Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = high-frequency pCO2 measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6390 KB  
Article
A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP
by Haifu Zhang, Li-Xin Guo, Shubo Dun, Xiaoming Li and Xiaolong Xu
Micromachines 2026, 17(1), 110; https://doi.org/10.3390/mi17010110 - 14 Jan 2026
Viewed by 33
Abstract
This paper presents a compact four-beam dual-polarized phased array with the high performance front-end module based on system-in-package (SiP) technology. By employing high-temperature co-fired ceramic (HTCC) substrates, the proposed design achieves efficient thermal management and high level of integration within a tile-type architecture. [...] Read more.
This paper presents a compact four-beam dual-polarized phased array with the high performance front-end module based on system-in-package (SiP) technology. By employing high-temperature co-fired ceramic (HTCC) substrates, the proposed design achieves efficient thermal management and high level of integration within a tile-type architecture. The front-end module based on SiP can simultaneously generate four independent beams with switchable left- and right-hand circular polarizations, providing flexible beam control. To verify the proposed method, a Ku-band 256-element phased array receiver with four beams has been designed and experimentally verified using HTCC and SiP process. Operating in 14–14.5 GHz, the proposed low-profile array demonstrates stable radiation characteristics, beam pointing accuracy and excellent beam consistency across the entire frequency range. The measurement results confirm that the SiP-based phased array maintains efficient thermal management, high polarization purity and robust beam-scanning capability, validating its suitability for mobile satellite communication. Full article
Show Figures

Figure 1

21 pages, 3780 KB  
Article
Chromatin Nano-Organization in Peripheral Blood Mononuclear Cells After In-Solution Irradiation with the Beta-Emitter Lu-177
by Myriam Schäfer, Razan Muhtadi, Sarah Schumann, Felix Bestvater, Uta Eberlein, Georg Hildenbrand, Harry Scherthan and Michael Hausmann
Biomolecules 2026, 16(1), 142; https://doi.org/10.3390/biom16010142 - 13 Jan 2026
Viewed by 82
Abstract
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated [...] Read more.
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated DSBs (double-strand breaks) in the nuclei of hit cells, the most threatening DNA damage type. That damaging effect contrasts with the clustering of DNA damage and DSBs in nuclei traversed by high-LET particles (α particles, ions, etc.). Methods: After in-solution β-irradiation for 1 h with Lu-177 leading to an absorbed dose of about 100 mGy, we investigated the spatial nano-organization of chromatin at DSB damage sites, of repair proteins and of heterochromatin marks via single-molecule localization microscopy (SMLM) in PBMCs. For evaluation, mathematical approaches were used (Ripley distance frequency statistics, DBScan clustering, persistent homology and similarity measurements). Results: We analyzed, at the nanoscale, the distribution of the DNA damage response (DDR) proteins γH2AX, 53BP1, MRE11 and pATM in the chromatin regions surrounding a DSB. Furthermore, local changes in spatial H3K9me3 heterochromatin organization were analyzed relative to γH2AX distribution. SMLM measurements of the different fluorescent molecule tags revealed characteristic clustering of the DDR markers around one or two damage foci per PBMC cell nucleus. Ripley distance histograms suggested the concentration of MRE11 molecules inside γH2AX-clusters, while 53BP1 was present throughout the entire γH2AX clusters. Persistent homology comparisons for 53BP1, MRE11 and γH2AX by Jaccard index calculation revealed significant topological similarities for each of these markers. Since the heterochromatin organization of cell nuclei determines the identity of cell nuclei and correlates to genome activity, it also influences DNA repair. Therefore, the histone H3 tri methyl mark H3K9me3 was analyzed for its topology. In contrast to typical results obtained through photon irradiation, where γH2AX and H3K9me3 markers were well separated, the results obtained here also showed a close spatial proximity (“co-localization”) in many cases (minimum distance of markers = marker size), even with the strictest co-localization distance threshold (20 nm) for γH2AX and H3K9me3. The data support the results from the literature where only one DSB induced by low-dose low LET irradiation (<100 mGy) can remain without heterochromatin relaxation for subsequent repair. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 482 KB  
Article
Chromatic Asymmetry in Visual Attention: Dissociable Effects of Background Color on Capture and Processing During Reading—An Eye-Tracking Study
by Ana Teixeira, Pedro Martins, Sónia Brito-Costa and Maryam Abbasi
Symmetry 2026, 18(1), 76; https://doi.org/10.3390/sym18010076 - 2 Jan 2026
Viewed by 189
Abstract
Visual attention mechanisms are modulated by chromatic properties of the environment, with significant implications for human–computer interaction, interface design, and cognitive ergonomics. Despite extensive research on color perception, a critical gap remains in understanding how background colors differentially affect initial attentional capture versus [...] Read more.
Visual attention mechanisms are modulated by chromatic properties of the environment, with significant implications for human–computer interaction, interface design, and cognitive ergonomics. Despite extensive research on color perception, a critical gap remains in understanding how background colors differentially affect initial attentional capture versus sustained processing efficiency during text reading. This study investigates how seven different background colors (yellow, orange, red, green, blue, purple, and black) influence visual attention and cognitive load during standardized reading tasks with white text, revealing a fundamental asymmetry in chromatic processing stages. Using high-frequency eye-tracking at 120 Hz with 30 participants in a within-subjects design, we measured time-to-first fixation, total viewing duration, fixation count, and revisitation frequency across chromatic conditions. Non-parametric statistical analyses (Friedman test for omnibus comparisons, Wilcoxon signed-rank test for pairwise comparisons) revealed a systematic dissociation between preattentive capture and sustained processing. Yellow backgrounds enabled the fastest initial attentional capture (0.65 s), while black backgrounds produced the slowest detection (1.75 s). However, this pattern reversed during sustained processing: black backgrounds enabled the shortest total viewing time (0.88 s) through efficient information sampling (median 5.0 fixations), while yellow required the longest viewing duration (1.75 s) with fewer fixations (median 3.0). Statistical comparisons confirmed significant differences across conditions (Friedman test: χ2(6)=138.4154.2, all p<0.001; pairwise comparisons with Bonferroni correction: α=0.0024). We note that luminance and chromatic contrast were not independently controlled, as colors inherently vary in both dimensions in realistic interface design. Consequently, the observed effects reflect the combined influence of hue, saturation, and luminance contrast as they naturally co-occur. These findings reveal a descriptive pattern consistent with functionally distinct mechanisms, where chromatic salience appears to facilitate preattentive capture while luminance contrast appears to determine sustained processing efficiency, with optimal colors for one stage being suboptimal for the other under the present experimental conditions. This observed chromatic asymmetry suggests potential implications for interface design: warm colors like yellow may optimize rapid attention capture for alerts and warnings, while high-contrast combinations like white-on-black may optimize sustained reading efficiency, though these preliminary patterns require validation across diverse contexts. Green and purple backgrounds offer balanced performance across both processing stages, representing near-symmetric solutions suitable for mixed-task interfaces. Given the controlled laboratory setting, university student sample, and 15 s exposure duration, design recommendations should be considered preliminary and validated in diverse real-world contexts. Full article
Show Figures

Figure 1

19 pages, 6978 KB  
Article
Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts
by Konstantinos Michailidis, Andreas Pseftogkas, Maria-Elissavet Koukouli, Christodoulos Biskas and Dimitris Balis
Atmosphere 2026, 17(1), 50; https://doi.org/10.3390/atmos17010050 - 31 Dec 2025
Viewed by 413
Abstract
In January 2025, multiple wildfires erupted across the Los Angeles region, fueled by prolonged dry conditions and intense Santa Ana winds. Southern California has faced increasingly frequent and severe wildfires in recent years, driven by prolonged drought, high temperatures, and the expanding wildland–urban [...] Read more.
In January 2025, multiple wildfires erupted across the Los Angeles region, fueled by prolonged dry conditions and intense Santa Ana winds. Southern California has faced increasingly frequent and severe wildfires in recent years, driven by prolonged drought, high temperatures, and the expanding wildland–urban interface. These fires have caused major loss of life, extensive property damage, mass evacuations, and severe air-quality decline in this densely populated, high-risk region. This study integrates passive and active satellite observations to characterize the spatiotemporal and vertical distribution of wildfire emissions and assesses their impact on air quality. TROPOMI (Sentinel-5P) and the recently launched TEMPO geostationary instrument provide hourly high temporal-resolution mapping of trace gases, including nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde (HCHO), and aerosols. Vertical column densities of NO2 and HCHO reached 40 and 25 Pmolec/cm2, respectively, representing more than a 250% increase compared to background climatological levels in fire-affected zones. TEMPO’s unique high-frequency observations captured strong diurnal variability and secondary photochemical production, offering unprecedented insights into plume evolution on sub-daily scales. ATLID (EarthCARE) lidar profiling identified smoke layers concentrated between 1 and 3 km altitude, with optical properties characteristic of fresh biomass burning and depolarization ratios indicating mixed particle morphology. Vertical profiling capability was critical for distinguishing transported smoke from boundary-layer pollution and assessing radiative impacts. These findings highlight the value of combined passive–active satellite measurements in capturing wildfire plumes and the need for integrated monitoring as wildfire risk grows under climate change. Full article
Show Figures

Figure 1

21 pages, 1696 KB  
Article
A Probabilistic Framework for Reliability Assessment of Active Distribution Networks with High Renewable Penetration Under Extreme Weather Conditions
by Alexander Aguila Téllez, Narayanan Krishnan, Edwin García, Diego Carrión and Milton Ruiz
Energies 2025, 18(24), 6525; https://doi.org/10.3390/en18246525 - 12 Dec 2025
Viewed by 424
Abstract
The rapid growth of distributed photovoltaic (PV) resources is transforming distribution networks into active systems with highly variable net loads, while the rising frequency and severity of extreme weather events is increasing outage risk and restoration challenges. In this context, utilities require reliability [...] Read more.
The rapid growth of distributed photovoltaic (PV) resources is transforming distribution networks into active systems with highly variable net loads, while the rising frequency and severity of extreme weather events is increasing outage risk and restoration challenges. In this context, utilities require reliability assessment tools that jointly represent operational variability and climate-driven stressors beyond stationary assumptions. This paper presents a weather-aware probabilistic framework to quantify the reliability of active distribution networks with high PV penetration. The approach synthesizes realistic residential demand and PV time series at 15-min resolution, models extreme weather as a low-probability/high-impact escalation of component failure rates and restoration uncertainty, and computes IEEE Std 1366–2022 indices (SAIFI, SAIDI, ENS) through Monte Carlo simulation. The methodology is validated on a modified IEEE 33-bus feeder with parameter values representative of urban/suburban overhead networks. Compared with classical reliability modeling, the proposed framework captures in a unified pipeline the joint effects of load/PV stochasticity, weather-dependent failure escalation, and repair-time dispersion, providing a consistent statistical interpretation supported by kernel density estimation and convergence diagnostics. The results show that (i) extreme weather shifts the distributions of SAIFI, SAIDI and ENS to the right and thickens upper tails (higher exceedance probabilities); (ii) PV penetration yields a non-monotonic response with measurable improvements up to intermediate levels and saturation/partial degradation at very high penetrations; and (iii) compound risk is nonlinear, as the mean ENS surface over (rPV,Pext) exhibits a valley at moderate PV and a ridge for large storm probability. A tornado analysis identifies the base failure rate, storm escalation factor and storm exposure as dominant drivers, in line with resilience literature. Overall, the framework provides an auditable, scenario-based tool to co-design DER hosting and resilience investments. Full article
Show Figures

Figure 1

19 pages, 2617 KB  
Article
Snow and Sea Ice Melt Enhance Under-Ice pCO2 Undersaturation in Arctic Waters
by Josefa Verdugo, Eugenio Ruiz-Castillo, Søren Rysgaard, Wieter Boone, Tim Papakyriakou, Nicolas-Xavier Geilfus and Lise Lotte Sørensen
J. Mar. Sci. Eng. 2025, 13(12), 2257; https://doi.org/10.3390/jmse13122257 - 27 Nov 2025
Viewed by 328
Abstract
The decline in Arctic summer sea ice alters air–sea gas exchange. Because the Arctic Ocean accounts for 5%–14% of global oceanic carbon uptake, understanding how sea ice melt impacts the ocean’s carbon sink capacity is central to constraining future fluxes. In this study, [...] Read more.
The decline in Arctic summer sea ice alters air–sea gas exchange. Because the Arctic Ocean accounts for 5%–14% of global oceanic carbon uptake, understanding how sea ice melt impacts the ocean’s carbon sink capacity is central to constraining future fluxes. In this study, we focus on Young Sound-Tyrolerfjord in Northeast Greenland to examine the sea ice−ocean interaction during the transition from melt onset to melt pond drainage. High-frequency measurements of partial pressure of CO2 (pCO2) and seawater physical properties were taken 2.5 m below the sea ice. Our results reveal that pCO2 in the seawater was undersaturated (248–354 μatm) compared to the atmosphere (401 μatm), showing that the seawater has the potential to take up atmospheric CO2 as the sea ice breaks up. The pCO2 undersaturation was attributed to dilution resulting from mixing meltwater from snow and sea ice with the under-ice seawater. Additionally, the drainage of melt pond water that had been in contact with the atmosphere into the under-ice seawater further lowered pCO2. Melt pond drainage represents an initial connection between the atmosphere and under-ice seawater through meter-thick sea ice during the summer thaw. Our study demonstrates that snow and sea ice melt reduce pCO2 in under-ice seawater, enhancing its potential for atmospheric CO2 uptake during sea ice breakup. Full article
Show Figures

Figure 1

22 pages, 2308 KB  
Article
A Rabies Virus Nucleocapsid-like Nanostructure Vaccine Based on Dual-Cationic Lipid Nanoparticles
by Zhixiao Zhang, Jingjing Zhang, Changyong Mu, Kaili Ma, Dongxiu Gao, Chang’e Liu, Lin Feng, Xiaowu Peng, Junbo Si, Hongbing Li, Yanrui Su, Fengyuan Zeng, Liping He, An Wang, Chongying Zhou, Zhenxiao Zhang, Yixuan Wang, Qiuqi Li, Jiahui Li, Shuiyan Zou, Miaomiao Xing, Huijuan Li, Meng Sun, Weijie Chang, Xiaoxia Yu, Junqing Li, Lichun Wang, Yanmei Li, Hongkun Yi, Lichun Zheng, Fuyun He and Qihan Liadd Show full author list remove Hide full author list
Vaccines 2025, 13(12), 1196; https://doi.org/10.3390/vaccines13121196 - 26 Nov 2025
Viewed by 584
Abstract
Background: Rabies virus (RABV) causes approximately 59,000 human deaths annually. Current pre- and post-exposure vaccination relies on inactivated vaccines (INVs) with limited yield and immunogenicity. We engineered a dual-cationic LNP-based nucleocapsid-like nanostructure (NLS) that co-encapsulates RABV G-mRNA and recombinant RABV-N to engage MHC-I/II [...] Read more.
Background: Rabies virus (RABV) causes approximately 59,000 human deaths annually. Current pre- and post-exposure vaccination relies on inactivated vaccines (INVs) with limited yield and immunogenicity. We engineered a dual-cationic LNP-based nucleocapsid-like nanostructure (NLS) that co-encapsulates RABV G-mRNA and recombinant RABV-N to engage MHC-I/II pathways and enhance protection. Methods: A pVAX-RABV-G plasmid containing 5′/3′UTRs, Kozak, and poly(A) was transcribed in vitro. RABV-N with an N-terminal 6× His tag was expressed in E. coli BL21(DE3) and purified by Ni-Sepharose affinity chromatography. Dual-cationic LNPs (DHA, DOTAP Cl, mPEG-DTA2K, DOPC) were formulated by microfluidics at a 4:1 (G-mRNA:RABV-N) mass ratio. Vaccine quality was assessed by encapsulation efficiency, DLS, PDI, zeta potential, and TEM. Mice received empty LNPs, INV, G-mRNA, or NLS under varied schedules and doses. ELISA measured RABV-G/N-IgG; RFFIT determined neutralizing antibody (nAb) titers; ELISPOT quantified CTL response; qPCR assessed T-cell activation genes. On day 35 after the first immunization of vaccines, mice were challenged intramuscularly with 25 LD50 of CVS-24. Results: G-mRNA purity was >95% and drove strong RABV-G expression in 293T cells. Purified RABV-N was approximately 52 kDa, >90% pure, and reactive to anti-His and anti-N antibodies. NLS achieved >95% encapsulation, a diameter of 136.9 nm, PDI 0.09, and a +18.7 mV zeta potential. A single dose yielded approximately 10 IU mL−1 nAb by day 7; two doses peaked at approximately 1000 IU mL−1. Mice showed 100% survival and no viral rebound in brain, spinal cord, and sciatic nerve. NLS induced stronger MHC-I/II-linked cellular immunity and higher RABV G/N-specific IFN-γ spot frequencies than G-mRNA or INV. Conclusions: The dual-antigen NLS vaccine co-delivering G-mRNA and RABV-N via dual-cationic LNPs robustly activates MHC-I/II, rapidly generates high-titer nAb (≥10 IU mL−1 within 1 week), and sustains potent CD8+ CTL and CD4+ Th responses. A two-dose regimen (days 0 and 21) conferred complete protection, supporting the NLS platform as a next-generation rabies vaccine candidate. Full article
(This article belongs to the Special Issue Feature Papers of DNA and mRNA Vaccines)
Show Figures

Figure 1

21 pages, 5452 KB  
Article
Source Apportionment of Urban GHGs in Hong Kong from Regional Transportation Based on Diagnostic Ratio Method
by Yiwei Xu, Jie Wang, Libin Zhu, Aka W. L. Chiu, Wilson B. C. Tsui, Giuseppe Y. H. Mak, Na Ma and Jie Qin
Sustainability 2025, 17(22), 10099; https://doi.org/10.3390/su172210099 - 12 Nov 2025
Viewed by 653
Abstract
Quantifying the regional source of long-lived ozone precursors (especially GHGs) transported to Hong Kong is hampered by sparse observational data and computational limitations. This study introduces an observation-driven analytical framework that integrates a tracer ratio (ethylbenzene/m,p-xylene), wind–source–distance correlations to constrain transport corridors, and [...] Read more.
Quantifying the regional source of long-lived ozone precursors (especially GHGs) transported to Hong Kong is hampered by sparse observational data and computational limitations. This study introduces an observation-driven analytical framework that integrates a tracer ratio (ethylbenzene/m,p-xylene), wind–source–distance correlations to constrain transport corridors, and inventory mapping to determine the province- and sector-specific contributions, operationalized by identifying transport periods from observations, classifying sources with diagnostic ratios into five emission categories, deriving seasonal weighting factors via frequency normalization, mapping high-resolution inventory classes to these categories to restructure sectoral inventories, and combining normalized provincial spatial weights with the restructured inventories to quantify cross-boundary CO2 and CH4 emissions by sector and region. High-resolution measurements were conducted at the Cape D’Aguilar Supersite (CDSS), which showed dominant wintertime regional transport with mean concentrations of 435.29 ± 7.64 ppm (CO2) and 2083.45 ± 56.50 ppb (CH4). Thirteen transport periods were quantitatively analyzed, and province–sector contributions were estimated. The dominant provincial contributors were Guangdong (20.66%), followed by Jiangxi (18.36%) and Zhejiang (11.15%). Motor vehicles (70%), fuel combustion (15%), and solvent use (10%) were the primary contributing sectors. The framework enables province- and sector-specific attribution under stated assumptions and provides a tool for measuring cross-boundary mitigation and developing air quality and climate strategies in monsoon-affected coastal cities. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

16 pages, 1180 KB  
Article
Comparison of Time–Frequency Characteristics of Lower Limb EMG Signals Among Different Foot Strike Patterns During Running Using the EEMD Algorithm
by Shuqiong Shi, Xindi Ni, Loi Ieong, Lei Li and Ye Liu
Life 2025, 15(9), 1386; https://doi.org/10.3390/life15091386 - 1 Sep 2025
Cited by 2 | Viewed by 1253
Abstract
Runners have a high probability of sports injuries due to improper landing patterns. This study aimed to investigate the effects of three different foot strike patterns on lower limb muscle activation in healthy young male university students without specialized sports training experience. Methods: [...] Read more.
Runners have a high probability of sports injuries due to improper landing patterns. This study aimed to investigate the effects of three different foot strike patterns on lower limb muscle activation in healthy young male university students without specialized sports training experience. Methods: Sixteen healthy male college students (age: 21 ± 1 years) participated in this study. They performed running with three different foot strike patterns: forefoot strike (FFS), midfoot strike (MFS), and rearfoot strike (RFS) at controlled speeds of 1.4–1.6 m/s. EMG signals from six lower limb muscles (vastus lateralis, vastus medialis, rectus femoris, tibialis anterior, lateral gastrocnemius, and medial gastrocnemius) during the stance phase were collected using a wireless EMG system (1000 Hz). Ensemble Empirical Mode Decomposition (EEMD) was employed to analyze the time–frequency characteristics of lower limb EMG signals and ankle joint co-activation patterns to investigate the corresponding neuromuscular control mechanisms. Statistical analyses were performed using repeated-measures ANOVA, and significance was set at p < 0.05. Results: The timing of maximum energy in lower limb muscles during the stance phase occurred earlier in RFS compared to FFS and MFS. At initial ground contact, the low-frequency component energy (below 60 Hz) of the medial gastrocnemius was significantly higher in MFS and RFS compared to FFS, while FFS exhibited significantly higher high-frequency component energy (61–200 Hz). The co-activation of ankle dorsiflexors and plantar flexors (TA/GM) was also significantly higher in MFS and RFS compared to FFS. During the 100 ms before foot contact, the low-frequency component energy (below 60 Hz) of the lateral gastrocnemius was significantly higher in MFS compared to FFS, and the degree of TA/GM co-activation was significantly higher in both MFS and RFS compared to FFS. Conclusions: The maximum frequency in lower limb muscles appeared earliest during the mid-stance phase in the rearfoot strike (RFS) pattern. Moreover, during the pre-activation and early stance phases, frequency differences were observed only in the medial gastrocnemius, with RFS showing significantly higher low-frequency power. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

12 pages, 3669 KB  
Article
Development of an Extended-Band mTRL Calibration Kit for On-Wafer Characterization of InP-HEMTs up to 1.1 THz
by Rita Younes, Mahmoud Abou Daher, Mohammed Samnouni, Sylvie Lepilliet, Guillaume Ducournau, Nicolas Wichmann and Sylvain Bollaert
Electronics 2025, 14(17), 3472; https://doi.org/10.3390/electronics14173472 - 29 Aug 2025
Viewed by 925
Abstract
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values [...] Read more.
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values from S-parameters measurements with frequencies up to 1.1 THz and overcome the limitations of the traditional 20 dB/dec extrapolation method using lower-frequency band measurements. Indeed, as the state-of-the-art transistors now exhibit cutoff frequencies exceeding 1 THz, standard low-frequency extrapolation methods become increasingly inaccurate. Full-wave electromagnetic simulations were used to design low-loss coplanar waveguide (CPW) access structures with stable impedance and minimal parasitic effects. These structures were co-fabricated with HEMTs and calibration standards on the same InP substrate. The 2-finger transistor with a 80 nm gate length exhibits a directly measured fT = 320 GHz and fmax = 800 GHz. The technique showed high consistency across six frequency bands and confirms that direct broadband measurement with mTRL improves accuracy. This work highlights the metrological strength of mTRL-based setups for next-generation THz device characterization. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Graphical abstract

10 pages, 677 KB  
Article
Association Between Balance and Hip Muscle Strength in Inline Skaters
by Lara Sánchez Torres, Iván Nácher Moltó, José A. Navia and Javier Reina Abellán
J. Funct. Morphol. Kinesiol. 2025, 10(3), 331; https://doi.org/10.3390/jfmk10030331 - 29 Aug 2025
Viewed by 1649
Abstract
Background: Inline skating has rapidly grown in popularity. Early research primarily focused on injury patterns and protective measures. However, its biomechanical similarity to other skating modalities enables the synthesis of existing evidence, emphasizing key physical attributes essential for performance, namely, balance and [...] Read more.
Background: Inline skating has rapidly grown in popularity. Early research primarily focused on injury patterns and protective measures. However, its biomechanical similarity to other skating modalities enables the synthesis of existing evidence, emphasizing key physical attributes essential for performance, namely, balance and the strength of the hip adductor and abductor muscles. The interaction between these muscle groups in relation to balance has not yet been examined in inline skaters. This study aimed to investigate the relationship between single-leg static balance and the isometric strength of the hip adductors and abductors, including their strength ratio. Methods: A total of 191 amateur inline skaters (aged 18 to 59 years) were evaluated. Balance was assessed through center of pressure displacement using the Footscan® 9 platform, and the maximal isometric strength of the hip adductors and abductors was measured using a handheld dynamometer. A linear regression on the center of pressure (CoP) displacement was performed. Results: Age, sex, and skating frequency were the most influential predictors (p < 0.001), although strength variables also significantly predicted the CoP (p <0.05). Conclusions: Superior balance performance was observed in younger individuals, women, and those practicing five or more days a week. Furthermore, single-leg static balance was associated with an equilibrium between adductor/abductor strength, particularly when a low ratio was accompanied by high levels of hip adductor strength. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

13 pages, 1100 KB  
Article
Acute Effects of Osteopathic Treatment in Long COVID-19 Patients with Fatigue Symptoms: A Randomized, Controlled Trial
by Ulrich M. Zissler, Tino Poehlmann, Rainer Gloeckl, Sami Ibrahim, Kerstin Klupsch, Tessa Schneeberger, Inga Jarosch and Andreas Rembert Koczulla
J. Clin. Med. 2025, 14(17), 6066; https://doi.org/10.3390/jcm14176066 - 27 Aug 2025
Cited by 1 | Viewed by 2115
Abstract
Background: Persistent fatigue is among the most commonly reported symptoms in patients suffering from post-acute sequelae of SARS-CoV-2 infection (long COVID). Autonomic dysfunction, measurable via heart rate variability, has been implicated as a contributing factor. Osteopathic manipulative treatment is a manual therapeutic [...] Read more.
Background: Persistent fatigue is among the most commonly reported symptoms in patients suffering from post-acute sequelae of SARS-CoV-2 infection (long COVID). Autonomic dysfunction, measurable via heart rate variability, has been implicated as a contributing factor. Osteopathic manipulative treatment is a manual therapeutic approach that targets autonomic balance and may offer a novel intervention for long COVID-related fatigue. Methods: In this single-blind, randomized controlled trial, 42 participants (mean age 51 ± 11 years; fatigue severity score: 31 ± 5 points) with long COVID and persistent fatigue ≥12 weeks post-infection were allocated to either a 45 min standardized osteopathic treatment (n = 21) or a sham-treatment group (n = 21). Heart rate variability was assessed using a 10 min resting electrocardiogram before intervention, immediately after, and again 48 h later. The analysis of heart rate variability encompassed time-domain indices, including the root mean square of successive differences, the standard deviation of normal-to-normal intervals, mean heart rate, and mean RR interval. Additionally, frequency-domain measures such as low-frequency, high-frequency, total power, and the LF/HF ratio were considered. Results: The osteopathy group showed a statistically significant increase in root mean square of successive differences post-treatment (p < 0.01), accompanied by a decrease in the stress index (p < 0.05) and an increase in the mean of the standard deviations of RR intervals (p < 0.05). Significant between-group differences were observed for mean heart rate and mean of RR intervals (p < 0.05). Frequency-domain measures also improved significantly from baseline in the intervention group. Outlier patterns suggest potential subgroup effects, possibly due to underlying dysautonomia. Conclusions: A single session of osteopathic treatment significantly enhanced short-term heart rate variability in long COVID patients with fatigue. These findings highlight the potential role of manual autonomic modulation as a supportive therapy in long COVID management. Further research is needed to assess the long-term effects and optimal treatment frequency of osteopathic manipulative treatment in this population. Full article
Show Figures

Figure 1

19 pages, 1579 KB  
Article
Associations Between Occupational Noise Exposure, Aging, and Gender and Hearing Loss: A Cross-Sectional Study in China
by Yixiao Wang, Peng Mei, Yunfei Zhao, Jie Lu, Hongbing Zhang, Zhi Zhang, Yuan Zhao, Baoli Zhu and Boshen Wang
Audiol. Res. 2025, 15(4), 91; https://doi.org/10.3390/audiolres15040091 - 23 Jul 2025
Cited by 2 | Viewed by 3637
Abstract
Background: Hearing loss is increasingly prevalent and poses a significant public health concern. While both aging and occupational noise exposure are recognized contributors, their interactive effects and gender-specific patterns remain underexplored. Methods: This cross-sectional study analyzed data from 135,251 employees in Jiangsu Province, [...] Read more.
Background: Hearing loss is increasingly prevalent and poses a significant public health concern. While both aging and occupational noise exposure are recognized contributors, their interactive effects and gender-specific patterns remain underexplored. Methods: This cross-sectional study analyzed data from 135,251 employees in Jiangsu Province, China. Demographic information, noise exposure metrics, and hearing thresholds were obtained through field measurements, questionnaires, and audiometric testing. Multivariate logistic regression, restricted cubic spline modeling, and interaction analyses were conducted. Machine learning models were employed to assess feature importance. Results: A nonlinear relationship between age and high-frequency hearing loss (HFHL) was identified, with a critical inflection point at 37.8 years. Noise exposure significantly amplified HFHL risk, particularly in older adults (OR = 2.564; 95% CI: 2.456–2.677, p < 0.001), with consistent findings across genders. Men exhibited greater susceptibility at high frequencies, even after adjusting for age and co-exposures. Aging and noise exposure have a joint association with hearing loss (OR = 2.564; 95% CI: 2.456–2.677, p < 0.001) and an interactive association (additive interaction: RERI = 2.075, AP = 0.502, SI = 2.967; multiplicative interaction: OR = 1.265; 95% CI: 1.176–1.36, p < 0.001). And machine learning also confirmed age, gender, and noise exposure as key predictors. Conclusions: Aging and occupational noise exert synergistic effects on auditory decline, with distinct gender disparities. These findings highlight the need for integrated, demographically tailored occupational health strategies. Machine learning approaches further validate key risk factors and support targeted screening for hearing loss prevention. Full article
Show Figures

Figure 1

16 pages, 3582 KB  
Article
Impact of SARS-CoV-2 on Aerobic and Anaerobic Capacity in Professional Ice Hockey Players
by Robert Roczniok, Artur Terbalyan, Przemysław Pietraszewski, Grzegorz Mikrut, Hanna Zielonka, Petr Stastny, Andrzej Swinarew, Daria Manilewska, Kajetan Ornowski, Tomasz Jabłoński and Patrycja Lipińska
J. Clin. Med. 2025, 14(10), 3478; https://doi.org/10.3390/jcm14103478 - 16 May 2025
Cited by 1 | Viewed by 948
Abstract
Background/Objectives: COVID-19 poses significant physiological challenges for athletes, particularly those engaged in high-intensity intermittent sports such as ice hockey. This study aimed to evaluate the impact of SARS-CoV-2 infection—especially symptomatic cases—on aerobic and anaerobic performance in professional ice hockey players. Methods: Fifty athletes [...] Read more.
Background/Objectives: COVID-19 poses significant physiological challenges for athletes, particularly those engaged in high-intensity intermittent sports such as ice hockey. This study aimed to evaluate the impact of SARS-CoV-2 infection—especially symptomatic cases—on aerobic and anaerobic performance in professional ice hockey players. Methods: Fifty athletes from the Polish Hockey League were assigned to three groups: control (CG, n = 13), asymptomatic COVID-19 (NSG, n = 28), and symptomatic COVID-19 with post-infection SpO2 < 90% (WSG, n = 9). Each underwent assessments at three time points—pre-preparatory period 2020/2021, post-preparatory period 2020/2021, and pre-preparatory period 2021/2022. Aerobic capacity was measured via a progressive cycle ergometer test (VO2max, VO2 at lactate threshold [VO2Lt], minute ventilation [V’E], breathing frequency [BF], and lactate clearance rate [ΔLa]), and anaerobic capacity via a 30 s Wingate test (relative mean power). Results: Compared with CG and NSG, symptomatic athletes exhibited significant post-infection declines in VO2max (48.2 ± 2.9 vs. 56.2 ± 6.2 and 54.6 ± 3.9 mL/kg/min; p = 0.006, d = 1.56 vs. CG; p < 0.024, d = 1.79 vs. NSG) and VO2Lt (p < 0.05). Relative mean power also decreased in WSG (p < 0.05). In contrast, CG and NSG improved or maintained these metrics over the same period. Symptomatic players showed elevated BF post infection (p = 0.022, d = 1.72) and reduced V’E (p = 0.035; d = 0.83), while ΔLa was markedly lower (p = 0.0004; d = 2.86). Conclusions: SARS-CoV-2 infection, particularly symptomatic cases, can significantly impair both aerobic and anaerobic capacity in elite hockey players. Targeted recovery protocols are essential for restoring performance in affected athletes. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

25 pages, 2706 KB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Cited by 2 | Viewed by 2126
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

Back to TopTop