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Abstract: To alleviate the Eddy effect of the high-speed solenoid valve (HSV) and improve its dynamic
response speed, a novel HSV with a composite iron core is presented. The time-step finite element
method is used to establish and verify the numerical simulation of HSV coupling multiple physical
fields. Then, the Eddy effect and dynamic response characteristics of the conventional and composite
HSVs are further compared and analyzed. The results showed that the Eddy current loss in the main
pole was the largest for the conventional HSV, accounting for 72.5% and 64.4% in the actuation and
release processes, respectively. It was found that the Eddy effect of the composite HSV was obviously
weakened, and the total Eddy current losses in the actuation and release processes were reduced by
58.8% and 38.7%, respectively. Meanwhile, the actuation response time and release response time of
the composite HSV were shortened by 15.6% and 18.5%, respectively. In addition, increasing the peak
voltage further shortened the actuation response time of the composite HSV, but had no significant
effect on the response time of the conventional HSV.

Keywords: high-speed solenoid valve; composite iron core; Eddy effect; dynamic response

1. Introduction

As an automatic control component, the high-speed solenoid valve (HSV) has been
widely used in hydraulic and pneumatic fields because of its simple structure, fast response
speed, low price, and high reliability [1–5]. Such applications include the fuel quantity con-
trol of the electronic fuel injection system [6–11], the pressure adjustment of the automobile
brake system [12–14], the process control of material processing [15,16], etc. Faster dynamic
response speeds of HSVs can realize the more accurate adjustment of flow and pressure of
the controlled system [17,18]. Therefore, it is of great significance to improve the dynamic
response characteristics of the HSV. Previously, several academics have achieved significant
advancements in the HSV field.

Fan et al. investigated the effect of the punch position and size on the dynamic response
of the HSV and implemented a multi-objective optimization of the fan groove geometric
parameters and the armature thickness; then, the actuation and release response times
were reduced by 11.1% and 30.0%, respectively [17]. Hung et al. found that optimizing
the coil’s cross-sectional shape and relative position to the plunger can obtain a large
electromagnetic force and short response time for the HSV [19]. Yang et al. analyzed
the effects of key structural factors on the static electromagnetic characteristics of the
HSV and optimized five key influence parameters by the Taguchi method [20]. Li et al.
carried out the multi-objective optimization for the actuation and release response times of
the HSV based on response surface methodology and NSGA-II (non-dominated sorting
genetic algorithm II), and after optimization, the actuation and release response times were
reduced by 17.7% and 37.4%, respectively [21]. Zhao et al. investigated the influence of
the driving current and essential structural parameters on the static electromagnetic force
of the HSV and concluded that the changes in the electromagnetic force were determined
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by the total magnetic reluctance and the range of the driving current [22]. Wang et al.
revealed the influence rules of four parameters (i.e., the firing current, holding current,
spring pre-tightening force, and spring stiffness) on the dynamic response characteristics
of the HSV [23]. Liu et al. proposed a novel HSV with a permanent magnet based on the
principle of the parallel magnetic circuit, and they obtained the optimal design solution by
response surface methodology and a genetic algorithm, significantly reducing the power
consumption and coil loss and improving the dynamic response speed of the HSV [24].

In the above research, the influence and the effect of the optimization of structural and
driving parameters on the dynamic response characteristics of the HSV were studied in
depth. Since the iron core and armature of the HSV are composed of soft magnetic materials
with high magnetic permeability and certain conductive properties, the Eddy effect will
occur in the excitation process of the HSV. This phenomenon inhibits the establishment and
decay of the magnetic field and slows down the growth and decay of the electromagnetic
force, reducing the dynamic response speed of the HSV [25]. Additionally, it generates heat,
reducing the reliability of the system. Therefore, many scholars have paid much attention
to the Eddy effect and its influence on the dynamic response characteristics of the HSV.
Zhao et al. [26], Bai et al. [27], and Tan et al. [28] conducted numerical simulations to find
that the Eddy effect has an important impact on the dynamic response of the HSV. Moreover,
Zhao et al. found that the Eddy effect exerts a greater influence on the actuation response
time than the release response time for the conventional HSV. Bai et al. reported that the
Eddy effect has a larger impact on the release response time than on the actuation response
time for the HSV with a permanent magnet. Meanwhile, Zhao et al. analyzed the influence
of drive voltage and the maintenance current on the Eddy effect and dynamic response,
and they concluded that a high drive voltage and maintenance current could improve the
dynamic response speed of the HSV but would lead to increased Eddy current loss and
reduced energy conversion efficiency [29,30]. Cheng et al. [31,32] and Zhong et al. [33]
established that the Eddy current loss of the HSV can be reduced and its dynamic response
speed can be improved by optimizing the drive strategy. Cheng et al. [34] designed an
HSV with an Fe-based nano-crystalline soft magnetic alloy using metal injection molding
technology, which improved the performance of soft magnetic materials, reduced the Eddy
current loss of the HSV, and improved the dynamic response speed. Dai et al. [35] and
Zhao et al. [25,26] found that grooving on the iron core can suppress the Eddy effect to a
certain extent and enhance the dynamic response speed of the HSV.

In fact, the use of high-resistivity soft magnetic materials has proved the most direct
and simplest way to reduce the Eddy effect. However, not only the growth rate of the
electromagnetic force but also its size would affect the dynamic response speed of the HSV.
The upper limit of the electromagnetic force depends on the saturation flux density of soft
magnetic materials. Thus, the ideal soft magnetic material for the HSV should have high
resistivity and high saturation flux density, but it is difficult to achieve both [36]. Therefore,
in order to further improve the dynamic response speed of HSVs, this paper proposes
a novel HSV with a composite iron core (hereinafter referred to as “composite HSV”),
which combines the characteristics of different soft magnetic materials. Then, the multi-
physics coupling numerical simulation models are established. Finally, the Eddy effect and
dynamic response characteristics of conventional and composite HSVs are compared and
analyzed, and the distribution raw and characteristics of the Eddy current loss of the HSV
are revealed. The findings provide a theoretical reference for the design of an HSV with a
high response and low power consumption and help to improve the control accuracy of a
system controlled by the HSV.

2. Structure and Principle

The structure diagram of the conventional HSV is shown in Figure 1. The key com-
ponents are an iron core, coil, and armature. When the coil is energized, it generates the
working magnetic flux Φ and closes through the iron core, air gap, and armature. The iron
core and armature are magnetized into opposite magnetic poles to produce the electro-
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magnetic force. When the electromagnetic force is greater than the preload force of the
reset spring, the armature begins to move toward the iron core. When the coil is powered
off, the magnetic field between the iron core and the armature fades, and the armature
resets under the action of the reset spring. The structure diagram of the composite HSV
is shown in Figure 2. Therein, the iron core is divided into two parts: the main pole and
the side pole. In this way, the two soft magnetic materials with different characteristics can
be simultaneously used for the iron core. In this paper, the main pole and the side pole
are made of Hiflux 160 mu soft magnetic material with high resistivity and low saturation
magnetic flux density, and CoFe alloy soft magnetic material with low resistivity and high
saturation magnetic flux density, respectively. This strategy can effectively reduce the Eddy
current loss of the HSV and consider both the size and growth rate of the electromagnetic
force, thereby improving the dynamic response speed of the HSV. Table 1 and Figure 3 list
the soft material properties for each component of the conventional and composite HSVs.
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Table 1. Soft material properties of high-speed solenoid valve (HSV).

Soft Magnetic Materials
Properties

Conventional HSV Composite HSVSaturation Magnetic
Flux Density Bs (T)

Electrical Resistivity
σ (µΩm)

CoFe alloy 1.9 0.7 iron core side pole
Hiflux 160 mu [37] 1.5 10,000 - main pole

FeSiCr alloy 1.8 0.6 armature armature

3. Simulation Model
3.1. Model Establishment

The dynamic response characteristic of the HSV depends on the comprehensive action
of circuit, magnetic field, and mechanical movement. The coupling relationship of each field
for the HSV is shown in Figure 4. The circuit provides an excitation current to the magnetic
field, which generates an electromagnetic force for the moving part. The displacement
and speed of the moving part in turn cause the change in the flux linkage rate, which then
causes the change in the excitation current, and so on. The governing equations of each
field are as follows:
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3.1.1. Governing Equations of Circuit

In order to reduce the power consumption of the HSV, the peak-hold drive mode
is implemented, as shown in Figure 5. When a drive voltage is applied to the coil, the
equivalent circuit equation is as follows:

U = Ri +
dψ

dt
(1)

where U denotes the driving voltage [V]; i denotes the coil current [A]; R denotes the coil
resistance [Ω]; Ψ denotes the coil flux [Wb]; and t denotes the time [s].
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3.1.2. Governing Equations of the Magnetic Field

As can be seen from Figure 4, the magnetic field interacts with the circuit and the
mechanical motion, and its governing equations are Maxwell’s equations.

∇×H = J + ∂D
∂t

∇× E = − ∂B
∂t

∇·D = ρ
∇·B = 0

(2)

where H denotes the magnetic field intensity [A/m]; J denotes the conduction current
density [A/m2]; D denotes the electric displacement [C/m]; E denotes the electric field
[V/m]; B denotes the magnetic flux density [T]; and ρ denotes the charge density [C/m3].

The expressions of flux linkage and electromagnetic force by the principle of virtual
work are shown in Equations (3) and (4), respectively.

Ψ =
∫

B · ds (3)

Fmag =
∂

∂z

∫
V

(∫ H

0
B · dH

)
dV

 (4)

where s denotes the magnetic flux area [m2]; Fmag denotes the electromagnetic force acting
on the displacement direction of the armature [N]; z denotes the virtual displacement of
the armature [m]; and V denotes the space wrapping the armature [m3].

3.1.3. Governing Equations of Mechanical Motion

The mechanical motion equation of the HSV is expressed as follows:

m
dv
dt

= Fmag − λv− kx− F0 (5)

where m denotes the mass of the moving part [kg]; x denotes the armature displacement [m];
λ denotes the damping coefficient [Ns/m]; k denotes the stiffness of the return spring
[N/m]; and F0 denotes the preload force of the return spring [N].

The governing Equations (1)~(5) are solved by the time-step finite element method
to obtain the dynamic response characteristics of the HSV. In this paper, ANSYS Maxwell
and ANSYS Simplorer were employed to conduct the co-simulation for solving the above
governing equations [38,39].

3.2. Model Verification

The dynamic characteristic test device of the HSV is shown in Figure 6, which was
composed of a laser displacement sensor, drive control unit, displacement test unit, in-
dustrial computer, power control unit, etc. First, the direction of laser generated by the
laser displacement sensor was adjusted to be consistent with the direction of armature
movement. Then, the drive control unit provided the corresponding current signal (set
by the upper computer software) to the HSV. Under the action of the excitation current,
the armature of the HSV moved. So, the laser displacement sensor output the armature
displacement signal to the displacement test unit and sent it to the upper computer for
display, so that the dynamic response characteristics of the HSV could be obtained. The
power control unit provided the electricity for the test system. To ensure the accuracy of
simulation results, the actual parameters were used as the simulation boundary condi-
tions. The simulation parameters are shown in Table 2. Figure 7 shows the comparison
between the simulation and test results of the conventional HSV. The simulated current
curve and displacement curve were in good agreement with the test results, indicating that
the simulation model had good prediction accuracy.
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diagram of test device.

Table 2. Simulation parameters.

Parameter Value Parameter Value

Peak voltage VP (V) 60 Coil turns N 40
Hold voltage Vh (V) 24 Coil resistance R (Ω) 0.224

First hold pulse tf (ms) 0.58 Mass of the moving part m (kg) 0.0245
Second hold pulse ts (ms) 1.22 Maximum displacement of armature xmax (µm) 127

Peak current Ip (A) 25 Damping coefficient λ (Ns/m) 166
First hold current If (A) 18 Stiffness of the return spring k (N/m) 33,000

Second hold current Is (A) 6 Preload force of the return spring F0 (N) 62
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4. Results and Discussion
4.1. Eddy Effect Analysis

As can be seen from Figures 8 and 9, the Eddy current loss of the conventional HSV
was mainly concentrated in the main pole; its value in the main pole was 72.5% and 64.4%
in the actuation and release processes, respectively. As can be seen from Equation (6) [40],
because the main pole of the composite HSV was made of the soft magnetic material with
high resistivity, its Eddy effect was significantly weakened. The Eddy current loss of the
composite HSV was mainly concentrated in the side pole. The Eddy current loss here was
74.5% and 74.6% during the actuation and release processes, respectively. Compared with
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the conventional HSV, the total Eddy current loss in the actuation and release processes
was reduced by 58.8% and 38.7%, respectively.

Pe ∝
1
σ

f 2B2
m (6)

where Pe represents the Eddy current loss power [W]; σ denotes the resistivity [Ωm];
f denotes the frequency of magnetic field changes [Hz]; and Bm is the amplitude of the
magnetic flux density [T].
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In addition, due to the weakening of the Eddy effect in the main pole of the composite
HSV, the magnetic flux density of the side pole and the armature increased at a rate that
became higher in the actuation process. The magnetic flux density decreased rapidly in
the release process, resulting in an increased Eddy current loss in the two components
compared with the conventional HSV. Figure 10 shows the distribution of the average Eddy
current loss density of the HSVs in the actuation and release processes.
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4.2. Dynamic Response Analysis

As can be seen from Figure 11, compared with the conventional HSV, the dynamic
response speed of the composite HSV was significantly improved; its actuation response
time tc and release response time to were shortened by 15.6% and 18.5%, respectively. The
overall Eddy effect of the composite HSV was weakened, which sped up the establishment
and decay of the magnetic field (as shown in Figure 12), thus accelerating the increase in
and decay rate of the electromagnetic force acting on the armature. Therefore, the dynamic
response speed of the composite HSV was improved. On the other hand, because the
saturation magnetic flux density of Hiflux 160 mu soft magnetic material is lower than that
of CoFe alloy soft magnetic material, it was easier for the magnetic field of the main pole of
the composite HSV to approach the saturation state, increasing the overall reluctance of the
system. This led to a lower electromagnetic force acting on the armature in the actuation
and maintenance stages than that of the conventional HSV. However, it still exceeded the
spring preload by 26.9%, which can stably maintain the solenoid valve open.
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and thereby, the actuation response speed of composite HSV can be further improved.
Figures 13–16 show the dynamic response characteristics of the conventional and compos-
ite HSVs under different peak voltages. As can be seen from Figure 13, with the increase in
peak voltage, the actuation response time of the conventional HSV gradually increased,
while the release response time gradually decreased, but the overall impact was not obvious.
For the composite HSV, with the increase in peak voltage, the actuation response time
began to decrease significantly and then changed not obviously, and the release response
time also gradually shortened, but the change was not obvious. This is because, with the
increase in the peak voltage, the growth rate of the drive current became faster, so that the
growth rate of the electromagnetic force was also faster at the initial stage; at the same time,
due to the relatively low resistivity of the soft magnetic material of the iron core for the
conventional HSV, a strong Eddy current was generated during the process of rapid current
rise, and a higher peak voltage led to a stronger Eddy effect (as shown in Figure 14a). So,
the drive current dropped faster when the drive current entered the first hold current stage
from the peak current, and the drive current was smaller at the beginning of the first hold
current stage (as shown in Figure 15a). Therefore, at the actuation stage, the electromag-
netic force of the conventional HSV increased first, and then decreased with the increase
in peak voltage, but the difference was not obvious (as shown in Figure 16a). Although
the electromagnetic force increased in the early actuation stage, its action time was short,
so the actuation response time of the conventional HSV still showed an increasing trend
with the increase in peak voltage. For the composite HSV, a soft magnetic material with
high resistivity was applied to its iron core, and the Eddy effect generated during the
process of rapid current rise was weaker than that of the conventional HSV (as shown
in Figure 14); then, the drive current was maintained at the set hold current value when
the drive current entered the first hold current stage from the peak current (as shown in
Figure 15b). Meanwhile, due to the increase in peak voltage, the rising speed of the current
was accelerated, and the Eddy current loss of the composite HSV was relatively small, so
that the electromagnetic force during the actuation process increased with the increase in
peak voltage (as shown in Figure 16b), and the actuation response time was shortened.
Finally, when the coil was powered off, the higher peak voltage resulted in a faster current
drop as the coil discharged to the peak voltage source. As a result, with the increase in
peak voltage, the electromagnetic force decayed faster, and the release response times of
the conventional and composite HSVs gradually decreased.
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Figure 13. Positions of HSVs at different peak voltages: (a) conventional HSV; (b) composite HSV.
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Figure 14. Eddy losses of HSVs at different peak voltages: (a) conventional HSV; (b) composite HSV.
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Figure 15. Current signals of HSVs at different peak voltages: (a) conventional HSV; (b) composite HSV.
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Figure 16. Electromagnetic forces of HSVs at different peak voltages: (a) conventional HSV;
(b) composite HSV.

5. Conclusions

In this paper, a novel HSV with a composite iron core is proposed, which combines
the characteristics of different soft magnetic materials. The test data showed that the
Eddy current loss of the conventional HSV was mainly concentrated in the main pole,
while the Eddy current loss of the composite HSV was mainly concentrated in the side
pole. Compared with the conventional HSV, the total Eddy current loss of the composite
HSV in the actuation and release processes was reduced by 58.8% and 38.7%, respec-
tively. Meanwhile, the dynamic response speed of the composite HSV was significantly
improved, and the actuation response time and the release response time were shortened by
15.6% and 18.5%, respectively. In addition, increasing the peak voltage further shortened
the actuation response time of the composite HSV, but had no significant effect on the
response time of the conventional HSV.

The optimization of the composite HSV should be the object of future studies. Addi-
tionally, the design concept of the composite iron core could also be extended to improve
other types of solenoid valves.
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