13(4), 1050; https://doi.org/10.3390/pr13041050 - 1 Apr 2025
Viewed by 504
Abstract
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were [...] Read more.
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were broken through by innovations. The particle swarm optimization algorithm was first introduced into the solution of the condensation boundary layer, and the convergence difficulty in the laminar–turbulent transition region under infinite boundary conditions was overcome. A coupled momentum–energy–mass equation system that simultaneously considered temperature–concentration dual-driven gravity terms and liquid film drag–suction dual effects was established, and higher computational efficiency and accuracy were achieved. A new mechanism where the concentration boundary layer dominated heat transfer resistance under the coupled action of the Prandtl number (Pr) and Schmidt number (Sc) was revealed. Experimental validation demonstrated that a prediction error of less than 5% was exhibited by the model under typical operating conditions of passive containment cooling systems (pressures of 1.5–4.5 atm and subcooling temperatures of 14–36 °C), and a theoretical tool for high-precision condensation heat transfer design was provided. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 7540 KiB  
Article
Radiated Free Convection of Dissipative and Chemically Reacting Flow Suspension of Ternary Nanoparticles
by Rekha Satish, Raju B. T, S. Suresh Kumar Raju, Fatemah H. H. Al Mukahal, Basma Souayeh and S. Vijaya Kumar Varma
Processes 2025, 13(4), 1030; https://doi.org/10.3390/pr13041030 - 30 Mar 2025
Viewed by 388
Abstract
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant [...] Read more.
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant species diffusion. The model integrates thermal radiation, heat sink/source, thermal diffusion, and chemical reaction effects to assess flow stability and thermal performance. Governing equations are non-dimensionalized and solved analytically using the Laplace transform method, with results validated against published data and finite difference method outcomes. Ternary hybrid nanofluids exhibit a significantly higher Nusselt number compared to hybrid and conventional nanofluids, demonstrating superior heat transfer capabilities. Magnetic field intensity reduces fluid velocity, while porosity enhances momentum transfer. Thermal radiation amplifies temperature profiles, critical for energy systems. Concentration boundary layer thickness decreases with higher chemical reaction rates, optimizing species diffusion. These findings contribute to the development of advanced thermal management systems, such as solar energy collectors and nuclear reactors, enhance energy-efficient industrial processes, and support biomedical technologies that require precise heat and mass control. This study positions ternary hybrid nanofluids as a transformative solution for optimizing high-performance thermal systems. Full article
Show Figures

Figure 1

13 pages, 4470 KiB  
Article
Simulation Analysis and Experimental Verification of High-Speed Impact of Rocky Asteroids
by Fan Huang, Zhiqing Geng, Binqiang Luo, Yuming Peng, Liang Xu, Wei Wang, Biyue Pan and Dongyu Li
Sensors 2025, 25(7), 2055; https://doi.org/10.3390/s25072055 - 25 Mar 2025
Viewed by 406
Abstract
Kinetic impact is an effective way to deal with threatening asteroids, and the momentum transfer coefficient during the impact process is an effective indicator for evaluating the impact effect. This article is based on the use of the Smoothed Particle Hydrodynamics (SPH) method [...] Read more.
Kinetic impact is an effective way to deal with threatening asteroids, and the momentum transfer coefficient during the impact process is an effective indicator for evaluating the impact effect. This article is based on the use of the Smoothed Particle Hydrodynamics (SPH) method to establish a simulation model of high-speed impact of flying discs on granite targets, and obtain parameters such as the shape of the splashing material and the distribution of the target damage during the impact process. An analysis was conducted on the influence of different impact velocities on the kinetic energy transfer coefficient, and it was found that the momentum transfer coefficient increased with the increase in impact velocity, from 1.59 at 5 km/s to 1.96 at 11.7 km/s. A ground high-speed impact system with a speed of over 10 km/s has been established, and the actual momentum transfer coefficient has increased from 1.73 at 7 km/s to around 2.06 at 11.7 km/s. The variation trend of kinetic energy transfer coefficients obtained from experiments and simulations is consistent, with an error of basically within 10%, and the simulation results are effective. The simulation and experimental analysis of high-speed kinetic impact can provide a reference for the engineering implementation of asteroid impact defense missions. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 49144 KiB  
Article
Stability and Flame Structure Analysis of a Semi-Industrial Swirl-Stabilized Oxy-Fuel Combustion Chamber System for Biomass
by Dominik König, Marcel Richter, Jochen Ströhle and Bernd Epple
Energies 2025, 18(6), 1513; https://doi.org/10.3390/en18061513 - 19 Mar 2025
Cited by 1 | Viewed by 593
Abstract
Oxy-fuel combustion is a promising way to avoid process-based CO2 emissions. In this paper, the operational range of a new semi-industrial oxy-fuel combustion chamber for pulverized biomass is analyzed. This approach is used to gain a deeper understanding of the combustion setup [...] Read more.
Oxy-fuel combustion is a promising way to avoid process-based CO2 emissions. In this paper, the operational range of a new semi-industrial oxy-fuel combustion chamber for pulverized biomass is analyzed. This approach is used to gain a deeper understanding of the combustion setup and to examine the differences between air and oxy-fuel combustion on an industrial scale. Both analyzed parameters—flame spread and temperature distribution—have a significant influence on heat transfer in commercial boilers. The stability of various operating conditions is assessed by monitoring the CO content in the flue gas via a gas analyzer unit. For stable operation using walnut shells as fuel in an air atmosphere, an overall air-to-fuel ratio of 1.57–1.75 and a local air-to-fuel ratio of 0.75–0.95 provide the most stable conditions. A high swirl number of 0.9 is found to be critical for stability, as the increased fuel momentum entering the combustion chamber promotes a fuel jet-dominated swirl flame. For the corresponding oxy-fuel combustion with the same volume flows and three different oxygen concentrations between 27% and 33%, stable combustion behavior is also observed. Using a camera setup to analyze flame shape and spread, it is observed that the flame formed with an oxygen content of 33% most closely resembles the flame shape achieved under air combustion conditions. However, the combustion temperatures most closely match those of the air operating condition when the oxygen content is 27%. Overall, it is shown that the approach for corresponding oxy-fuel conditions features similar flame shapes to oxy-fuel combustion with flue gas recirculation in a semi-industrial combustion chamber. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy)
Show Figures

Figure 1

35 pages, 14477 KiB  
Article
Effects of Primary Jets on the Flow Field and Outlet Temperature Distribution in a Reverse-Flow Combustor
by Qian Yao, Peixing Li, Chaoqun Ren, Chaowei Tang, Qiongyao Qin, Jianzhong Li and Wu Jin
Aerospace 2025, 12(3), 182; https://doi.org/10.3390/aerospace12030182 - 25 Feb 2025
Viewed by 893
Abstract
A reverse-flow combustor has a larger liner surface area due to airflow turning, which complicates flow and cooling control, particularly heat transfer efficiency. Effective heat management is essential for maintaining uniform temperature distribution and preventing thermal gradients. This study explores the impact of [...] Read more.
A reverse-flow combustor has a larger liner surface area due to airflow turning, which complicates flow and cooling control, particularly heat transfer efficiency. Effective heat management is essential for maintaining uniform temperature distribution and preventing thermal gradients. This study explores the impact of axial position and diameter of primary holes on thermal performance and flow dynamics. Results indicate that as the primary holes move toward the dome, the recirculation vortex size decreases, leading to insufficient fuel mixing, a reduction in the high-temperature area in the primary zone, and an increase in the high-temperature area of the middle zone. On the other hand, moving the primary holes downstream enhances fuel mixing, increasing high-temperature areas in the primary zone and reducing them in the middle and dilution zones, thus improving thermal boundary layers and convective heat transfer rates. When the primary hole is moved 10 mm downstream, outlet temperature improves significantly with an outlet temperature distribution factor (OTDF) of 0.21 and a radial temperature distribution factor (RTDF) of 0.16. Additionally, reducing the upper primary hole diameter strengthens jet deflection, improving fuel–gas mixing at the dome and heat transfer to the central region. With a 2.1 mm hole diameter, the temperature gradient decreases, resulting in an OTDF of 0.184 and RTDF of 0.15. Furthermore, as the momentum flux ratio increases, the jet penetration depth initially rises and then stabilizes. Momentum flux ratios between 10.6 and 15.1 significantly affect jet penetration, while further increases result in smaller fluctuations. Higher momentum flux ratios create localized high- and low-temperature zones, reducing outlet temperature distribution quality. The optimal momentum ratio for the reverse-flow combustor, ensuring effective jet penetration and better temperature distribution, is between 10.6 and 14.7, with a corresponding penetration depth of 34.3 mm to 35.1 mm. These findings offer valuable insights for improving reverse-flow combustor design and performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 10087 KiB  
Article
Study on the Distribution of Gravity Wave (GW) Activity in Six Bay of Bengal Tropical Cyclones
by Kousik Nanda, Sudipta Sasmal, Raka Hazra, Abhirup Datta, Pradipta Panchadhyayee and Stelios M. Potirakis
Atmosphere 2025, 16(2), 235; https://doi.org/10.3390/atmos16020235 - 18 Feb 2025
Cited by 1 | Viewed by 768
Abstract
This study explores how the variation of Gravity Waves (GWs) is modified and intensified during tropical cyclones using high-resolution ERA5 reanalysis data. GWs play a vital role in understanding tropical cyclone dynamics due to their connection with energy and momentum transfer in the [...] Read more.
This study explores how the variation of Gravity Waves (GWs) is modified and intensified during tropical cyclones using high-resolution ERA5 reanalysis data. GWs play a vital role in understanding tropical cyclone dynamics due to their connection with energy and momentum transfer in the atmosphere. Different issues related to six tropical cyclones in the Bay of Bengal from 2019 to 2022, spanning different intensities and seasonal conditions, are analyzed. Using temperature and pressure data across 37 vertical levels, several variables like perturbation temperature and potential energy Ep profiles associated with GWs are computed. Spatial temperature distributions and Ep exhibit spiral formations resembling cyclone structures with significant altitude-dependent variations. Temperature signatures are observed at altitudes between 1.4 km and 5.8 km, with Pressure Levels (PLs) of 850 hPa and 500 hPa, respectively, varying by season and intensity, while Ep signatures are prominent between 15.25 km and and 20.77 km, with PLs of 125 hPa and PL 50 hPa, respectively, peaking at 16.58 km and PL 100 hPa for most cyclones, except Cyclone Fani, which peaked at 18.72 km with a PL of 70 hPa. Ep values range from 10 to 25 J/kg, reflecting strong GW–cyclone interactions. These findings highlight the influence of cyclone intensity, seasonality, and atmospheric dynamics on GW behavior, enhancing the understanding of energy transfer processes in the upper troposphere and lower stratosphere. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

18 pages, 4981 KiB  
Article
Exploring the Variability of Three Be Stars with TESS Observations
by Laerte Andrade, Alan W. Pereira, Marcelo Emilio and Eduardo Janot-Pacheco
Universe 2025, 11(2), 71; https://doi.org/10.3390/universe11020071 - 18 Feb 2025
Viewed by 562
Abstract
Be stars are rapidly rotating B-type stars surrounded by circumstellar disks formed from self-ejected material. Understanding the mechanisms driving mass ejection and disk formation, known as the Be phenomenon, requires a detailed investigation of their variability and underlying physical processes. In this study, [...] Read more.
Be stars are rapidly rotating B-type stars surrounded by circumstellar disks formed from self-ejected material. Understanding the mechanisms driving mass ejection and disk formation, known as the Be phenomenon, requires a detailed investigation of their variability and underlying physical processes. In this study, we analyze the photometric, spectroscopic, and seismic characteristics of three Be stars—HD 212044, 28 Cyg, and HD 174237—using high-cadence data from the TESS mission and spectral data from the BeSS database. Photometric variability was analyzed through iterative prewhitening and wavelet techniques, revealing distinct frequency groups associated with non-radial pulsations (NRPs). Spectral data provided equivalent width measurements of the Hα line, which correlated with photometric changes, reflecting dynamic interactions between the stars and their disks. Seismic analysis identified core rotation rates and buoyancy travel times for HD 212044 and 28 Cyg, offering insights into internal stellar processes and angular momentum distribution. HD 212044 exhibits a strong negative correlation between photometric brightness and Hα equivalent width, whereas this correlation is weaker in the case of 28 Cyg. The findings for these two stars highlight the interplay between NRPs, rapid rotation, and circumstellar disk dynamics. In contrast, the case of HD 174237 presents an example of how a binary system with mass transfer and a B-type component is revealed when observed simultaneously with space-based photometry and ground-based spectroscopy, demonstrating the importance of distinguishing classical Be stars from interacting binaries. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

Back to TopTop