Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = high speed solenoid valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3398 KiB  
Article
Investigation of Factors Influencing Solenoid Valve Speed Response Characteristics of the Common Rail Injector
by Yun Bai, Chengda Du, Qiang Sun, Shi Bu and Ao Wang
Machines 2025, 13(1), 48; https://doi.org/10.3390/machines13010048 - 13 Jan 2025
Viewed by 987
Abstract
The dynamic injection characteristics of high-pressure common rail fuel injection systems are determined by the speed response performance of the solenoid valve. A simulation model has been established for investigating the influence mechanism and change law of characteristic parameters on speed response characteristics [...] Read more.
The dynamic injection characteristics of high-pressure common rail fuel injection systems are determined by the speed response performance of the solenoid valve. A simulation model has been established for investigating the influence mechanism and change law of characteristic parameters on speed response characteristics of the solenoid valve. The speed response characteristics of the solenoid valve, including the average opening speed, the average closing speed, the maximum opening speed, and the maximum closing speed, caused by the changes of characteristic parameters such as pre-tightening force of the solenoid valve spring, mass of the solenoid valve moving parts, diameter of the outflow orifice, diameter of the inflow orifice, diameter of the control piston, and pressure in the common rail, have been studied. The correlation analysis of the influence factors is carried out by using the experimental design method based on the response surface model, and the correlation coefficients between each factor and the speed response characteristics of the solenoid valve are obtained. The results show that both single factors and interaction factors of the parameters are correlated with the speed response characteristics of the solenoid valve. The results of this paper can provide a theoretical reference for the design and optimization of the high-pressure common rail injector. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

20 pages, 5682 KiB  
Article
Modeling and Multi-Objective Optimization Design of High-Speed on/off Valve System
by Yexin Ma, Dongjie Wang and Yang Shen
Appl. Sci. 2024, 14(17), 7879; https://doi.org/10.3390/app14177879 - 4 Sep 2024
Cited by 3 | Viewed by 1409
Abstract
The design of the high-speed on/off valve is challenging due to the interrelated structural parameters of its driving actuator. Hence, this study proposes a multi-objective optimization approach that integrates a backpropagation neural network and artificial fish swarm algorithm optimization techniques to accurately model [...] Read more.
The design of the high-speed on/off valve is challenging due to the interrelated structural parameters of its driving actuator. Hence, this study proposes a multi-objective optimization approach that integrates a backpropagation neural network and artificial fish swarm algorithm optimization techniques to accurately model the electromagnetic solenoid structure. The backpropagation neural network is fitted and trained using simulation data to obtain a reduced-order model of the system, enabling the precise prediction of the system’s output based on the input structural parameters. By employing the artificial fish swarm algorithms, with optimization objectives focusing on the valve’s opening and closing times, a Pareto optimal solution set comprising 30 solutions is generated. Utilizing the optimized structural parameters, a prototype is manufactured and an experimental setup is constructed to verify the dynamic characteristics and flow pressure drop. The high-speed on/off valve achieves an approximate opening and closing time of 3 ms. Notably, the system output predicted using the backpropagation neural network (BPNN) exhibits consistency with the experimental findings, providing a reliable alternative to mathematical modeling. Full article
Show Figures

Figure 1

16 pages, 12845 KiB  
Article
Surface Polishing of an Inconel 625 Bar by a Super-Fast MAF Process for a Solenoid Valve Stem Used in a Hydrogen Tank
by Hwi-Joong Kim, Lida Heng and Sang-Don Mun
Metals 2024, 14(2), 242; https://doi.org/10.3390/met14020242 - 16 Feb 2024
Cited by 4 | Viewed by 1829
Abstract
This study explores a super-fast magnetic abrasive finishing (MAF) process for polishing the surface of an Inconel 625 bar workpiece for a hydrogen solenoid valve stem. The Inconel 625 bar was chosen to replace the existing STS 316 bar material, previously used for [...] Read more.
This study explores a super-fast magnetic abrasive finishing (MAF) process for polishing the surface of an Inconel 625 bar workpiece for a hydrogen solenoid valve stem. The Inconel 625 bar was chosen to replace the existing STS 316 bar material, previously used for a hydrogen solenoid valve stem. The cylindrical surface of Inconel 625 bars was polished by a super-fast MAF process with high rotational speeds of 1000, 5000, 15,000, and 25,000 RPM and a super-strong magnetic field of 550 mT. The polishing characteristics of this process were evaluated according to the type of abrasives, rotational speeds of the workpiece and processing time. As a result, a super-smooth Inconel 625 bar was successfully achieved, with a surface roughness (Ra) reduced from 0.31 μm to 0.02 μm under the optimal conditions (15,000 RPM, CNT particles (0.04 μm), PCD diamond abrasive (1 μm), Fe (#200), 0.5 g of light oil, and 16 min of processing time). Also, the Ansys analysis results showed suitable strain, equivalent stress, and safety factor of the Inconel 625 bar. This confirmed that, after a super-fast MAF process, an Inconel 625 bar is feasible for application in Hydrogen (H2) tanks instead of a conventional STS 316 bar. Full article
Show Figures

Figure 1

18 pages, 6278 KiB  
Article
Research on Multi-Objective Optimization of High-Speed Solenoid Valve Drive Strategies under the Synergistic Effect of Dynamic Response and Energy Loss
by Zhiqing Yu, Li Yang, Jianhui Zhao and Leonid Grekhov
Energies 2024, 17(2), 300; https://doi.org/10.3390/en17020300 - 7 Jan 2024
Cited by 9 | Viewed by 2109
Abstract
Under high-frequency operating conditions, the high-speed solenoid valve (HSV) experiences energy loss and heat generation, which significantly impacts its operational lifetime. Reducing the energy loss of an HSV without compromising its opening response characteristics poses a significant challenge. To address this issue, a [...] Read more.
Under high-frequency operating conditions, the high-speed solenoid valve (HSV) experiences energy loss and heat generation, which significantly impacts its operational lifetime. Reducing the energy loss of an HSV without compromising its opening response characteristics poses a significant challenge. To address this issue, a finite element simulation model of an HSV coupled with a current feedback model is constructed to investigate the synergistic effects of dynamic response and energy loss. Prediction models for the opening response time, HSV driving energy, and Joule energy using a back propagation neural network (BPNN) are established. Furthermore, a multi-objective optimization study on the current driving strategy using a non-dominated sorting genetic algorithm II (NSGA-II) is conducted. After optimization, although there was a 6.24% increase in the opening response time, both HSV drive energy and Joule energy were significantly reduced by 15.67% and 22.49%, respectively. The proposed multi-objective optimization method for an HSV driving strategy holds great significance for improving its working durability. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 5485 KiB  
Article
Eddy Effect and Dynamic Response of High-Speed Solenoid Valve with Composite Iron Core
by Peng Liu, Ruqin Zhang, Qing Zhao and Shijian Peng
Materials 2023, 16(17), 5823; https://doi.org/10.3390/ma16175823 - 25 Aug 2023
Cited by 3 | Viewed by 1783
Abstract
To alleviate the Eddy effect of the high-speed solenoid valve (HSV) and improve its dynamic response speed, a novel HSV with a composite iron core is presented. The time-step finite element method is used to establish and verify the numerical simulation of HSV [...] Read more.
To alleviate the Eddy effect of the high-speed solenoid valve (HSV) and improve its dynamic response speed, a novel HSV with a composite iron core is presented. The time-step finite element method is used to establish and verify the numerical simulation of HSV coupling multiple physical fields. Then, the Eddy effect and dynamic response characteristics of the conventional and composite HSVs are further compared and analyzed. The results showed that the Eddy current loss in the main pole was the largest for the conventional HSV, accounting for 72.5% and 64.4% in the actuation and release processes, respectively. It was found that the Eddy effect of the composite HSV was obviously weakened, and the total Eddy current losses in the actuation and release processes were reduced by 58.8% and 38.7%, respectively. Meanwhile, the actuation response time and release response time of the composite HSV were shortened by 15.6% and 18.5%, respectively. In addition, increasing the peak voltage further shortened the actuation response time of the composite HSV, but had no significant effect on the response time of the conventional HSV. Full article
Show Figures

Figure 1

11 pages, 3549 KiB  
Article
Vibration Analysis of Pulse-Width-Modulated Nozzles in Vineyard Blast Sprayers
by Coral Ortiz, Antonio Torregrosa, Verónica Saiz-Rubio and Francisco Rovira-Más
Horticulturae 2023, 9(6), 703; https://doi.org/10.3390/horticulturae9060703 - 16 Jun 2023
Cited by 3 | Viewed by 1775
Abstract
Spraying systems to protect crops against pests are still necessary to maintain food production at the rates demanded by the current population. However, today, it is crucial to use precision agriculture to reduce the negative effects of pesticides and other agrochemicals such as [...] Read more.
Spraying systems to protect crops against pests are still necessary to maintain food production at the rates demanded by the current population. However, today, it is crucial to use precision agriculture to reduce the negative effects of pesticides and other agrochemicals such as fungicides. In particular, pressure fluctuations related to transient states when using pulse-width-modulated nozzles (PMW) have been reported to decrease the accuracy of preset flow rates in air-assisted orchard sprayers. The objective of this paper is to analyze the vibrations induced in the spraying system of a vineyard blast sprayer controlled by pulse-width-modulated nozzles, considering the instantaneous duty cycle (DC) as the control variable. An air-assisted vineyard sprayer was modified to host 24 solenoid shutoff valves with hollow disc–cone nozzles. A triaxial accelerometer was mounted to track the effect of duty cycle (20%, 30%, 50%, and 70%). In addition to accelerations, high-speed images were recorded, and the pressure according to time and the flow were estimated. The hydraulic system of the sprayer, when controlled in real time by the PWM solenoids, created pulsating impacts at the nozzle level with the same frequency of 10 Hz of the PMW system. The impact effect was significantly higher for low duty cycles under 40% DC. In addition, to demonstrate the inaccuracy of opening and closing the valves at a precisely specified time, this study also confirmed the divergence between the theoretical duty cycles commanded by the sprayer’s control unit and the actual ones measured in real time. The results of the analysis showed the difficulty of opening and closing the valves with precision to obtain accurate duty cycles in the practical implementation of smart sprayers and the importance of understanding the vibration effects of pulses in arrangements of multiple PWM nozzles working simultaneously. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

14 pages, 8180 KiB  
Article
Modelling Vineyard Spraying by Precisely Assessing the Duty Cycles of a Blast Sprayer Controlled by Pulse-Width-Modulated Nozzles
by Verónica Saiz-Rubio, Coral Ortiz, Antonio Torregrosa, Enrique Ortí, Montano Pérez, Andrés Cuenca and Francisco Rovira-Más
Agriculture 2023, 13(2), 499; https://doi.org/10.3390/agriculture13020499 - 20 Feb 2023
Cited by 2 | Viewed by 2284
Abstract
The flowrate control of spraying systems with pulse-width-modulated solenoid valves is currently being implemented for precision herbicide application in commodity crops, but solutions for fruit trees set in orchards that require higher pressures are mostly in the development stage. A reason for this [...] Read more.
The flowrate control of spraying systems with pulse-width-modulated solenoid valves is currently being implemented for precision herbicide application in commodity crops, but solutions for fruit trees set in orchards that require higher pressures are mostly in the development stage. A reason for this has been the higher flowrate and pressure requirements of blast sprayers used for dense canopies typical of high value crops. In the present study, the duty cycles preset by an operator were compared to the actual ones estimated from measuring flowrates. A new developed air-assisted orchard sprayer with shelf hollow disc-cone nozzles was studied, such that flowrates and pressures were registered by a computer for different duty cycles commanded by an operator from 10% to 100% in intervals of 10%. In addition to sensor data, visual assessment was carried out via high-speed video images. The results showed that preset duty cycles were always more than 10% lower than the actual DC estimated from measured flowrates. The effective operational range of the duty cycles went from 20% to 80%. In general, the deviations in transitional periods were higher for lower duty cycles, being difficult to determine the real reduction in flowrate during the transition periods. A correction model has been proposed to adjust the preset duty cycles to make sure that the necessary spray flowrate is released as precisely commanded by prescription maps. Further research will be needed to verify the proper implementation of the developed correction model in field applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Graphical abstract

20 pages, 10748 KiB  
Article
Armature Structure Optimization of Annular Multipole Solenoid Valves Based on Electromagnetic Force Distribution
by Yu Fan, Haonan Wang, Liangtao Xie, Nao Hu and Jianguo Yang
Actuators 2023, 12(2), 54; https://doi.org/10.3390/act12020054 - 26 Jan 2023
Cited by 10 | Viewed by 3186
Abstract
To improve the dynamic response speed of high-speed solenoid valves in electric fuel injection systems of marine diesel engines, a numerical simulation model of the solenoid valve is described in this paper. The accuracy of the simulation model was verified on the test [...] Read more.
To improve the dynamic response speed of high-speed solenoid valves in electric fuel injection systems of marine diesel engines, a numerical simulation model of the solenoid valve is described in this paper. The accuracy of the simulation model was verified on the test bed of the solenoid valve. The effect of the punch position and the size of the dynamic response of the solenoid valve were investigated by using the distribution law of the electromagnetic force in the armature. The results of the test showed that armature drilling in the inter-yoke zone can optimize the solenoid closing response time, but it has little impact on the solenoid opening response time. From this rule, two groove schemes were further designed. Through comparison and calculation, it can be concluded that the fan groove scheme is better than the trapezoidal groove scheme, and that the opening and closing response times of the solenoid valve should be targeted in order to multi-target optimize the fan groove geometric parameters and the armature thickness. The results show that after optimization, the weight of the motion part is reduced by 21.6%, the opening response time of the solenoid valve is reduced by 11.1%, and the closing response time is reduced by 30.0%. While reducing the oil film damping of the armature motion, the overall dynamic response characteristics of the solenoid valve are improved. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

16 pages, 6236 KiB  
Article
Electromagnetic Characteristics Analysis and Structure Optimization of High-Speed Fuel Solenoid Valves
by Liu Yang, Tianxiong Gao, Xinming Du, Fugang Zhai, Chang Lu and Xiangdong Kong
Machines 2022, 10(10), 964; https://doi.org/10.3390/machines10100964 - 21 Oct 2022
Cited by 16 | Viewed by 3651
Abstract
High-speed fuel solenoid valves (HFSVs) are the key control elements of aero-engine vane regulators. A strong electromagnetic force generated from the HFSVs is essential to achieve precise control over timing and quantification for fuel supply. In this paper, the Taguchi method is adopted [...] Read more.
High-speed fuel solenoid valves (HFSVs) are the key control elements of aero-engine vane regulators. A strong electromagnetic force generated from the HFSVs is essential to achieve precise control over timing and quantification for fuel supply. In this paper, the Taguchi method is adopted to improve the HFSV’s static electromagnetic characteristics. First, an electromagnetic model of the HFSV was established and experiments were conducted to modify and validate the model. Effects of key structural factors on the static electromagnetic characteristics of the HFSV are then investigated via the finite element method (FEM). Based on the optimization, an HFSV prototype is finally manufactured and tested. The experiment results are in good agreement with those of the simulations. It provides a significant guideline for the manufacturing process of such HFSVs. Full article
(This article belongs to the Special Issue Advanced Control of Electro-Hydraulic Systems in Industrial Area)
Show Figures

Figure 1

12 pages, 1084 KiB  
Article
Preliminary Evaluation of a Blast Sprayer Controlled by Pulse-Width-Modulated Nozzles
by Enrique Ortí, Andrés Cuenca, Montano Pérez, Antonio Torregrosa, Coral Ortiz and Francisco Rovira-Más
Sensors 2022, 22(13), 4924; https://doi.org/10.3390/s22134924 - 29 Jun 2022
Cited by 6 | Viewed by 2314
Abstract
Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Previous studies have found [...] Read more.
Precision spraying relies on the response of the spraying equipment to the features of the targeted canopy. PWM technology manages the flow rate using a set of electronically actuated solenoid valves to regulate flow rate at the nozzle level. Previous studies have found that PWM systems may deliver incorrect flow rates. The objective of the present study was to characterize the performance of a commercial blast sprayer modified with pulse-width-modulated nozzles under laboratory conditions, as a preliminary step before its further field validation. Four different duty cycles (25 percent, 50 percent, 75 percent and 100 percent) and four different pressures (400 kPa, 500 kPa, 600 kPa and 700 kPa) were combined to experimentally measure the flow rate of each nozzle. Results showed that the PWM nozzles mounted in the commercial blast sprayer, under static conditions, were capable of modulating flow rate according to the duty cycle. However, the reduction of flow rates for the tested duty cycles according to pressure was lower than the percentage expected. A good linear relation was found between the pressure registered by the control system feedback sensor and the pressure measured by a reference conventional manometer located after the pump. High-speed video recordings confirmed the accurate opening and closing of the nozzles according to the duty cycle; however, substantial pressure variations were found at nozzle level. Further research to establish the general suitability of PWM systems for regulating nozzle flow rates in blast sprayers without modifying the system pressure still remains to be addressed. Full article
(This article belongs to the Special Issue Advances in Control and Automation in Smart Agriculture)
Show Figures

Figure 1

20 pages, 7374 KiB  
Article
Dynamic Performance Improvement of Solenoid Screw-In Cartridge Valve Using a New Hybrid Voltage Control
by Zengguang Liu, Linfei Li, Daling Yue, Liejiang Wei, Chao Liu and Xiukun Zuo
Machines 2022, 10(2), 106; https://doi.org/10.3390/machines10020106 - 29 Jan 2022
Cited by 16 | Viewed by 6679
Abstract
Digital hydraulic technology as an emergent and important branch of fluid power offers good prospects for intelligence, integration, and energy saving of hydraulic systems. The high-speed on-off valve (HSV) that is a critical component of digital hydraulics has the drawbacks of specific design, [...] Read more.
Digital hydraulic technology as an emergent and important branch of fluid power offers good prospects for intelligence, integration, and energy saving of hydraulic systems. The high-speed on-off valve (HSV) that is a critical component of digital hydraulics has the drawbacks of specific design, narrow scope of application and high price compared to the commercial solenoid screw-in cartridge valve (SCV) widely used in the hydraulic industry at present. In this paper, a hybrid voltage control strategy composed of the preloading voltage, positive pulse voltage, holding voltage and negative pulse voltage is proposed to enhance the dynamic characteristics of the SCV, which makes it meet the demands of the digital hydraulics and achieve the end of replacing the HSV. Based on the structural analysis of the SCV, a mathematical model of the SCV is deduced. Subsequently, the simulation model of the SCV is developed in AMESim and validated by experimental measurements. The effects of the different duty ratios of the preloading voltage and holding voltage on the dynamic characteristics of SCV are studied, and the dynamic responses of the SCV under the normal voltage, positive and negative pulse and hybrid voltage control strategies are compared. The simulation results indicate that the increment of the preload voltage duty ratio and the reduction of the holding voltage duty ratio are conducive for decreasing the total opening and closing time of the SCV, especially the opening delay and closing delay time. The hybrid voltage control proposed has a better effect in dynamic characteristics than the other two strategies, using which the total opening time of the SCV reduces by 74.24% (from 29.5 ms to 7.60 ms), and the total closing time is drastically squeezed by 92.06% (from 136 ms to 10.8 ms). This provides a technical reference for improving the dynamic response speed of SCVs and popularizing digital hydraulic technology. Full article
Show Figures

Figure 1

15 pages, 45372 KiB  
Article
Effects of Pulse Voltage Duration on Open–Close Dynamic Characteristics of Solenoid Screw-In Cartridge Valves
by Daling Yue, Linfei Li, Liejiang Wei, Zengguang Liu, Chao Liu and Xiukun Zuo
Processes 2021, 9(10), 1722; https://doi.org/10.3390/pr9101722 - 25 Sep 2021
Cited by 15 | Viewed by 3964
Abstract
The hydraulic high-speed on/off valve (HSV)—the critical core component of digital hydraulic technology—has a special structural design and manufacture due to its fast opening and closing, which results in high prices and maintenance costs. The solenoid screw-in cartridge valve (SCV) is widely used [...] Read more.
The hydraulic high-speed on/off valve (HSV)—the critical core component of digital hydraulic technology—has a special structural design and manufacture due to its fast opening and closing, which results in high prices and maintenance costs. The solenoid screw-in cartridge valve (SCV) is widely used in the hydraulic industry because of its merits, such as mature technology, reliable quality, and low cost. The contribution of this study is to replace the high-speed on/off valve with the SCV in some areas of application by introducing positive and negative pulse voltage control for the coil of the SCV, which only modifies the control circuit and needs no change in structure. Based on the analysis of the structure of the SCV, the simulation model was developed in AMESim and validated by experiments to investigate the effects of the pulse voltage duration on the open–close dynamic characteristics and find the optimal pulse voltage duration, so that the SCV can open or close in the shortest time to reduce energy loss as far as possible. The simulation results showed that the positive and negative pulse voltage could quicken the rising or declining speed of the coil current and dramatically decrease the opening and closing delay time. By the experimental comparison with the original control method, the opening time of the SCV decreased from 30 ms to 13 ms, and the closing time was reduced from 139 ms to 14 ms. Full article
Show Figures

Figure 1

22 pages, 3587 KiB  
Article
Control Design and Validation for Floating Piston Electro-Pneumatic Gearbox Actuator
by Adam Szabo, Tamas Becsi and Peter Gaspar
Appl. Sci. 2020, 10(10), 3514; https://doi.org/10.3390/app10103514 - 19 May 2020
Cited by 3 | Viewed by 3253
Abstract
The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system [...] Read more.
The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system with different supply pressures in order to operate under various environmental conditions. Because of the high control frequency domain of the real system, post-modern control methods with high computational demands could not be used as they do not meet real-time requirements on automotive level. During the modeling phase, the essential simplifications are shown with the awareness of the trade-off between calculation speed and numerical accuracy to generate a multi-state piecewise-linear system. Two LTI control methods are introduced, i.e., a PD and an Linear-Quadratic Regulators (LQR) solution, in which the continuous control signals are transformed into discrete voltage solenoid commands for the valves. The validation of both the model and the control system are performed on a real physical implementation. The results show that both modeling and control design are suitable for the control tasks using floating piston cylinders and, moreover, these methods can be extended to electro-pneumatic cylinders with different layouts. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

14 pages, 1833 KiB  
Article
Failure Type Prediction Using Physical Indices and Data Features for Solenoid Valve
by Jun Peng, Xuanheng Tang, Bin Chen, Fu Jiang, Yingze Yang, Rui Zhang, Dianzhu Gao, Xiaoyong Zhang and Zhiwu Huang
Appl. Sci. 2020, 10(4), 1323; https://doi.org/10.3390/app10041323 - 15 Feb 2020
Cited by 11 | Viewed by 5592
Abstract
A high-speed solenoid valve is a key component of the braking system. Accurately predicting the failure type of the solenoid valve is an important guarantee for safe operation of the braking system. However, electrical, magnetic, and mechanical coupling aging mechanism; individual differences; and [...] Read more.
A high-speed solenoid valve is a key component of the braking system. Accurately predicting the failure type of the solenoid valve is an important guarantee for safe operation of the braking system. However, electrical, magnetic, and mechanical coupling aging mechanism; individual differences; and uncertainty of aging processes have remained major challenges. To address this problem, a method combining physical indices and data features is proposed to predict the failure type of solenoid valve. Firstly, the mechanism model of the solenoid valve is established and five physical indices are extracted from the driven current curve. Then, the frequency band energy characteristics are obtained from the current change rate curve of the solenoid valve by wavelet packet decomposition. Combining physical indices and frequency band energy characteristics into a comprehensive feature vector, we applied random forest to both predict and classify the failure type. We generate a data set consisting of 60 high-speed solenoid valves periodically switched under accelerated aging test conditions, including driven current, final failure type, and switching cycles. The prediction result shows that the proposed method achieves 95.95% and 94.68% precision for the two failures using the driven current data of the 3000th cycle and has better prediction performance than other algorithms. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 7437 KiB  
Article
Mathematical Simulations and Analyses of Proportional Electro-Hydraulic Brakes and Anti-Lock Braking Systems in Motorcycles
by Che-Pin Chen and Mao-Hsiung Chiang
Actuators 2018, 7(3), 34; https://doi.org/10.3390/act7030034 - 30 Jun 2018
Cited by 12 | Viewed by 10955
Abstract
In the motorcycle industry, the safety of motorcycles operating at high speeds has received increasing attention. If a motorcycle is equipped with an anti-lock braking system (ABS), it can automatically adjust the size of the brake force to prevent the wheels from locking [...] Read more.
In the motorcycle industry, the safety of motorcycles operating at high speeds has received increasing attention. If a motorcycle is equipped with an anti-lock braking system (ABS), it can automatically adjust the size of the brake force to prevent the wheels from locking and achieve an optimal braking effect, ensuring operation stability. In an ABS, the brake force is controlled by an electro-hydraulic brake (EHB). The control valve inside the EHB was replaced with a proportional valve in this study, which differed from the general use of a solenoid valve. The purpose for this change was to precisely control the brake force and prevent hydraulic pressure oscillating in the piping. This study employed MATLAB/Simulink and block diagrams to establish a complete motorcycle ABS simulation model, including a proportional electro-hydraulic brake (PEHB), motorcycle motion, tire, and controller models. In an analysis of ABS simulation results, when traveling on different road surfaces, the PEHB could effectively reduce braking distance and solve the problem of hydraulic pressure oscillation during braking. The research demonstrated that this proportional pressure control valve can substitute the general solenoid valve in commercial braking systems. This can assist the ABS in achieving more precise slip control and improved motorcycle safety. Full article
(This article belongs to the Special Issue Novel Braking Control Systems)
Show Figures

Figure 1

Back to TopTop