Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = high temperature pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1758 KiB  
Article
Microwave Based Non-Destructive Testing for Detecting Cold Welding Defects in Thermal Fusion Welded High-Density Polyethylene Pipes
by Zhen Wang, Chaoming Zhu, Jinping Pan, Ran Huang and Lianjiang Tan
Polymers 2025, 17(15), 2048; https://doi.org/10.3390/polym17152048 - 27 Jul 2025
Viewed by 194
Abstract
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose [...] Read more.
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose significant safety risks. Traditional non-destructive testing (NDT) methods face challenges in detecting cold welding defects due to the polymer’s complex structure and characteristics. This study presents a microwave-based NDT system for detecting cold welding defects in thermal fusion welds of HDPE pipes. The system uses a focusing antenna with a resonant cavity, connected to a vector network analyzer (VNA), to measure changes in microwave parameters caused by cold welding defects in thermal fusion welds. Experiments conducted on HDPE pipes welded at different temperatures demonstrated the system’s effectiveness in identifying areas with a lack of fusion. Mechanical and microstructural analyses, including tensile tests and scanning electron microscopy (SEM), confirmed that cold welding defects lead to reduced mechanical properties and lower material density. The proposed microwave NDT method offers a sensitive, efficient approach for detecting cold welds in HDPE pipelines, enhancing pipeline integrity and safety. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

16 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 198
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

19 pages, 2720 KiB  
Article
Application of Ice Slurry as a Phase Change Material in Mine Air Cooling System—A Case Study
by Łukasz Mika, Karol Sztekler and Ewelina Radomska
Energies 2025, 18(14), 3782; https://doi.org/10.3390/en18143782 - 17 Jul 2025
Viewed by 283
Abstract
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for [...] Read more.
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for the comfort of miners’ work. Typical cooling systems in mines are based on central systems, in which chilled water is generated in the compressor or absorption coolers on the ground and transported via pipelines to the air coolers in the areas of mining. The progressive mining operation causes a gradual increase in the distance between chilled water generators and air coolers, causing a decrease in the efficiency of the entire system and insufficient cooling capacity. As a result, it is necessary to increase the diameter of the chilled water pipelines and increase the cooling capacity of the chillers, which is associated with additional investment and technical problems. One solution to this problem may be the use of so-called ice slurry instead of chilled water in the existing mine cooling system. This article presents the cooling system, located in the mine LW Bogdanka S.A., based on ice slurry. The structure of the system and its key parameters are presented. The results show that switching from cooling water to ice slurry allowed the cooling capacity of the entire system to increase by 50% while maintaining the existing piping. This demonstrates the very high potential for the use of ice slurry, not only in mines, but wherever further increases in piping diameters to maintain the required cooling capacity are not possible or cost-effective. Full article
Show Figures

Figure 1

16 pages, 3030 KiB  
Article
Development of a Mathematical Model for Predicting the Average Molten Zone Thickness of HDPE Pipes During Butt Fusion Welding
by Donghu Zeng, Maksym Iurzhenko and Valeriy Demchenko
Polymers 2025, 17(14), 1932; https://doi.org/10.3390/polym17141932 - 14 Jul 2025
Viewed by 378
Abstract
Currently, the determination of the molten zone thickness in HDPE pipes during butt fusion welding primarily depends on experimental and numerical methods, leading to high costs and reduced efficiency. In this study, a mathematical (MM) model based on Neumann’s solution for the melting [...] Read more.
Currently, the determination of the molten zone thickness in HDPE pipes during butt fusion welding primarily depends on experimental and numerical methods, leading to high costs and reduced efficiency. In this study, a mathematical (MM) model based on Neumann’s solution for the melting of a semi-infinite region was developed to efficiently predict the average molten zone (AMZ) thickness of HDPE pipes under varying heating temperatures and heating times while incorporating the effects of heat convection. Additionally, a two-dimensional CFD model was constructed using finite element analysis (FEA) to validate the MM model. Welding pressure was not considered in this study. The effects of heating temperature, heating time, and heat convection on the AMZ thickness in HDPE pipes were systematically analyzed. The heating temperature at the heated end of HDPE ranged from 190 °C to 350 °C in 20 °C increments, with a temperature of 28 °C as the ambient and initial setting, and the heating time was set to 180 s for both the MM and CFD models. The results demonstrate a strong correlation between the AMZ thickness predictions from the MM and CFD models. The relative error between the MM and CFD models ranges from 0.280% to 10,830% with heat convection and from −2.398% to 8.992% without heat convection. Additionally, for the MM model, the relative error between cases with and without heat convection ranges from 0.243% to 0.433%, whereas for the CFD model, it varies between 1.751% and 3.189%. These findings confirm the reliability of the MM model developed in this study and indicate that thermal convection has a minimal impact on AMZ thickness prediction for large-diameter, thick-walled HDPE pipes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 3913 KiB  
Article
Service-Chain-Driven Communication and Computing Integration Networking: A Case Study of Levee Piping Hazard Inspection via Remote Sensing
by Jing Chen, Lyuzhou Gao, Hongquan Sun, Siquan Yang, Zhonggen Wang, Yuting Wan and Kedi Wang
Sensors 2025, 25(13), 4187; https://doi.org/10.3390/s25134187 - 4 Jul 2025
Viewed by 302
Abstract
Computing power network (CPN) is designed to utilize multi-dimensional resources to complete computing tasks. However, in practical applications, the CPN architecture has difficulty in coordinating cross-domain heterogeneous resources, making it impossible to achieve the real-time and high scalability requirements of computationally intensive and [...] Read more.
Computing power network (CPN) is designed to utilize multi-dimensional resources to complete computing tasks. However, in practical applications, the CPN architecture has difficulty in coordinating cross-domain heterogeneous resources, making it impossible to achieve the real-time and high scalability requirements of computationally intensive and time-sensitive tasks such as levee piping hazard inspection via remote sensing in emergency scenarios. Based on this, we propose a communication and computation integrated network architecture, referred to as (Com)2INet, that integrates “sensing”, “transmission”, and “computation” phases. In the sensing phase, thermal infrared imagery is utilized to retrieve land surface temperature fields through radiative transfer mechanisms, providing a reliable foundation for visual segmentation of piping hazards. In the transmission phase, we adopt the designed multi-path transmission mechanism to promote the efficient data flow across heterogeneous networks. In the computation phase, the proposed SACM algorithm, which is functionally decomposed and implemented as service chains within the proposed network architecture, dynamically processes the retrieved temperature fields to achieve precise hazard identification. This integrated framework ensures seamless interaction between sensing, communication, and computation, addressing the challenges of real-time hazard detection in emergency scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 515
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 422
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

23 pages, 3114 KiB  
Article
Heat Transfer Enhancement in Flue-Gas Systems with Radiation-Intensifying Inserts: An Analytical Approach
by Justina Menkeliūnienė, Rolandas Jonynas, Linas Paukštaitis, Algimantas Balčius and Kęstutis Buinevičius
Energies 2025, 18(13), 3383; https://doi.org/10.3390/en18133383 - 27 Jun 2025
Viewed by 347
Abstract
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative [...] Read more.
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative and convective heat transfer in flue-gas heated channels. A systematic literature review revealed a research gap in understanding the interaction between these mechanisms in flue-gas heat exchangers. To address this, analytical calculations were conducted for two geometries: a radiation-intensifying plate between parallel plates and the same insert in a circular pipe. The analysis covered a range of gas-flue and wall temperatures (560–1460 K and 303–393 K, respectively), flow velocities, and spectral emissivity values. Key performance metrics included Reynolds and Nusselt numbers to assess flow resistance and heat transfer. Results indicated that flue-gas temperature has the most significant effect on total rate of heat transfer, and the insert significantly enhanced radiative heat transfer by over 60%, increasing flow resistance. A local Nusselt number minimum at a length-to-diameter ratio of approximately 26 suggested transitional flow behavior. These results provide valuable insights for the design of high-temperature heat exchangers, with future work planned to validate the findings experimentally. Full article
Show Figures

Figure 1

29 pages, 5956 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection. Part 1—Parametric Study and Computer Simulation
by Veronika Mučková, Daniel Kalús, Simon Muhič, Zuzana Straková, Martina Mudrá, Anna Predajnianska, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 756; https://doi.org/10.3390/coatings15070756 - 25 Jun 2025
Viewed by 510
Abstract
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have [...] Read more.
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have developed a mathematical–physical model of a wall fragment, in which we have analyzed several variants through a parametric study. ATP in the energy function of a thermal barrier (TB) represents a high potential for energy savings. Cold tap water (an average temperature of +6 °C, thermal untreated) in the ATP layer of the investigated building structure increases its thermal resistance by up to 27.24%. The TB’s mean temperature can be thermally adjusted to a level comparable to the heated space (e.g., +20 °C). For the fragment under consideration, optimizing the axial distance between the pipes (in the ATP layer) and the insulation thickness (using computer simulation) reveals that a pipe distance of 150 mm and an insulation thickness of 100 mm are the most suitable. ATP has significant potential in the design of sustainable, resilient, and climate-adaptive buildings, thereby meeting the UN SDGs, in particular the Sustainable Development Goal 7 ‘Affordable and Clean Energy’ and the Goal 13 ‘Climate Action’. Full article
Show Figures

Figure 1

23 pages, 4043 KiB  
Article
Analysis of Flow Distribution and Heat Transfer Characteristics in a Multi-Branch Parallel Liquid Cooling Framework
by Qipeng Li, Yu Wang, Wenhui Tang, Risto Kosonen, Lujiang Xu, Xuejing Yang, Zhengchao Yang and Xiaoyi Sun
Energies 2025, 18(13), 3266; https://doi.org/10.3390/en18133266 - 22 Jun 2025
Viewed by 800
Abstract
The parallel multi-branch pipeline system is usually used for fluid transportation and distribution in the cooling of high-power electronic equipment, especially in radar equipment. Using CFD software, a simulation study was conducted to analyze the fluid flow distribution and heat transfer characteristics within [...] Read more.
The parallel multi-branch pipeline system is usually used for fluid transportation and distribution in the cooling of high-power electronic equipment, especially in radar equipment. Using CFD software, a simulation study was conducted to analyze the fluid flow distribution and heat transfer characteristics within a 6 × 5 parallel multi-branch pipe. This study examined how the dimensions of the fluid channels in the liquid cooling system affected the uniformity of flow distribution and the cooling effectiveness of the system for electronic equipment. The deviation from the design flow rate was used as an evaluation criterion to assess flow distribution uniformity across the branches and components of the multi-branch liquid cooling system. After ensuring uniform flow distribution, the overall heat transfer characteristics of the liquid cooling system were analyzed. The main findings are as follows: by adjusting the flow channel dimensions within the system, the overall flow distribution uniformity increased by 10%, with the deviation from the design flow rate in each T/R component remaining within 20%. The 6 × 5 parallel multi-branch cold plate efficiently cools T/R components with heat flux densities of up to 500 W/cm2, maintaining the maximum component temperature below 358 K. Full article
Show Figures

Figure 1

20 pages, 54673 KiB  
Article
Mechanical Properties of Repaired Welded Pipe Joints Made of Heat-Resistant Steel P92
by Filip Vučetić, Branislav Đorđević, Dorin Radu, Stefan Dikić, Lazar Jeremić, Nikola Milovanović and Aleksandar Sedmak
Materials 2025, 18(12), 2908; https://doi.org/10.3390/ma18122908 - 19 Jun 2025
Viewed by 366
Abstract
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, [...] Read more.
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, and post-weld heat treatment (PWHT), with a particular emphasis on the metallurgical consequences arising from the application of repair welding thermal cycles. Through the analysis of three welding probes—initially welded pipes using the PF (vertical upwards) and PC (horizontal–vertical) welding positions, and a PF-welded pipe undergoing a simulated repair welding (also in the PF position)—the research compares microstructure in the parent material (PM), weld metal (WM), and heat-affected zone (HAZ). Recognizing the practical limitations and challenges associated with achieving complete removal of the original WM under the limited (in-field) repair welding, this study provides a comprehensive comparative analysis of uniaxial tensile properties, impact toughness evaluated via Charpy V-notch testing, and microhardness measurements conducted at room temperature. Furthermore, the research critically analyzes the influence of the complex thermal cycles experienced during both the initial welding and repair welding procedures to elucidate the practical application limits of this high-alloyed, heat-resistant P92 steel in demanding service conditions. Full article
Show Figures

Figure 1

20 pages, 19694 KiB  
Article
Design and Optimization of a Large-Air-Gap Voice Coil Motor with Enhanced Thermal Management for Magnetic Levitation Vibration Isolation in a Vacuum
by Junren Mu and He Zhang
Actuators 2025, 14(6), 301; https://doi.org/10.3390/act14060301 - 19 Jun 2025
Viewed by 419
Abstract
This study presents the design, optimization, and experimental validation of a large-air-gap voice coil motor (LAG-VCM) for high-precision magnetic levitation vibration isolation in vacuum environments. Key challenges arising from a large air gap, including pronounced leakage flux and a reduced flux density, were [...] Read more.
This study presents the design, optimization, and experimental validation of a large-air-gap voice coil motor (LAG-VCM) for high-precision magnetic levitation vibration isolation in vacuum environments. Key challenges arising from a large air gap, including pronounced leakage flux and a reduced flux density, were addressed by employing the equivalent magnetic charge method and the image method for the modeling of permanent magnets. Finite element analysis was applied to refine the motor geometry and obtain high thrust, low ripple, and strong linearity. To mitigate the severe thermal conditions of a vacuum, a heat pipe-based cooling strategy was introduced to efficiently dissipate heat from the coil windings. The experimental results demonstrate that the optimized LAG-VCM delivers a thrust of 277 N with low ripple while effectively maintaining coil temperatures below critical limits for prolonged operation. These findings confirm the suitability of the proposed LAG-VCM for vacuum applications with stringent requirements for both a large travel range and stable, high-force output. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

11 pages, 2726 KiB  
Article
Analysis of Key Material Parameters of Evaporator Wicks and Working Fluids for a Loop Heat Pipe Operating in the Temperature Range of 500–700 K
by Paweł Szymański, Piotr Radomski, Jae-Ho Jeon and Dariusz Mikielewicz
Materials 2025, 18(12), 2798; https://doi.org/10.3390/ma18122798 - 13 Jun 2025
Viewed by 379
Abstract
This study presents a preliminary evaluation of candidate wick material and working fluid for a flat-loop heat pipe (F-LHP) designed to operate within the temperature range of 500–700 K. The selection process considered key thermal and physical parameters, including thermal conductivity, chemical compatibility [...] Read more.
This study presents a preliminary evaluation of candidate wick material and working fluid for a flat-loop heat pipe (F-LHP) designed to operate within the temperature range of 500–700 K. The selection process considered key thermal and physical parameters, including thermal conductivity, chemical compatibility between wick and fluid, capillary pressure generation, pressure drop across the wick structure, and structural integrity at elevated temperatures. A range of metallic and ceramic wick materials, along with suitable high-temperature working fluids, were reviewed and compared based on performance metrics and practical availability. Special attention was given to oxidation and corrosion resistance, capillary performance, and thermal stability under elevated-temperature conditions. Nine different porous wicks with distinct materials and microstructures—differing in pore size, porosity, and permeability—were analyzed in combination with seven different working fluids. The analysis focused on determining which combinations generated the highest capillary pressure and which exhibited the lowest flow resistance due to external flow, thereby enhancing the LHP’s performance. Based on these results, the study identifies the most effective wick–fluid pairings for F-LHP applications, offering an optimal balance of thermal performance and long-term reliability. These findings provide a foundation for further experimental validation and the development of prototypes. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

18 pages, 7993 KiB  
Article
The Influence of Cr2N Addition and Ni/Mn Ratio Variation on Mechanical and Corrosion Properties of HIP-Sintered 316L Stainless Steel
by Minsu Lee, Hohyeong Kim, Seok-Won Son and Jinho Ahn
Materials 2025, 18(12), 2722; https://doi.org/10.3390/ma18122722 - 10 Jun 2025
Viewed by 466
Abstract
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys [...] Read more.
316L stainless steel is widely employed in various industrial sectors, including shipbuilding, offshore plants, high-temperature/high-pressure (HTHP) piping systems, and hydrogen infrastructure, due to its excellent mechanical stability, superior corrosion resistance, and robust resistance to hydrogen embrittlement. This study presents 316L stainless steel alloys fabricated via hot isostatic pressing (HIP), conducted at 1300 °C and 100 MPa for 2 h, incorporating Cr2N powder and an optimized Ni/Mn ratio based on the nickel equivalent (Ni_eq). During HIP, Cr2N decomposition yielded a uniformly refined, dense austenitic microstructure, with enhanced corrosion resistance and mechanical performance. Corrosion resistance was evaluated by potentiodynamic polarization in 3.5 wt.% NaCl after 1 h of OCP stabilization, using a scan range of −0.25 V to +1.5 V (Ag/AgCl) at 1 mV/s. Optimization of the Ni/Mn ratio effectively improved the pitting corrosion resistance and mechanical strength. It is cost-effective to partially substitute Ni with Mn. Of the various alloys, C13Ni-N exhibited significantly enhanced hardness (~30% increase from 158.3 to 206.2 HV) attributable to nitrogen-induced solid solution strengthening. E11Ni-HM exhibited the highest pitting corrosion resistance given the superior PREN value (31.36). In summary, the incorporation of Cr2N and adjustment of the Ni/Mn ratio effectively improved the performance of 316L stainless steel alloys. Notably, alloy E11Ni-HM demonstrated a low corrosion current density of 0.131 μA/cm2, indicating superior corrosion resistance. These findings offer valuable insights for developing cost-efficient, mechanically robust corrosion-resistant materials for hydrogen-related applications. Further research will evaluate alloy resistance to hydrogen embrittlement and investigate long-term material stability. Full article
Show Figures

Figure 1

20 pages, 525 KiB  
Article
Forecasting Robust Gaussian Process State Space Models for Assessing Intervention Impact in Internet of Things Time Series
by Patrick Toman, Nalini Ravishanker, Nathan Lally and Sanguthevar Rajasekaran
Forecasting 2025, 7(2), 22; https://doi.org/10.3390/forecast7020022 - 26 May 2025
Viewed by 1021
Abstract
This article describes a robust Gaussian Prior process state space modeling (GPSSM) approach to assess the impact of an intervention in a time series. Numerous applications can benefit from this approach. Examples include: (1) time series could be the stock price of a [...] Read more.
This article describes a robust Gaussian Prior process state space modeling (GPSSM) approach to assess the impact of an intervention in a time series. Numerous applications can benefit from this approach. Examples include: (1) time series could be the stock price of a company and the intervention could be the acquisition of another company; (2) the time series under concern could be the noise coming out of an engine, and the intervention could be a corrective step taken to reduce the noise; (3) the time series could be the number of visits to a web service, and the intervention is changes done to the user interface; and so on. The approach we describe in this article applies to any times series and intervention combination. It is well known that Gaussian process (GP) prior models provide flexibility by placing a non-parametric prior on the functional form of the model. While GPSSMs enable us to model a time series in a state space framework by placing a Gaussian Process (GP) prior over the state transition function, probabilistic recurrent state space models (PRSSM) employ variational approximations for handling complicated posterior distributions in GPSSMs. The robust PRSSMs (R-PRSSMs) discussed in this article assume a scale mixture of normal distributions instead of the usually proposed normal distribution. This assumption will accommodate heavy-tailed behavior or anomalous observations in the time series. On any exogenous intervention, we use R-PRSSM for Bayesian fitting and forecasting of the IoT time series. By comparing forecasts with the future internal temperature observations, we can assess with a high level of confidence the impact of an intervention. The techniques presented in this paper are very generic and apply to any time series and intervention combination. To illustrate our techniques clearly, we employ a concrete example. The time series of interest will be an Internet of Things (IoT) stream of internal temperatures measured by an insurance firm to address the risk of pipe-freeze hazard in a building. We treat the pipe-freeze hazard alert as an exogenous intervention. A comparison of forecasts and the future observed temperatures will be utilized to assess whether an alerted customer took preventive action to prevent pipe-freeze loss. Full article
(This article belongs to the Section Forecasting in Computer Science)
Show Figures

Figure 1

Back to TopTop