Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = high power pulsed magnetron sputtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 980 KiB  
Review
Recent Advances in Magnetron Sputtering: From Fundamentals to Industrial Applications
by Przemyslaw Borowski and Jaroslaw Myśliwiec
Coatings 2025, 15(8), 922; https://doi.org/10.3390/coatings15080922 - 7 Aug 2025
Abstract
Magnetron Sputter Vacuum Deposition (MSVD) has undergone significant advancements since its inception. This review explores the evolution of MSVD, encompassing its fundamental principles, various techniques (including reactive sputtering, pulsed magnetron sputtering, and high-power impulse magnetron sputtering), and its wide-ranging industrial applications. While detailing [...] Read more.
Magnetron Sputter Vacuum Deposition (MSVD) has undergone significant advancements since its inception. This review explores the evolution of MSVD, encompassing its fundamental principles, various techniques (including reactive sputtering, pulsed magnetron sputtering, and high-power impulse magnetron sputtering), and its wide-ranging industrial applications. While detailing the advantages of high deposition rates, versatility in material selection, and precise control over film properties, the review also addresses inherent challenges such as low target utilization and plasma instability. A significant portion focuses on the crucial role of MSVD in the automotive industry, highlighting its use in creating durable, high-quality coatings for both aesthetic and functional purposes. The transition from traditional electroplating methods to more environmentally friendly MSVD techniques is also discussed, emphasizing the growing demand for sustainable manufacturing processes. This review concludes by summarizing the key advancements, remaining challenges, and potential future trends in magnetron sputtering technologies. Full article
(This article belongs to the Special Issue Magnetron Sputtering Coatings: From Materials to Applications)
Show Figures

Graphical abstract

16 pages, 2516 KiB  
Article
Study of the Friction Contact of HIPIMS Magnetron-Sputtered TiB2 Against Aluminium at Temperatures up to 300 °C
by Gonzalo G. Fuentes, Marya Baloch, José Fernández Palacio, Pablo Amezqueta, Rebeca Bueno, Jonathan Fernández de Ara, Herbert Gabriel, Cayetano Hernández, Pilar Prieto and Germán Alcalá
Materials 2025, 18(13), 2975; https://doi.org/10.3390/ma18132975 - 23 Jun 2025
Viewed by 631
Abstract
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron [...] Read more.
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron Probe Micro-Analysis, nanoindentation and friction tests. Sliding friction analyses were performed against aluminium surfaces at different temperatures, ranging from room temperature to 300 °C. The TiB2 coatings exhibited hardness values of about 39 GPa, regardless of the bias potential used between −50 V and −100 V, a low modulus of around 300 GPa and a dense compact columnar microstructure with grain sizes between 51 and 68 nm in diameter. The friction behaviour on aluminium produced the transfer of this element to the films, at rates that depended on the test temperature. The TiN and CrN coatings exhibited low–medium adhesion to aluminium at room temperature and severe transfer during the friction tests at 150 °C. In the case of the TiB2 films, the adhesion of aluminium during friction tests was low for temperatures up to 175 °C. In fact, a clear transition of the mild-to-severe adhesion of aluminium on TiB2 was observed in the temperature range of 175 °C to 200 °C for the testing conditions evaluated in this study, which was concomitant with the evolution observed for the friction coefficients. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 4691 KiB  
Article
Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature
by Anna Maria Reider, Ariane Kronthaler, Fabio Zappa, Alexander Menzel, Felix Laimer and Paul Scheier
Surfaces 2025, 8(2), 36; https://doi.org/10.3390/surfaces8020036 - 31 May 2025
Viewed by 815
Abstract
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force [...] Read more.
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), VIS spectroscopy, and four-point-probe measurements. Both deposition modes yield films with low surface roughness, and AFM analysis showed no topographical features indicative of columnar-and-void structures. The films exhibited high optical reflectivity and stable transmittance and reflectance across the visible spectrum. The electric resistivity could be measured even at single nanometer thickness, emphasizing the metallic character of the films and approaching the bulk titanium value at higher film thicknesses. The low power regime of magnetron sputter deposition not only offers the possibility of studying the development of physical characteristics during the growth of ultra-thin films but also provides the advantage of extremely low heat development and no evident mechanical stress on the substrate during the coating process. These results outline a path for low-power DC sputtering as a reliable approach for studying the evolution of functional properties in ultra-thin films and for the gentle fabrication of coatings where thermal stress must be avoided, making the method compatible with temperature-sensitive applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 18986 KiB  
Article
Thermal Modelling of Metals and Alloys Irradiated by Pulsed Electron Beam: Focus on Rough, Heterogeneous and Multilayered Materials
by Andrea Lucchini Huspek, Valentina Mataloni, Ali Mohtashamifar, Luca Paterlini and Massimiliano Bestetti
J. Manuf. Mater. Process. 2025, 9(4), 130; https://doi.org/10.3390/jmmp9040130 - 15 Apr 2025
Viewed by 620
Abstract
Low-Energy High-Current Electron Beam (LEHCEB) is an innovative vacuum technology employed for the surface modification of conductive materials. Surface treatments by means of LEHCEB allow the melting and rapid solidification of a thin layer (up to ~10 μm) of material. The short duration [...] Read more.
Low-Energy High-Current Electron Beam (LEHCEB) is an innovative vacuum technology employed for the surface modification of conductive materials. Surface treatments by means of LEHCEB allow the melting and rapid solidification of a thin layer (up to ~10 μm) of material. The short duration of each pulse (2.5 μs) allows for the generation of high thermal rates, up to 109 K/s. Due to the peculiar features of LEHCEB source, in situ temperature monitoring inside the vacuum chamber is unfeasible, even with the most rapid IR pyrometers available on the market. Therefore, multiphysics simulations serve as a tool for predicting and assessing the thermal effects induced by electron beam irradiation. COMSOL Multiphysics was employed to study the thermal behaviour of metals and alloys at the sub-microsecond time scale by implementing both experimental power time profiles and semi-empirical electron penetration functions. Three case studies were considered: (a) 17-4 PH steel produced by Binder Jetting, (b) biphasic Al-Si13 alloy, and (c) Magnetron Sputtering Nb films on Ti substrate. The influence on the thermal effects of electron accelerating voltage and number of pulses was investigated, as well as the role of the physicochemical properties of the materials. Full article
(This article belongs to the Special Issue New Trends in Precision Machining Processes)
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Characterization of AlCrN Coated on Tungsten Carbide Substrate by a Continuous Plasma Nitriding-HiPIMS Hybrid Process
by Fu-Sen Yang, Yu-Lin Kuo, Jian-Fu Tang, Ting-Wei Liu and Chi-Lung Chang
Coatings 2025, 15(3), 353; https://doi.org/10.3390/coatings15030353 - 19 Mar 2025
Viewed by 546
Abstract
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods [...] Read more.
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods (plasma nitriding and hard coating deposition) in a continuous plasma process to optimize the application and service life of cutting tools. The main feature of this study is to verify the mechanical properties and adhesion strength of nitride tungsten carbide (WC-Co) bulk at a lower temperature (∼300 °C) and shorter time (0.5 to 1.5 h) of PN treatment. After 1.5 h of PN treatment on the WC-Co substrate without subsequent coating, the ultra-thin WNx diffusion interlayer (thickness ∼11.5 nm) on the subsurface was directly observed via TEM analysis, and the types of chemical bonding were confirmed by XPS analysis. Vickers analysis indicated that the surface hardness of the nitrided WC-Co substrate was enhanced by PN treatment from 1534 to 2034 Hv. The AlCrN coating deposited on the nitrided WC-Co substrate significantly enhances the surface mechanical properties, including adhesion strength (increasing from 70 to 150 N), hardness (rising from 2257 to 2568 HV), and wear resistance (with the wear rate decreasing from 14.5 to 3.4 × 10−8 mm3/Nm). Composite surface technology has a high commercial application value because it enhances the value of products under the existing equipment of manufacturers. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

13 pages, 250 KiB  
Review
Exploring the Potential of High-Power Impulse Magnetron Sputtering for Nitride Coatings: Advances in Properties and Applications
by Pooja Sharma, Hongbo Ju, Nuno Miguel Figueiredo and Fábio Ferreira
Coatings 2025, 15(2), 130; https://doi.org/10.3390/coatings15020130 - 23 Jan 2025
Cited by 3 | Viewed by 2287
Abstract
High-Power Impulse Magnetron Sputtering (HiPIMS) has emerged as an excellent technology for producing high-quality nitride coatings, such as aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), and silicon nitride (SiN), and composite nitride coatings such as titanium aluminum nitride (TiAlN), TiAlNiCN, etc. [...] Read more.
High-Power Impulse Magnetron Sputtering (HiPIMS) has emerged as an excellent technology for producing high-quality nitride coatings, such as aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), and silicon nitride (SiN), and composite nitride coatings such as titanium aluminum nitride (TiAlN), TiAlNiCN, etc. These coatings are known for their exceptional hardness, thermal stability, and corrosion resistance. These make them ideal for high-performance applications. HiPIMS distinguishes itself by generating highly ionized plasmas that facilitate intense ion bombardment, leading to nitride films with superior mechanical strength, durability, and enhanced thermal properties compared to traditional deposition techniques. Critical HiPIMS parameters, including pulse duration, substrate bias, and ion energy, are analyzed for their influence on enhancing coating density, adhesion, and hardness. The review contrasts HiPIMS with other deposition methods, highlighting its unique ability to create dense, uniform coatings with improved microstructures. While HiPIMS offers substantial benefits, it also poses challenges in scalability and process control. This review addresses these challenges and discusses hybrid, bipolar, and synchronized HiPIMS solutions designed to optimize nitride coating processes. Hybrid HiPIMS, for instance, combines HiPIMS with other sputtering techniques like DCMS or RF sputtering to achieve balanced deposition rates and high-quality film properties. Bipolar HiPIMS enhances process stability and film uniformity by alternating the polarity, which helps mitigate charge accumulation issues. Synchronized HiPIMS controls precise pulse timing to maximize ion energy impact and improve substrate interaction, further enhancing the structural properties of the coatings. Hence, to pave the way for future research and development in this area, insights of the HiPIMS have been presented that underline the role of HiPIMS in meeting the demanding requirements of advanced industrial applications. Overall, this review article comprehensively analyzes the recent strategies and technological innovations in HiPIMS and highlights the significant potential of HiPIMS for advancing the nitride coating field. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
8 pages, 1408 KiB  
Article
Combinatorial Deposition and Wear Testing of HiPIMS W-C Films
by Joern Kohlscheen and Christian Bareiss
Coatings 2025, 15(1), 115; https://doi.org/10.3390/coatings15010115 - 20 Jan 2025
Cited by 1 | Viewed by 1247
Abstract
We used high-power impulse magnetron sputtering (HiPIMS) to deposit tungsten carbide films for superior wear protection in abrasive environments. In order to sample different W-to-C ratios more efficiently, a combinatorial approach was chosen. A single sputter target with two equal segments was used, [...] Read more.
We used high-power impulse magnetron sputtering (HiPIMS) to deposit tungsten carbide films for superior wear protection in abrasive environments. In order to sample different W-to-C ratios more efficiently, a combinatorial approach was chosen. A single sputter target with two equal segments was used, consisting of an upper tungsten and lower graphite segment. This allowed us to vertically sample various elemental compositions in just one deposition run without creating graphitic nano-layers by rotating the substrate holder. The substrate bias voltage, being one of the most effective process parameters in physical vapor deposition (PVD), was applied in both constant and pulsed modes (the latter synchronized to the target pulse). A direct comparison of the different modes has not been performed so far for HiPIMS W-C (separated W and C targets). The resulting coating properties were mainly analyzed by nano-hardness testing and X-ray diffraction. In general, the W2C phase prevailed in tungsten-rich coatings with pulsed bias, leading to slightly higher tungsten contents. Hardness reached maximum values of up to 35 GPa in the center region between the two segments, where a mix of W2C and WC1-x phases occurs. With pulsed bias, voltage hardnesses are slightly higher, especially for tungsten-rich films. In those cases, compressive stress was also found to be higher when compared to constant bias. Erosive wear testing by blasting with alumina grit showed that the material removal rate followed basically the coating’s hardness but surprisingly reached minimum wear loss for W2C single-phase films just before maximum hardness. In contrast to previous findings, low friction that requires higher carbon contents of at least 50 at. % is not favorable for this type of wear. Full article
Show Figures

Figure 1

27 pages, 5416 KiB  
Review
Recent Advances in Aluminum Nitride (AlN) Growth by Magnetron Sputtering Techniques and Its Applications
by Nabeel Ahmad Khan Jadoon, Vaigunthan Puvanenthiram, Mayada Ahmed Hassan Mosa, Ashutosh Sharma and Kaiying Wang
Inorganics 2024, 12(10), 264; https://doi.org/10.3390/inorganics12100264 - 7 Oct 2024
Cited by 11 | Viewed by 8677
Abstract
This review explores the processes involved in enhancing AlN film quality through various magnetron sputtering techniques, crucial for optimizing performance and expanding their application scope. It presents recent advancements in growing AlN thin films via magnetron sputtering, elucidating the mechanisms of AlN growth [...] Read more.
This review explores the processes involved in enhancing AlN film quality through various magnetron sputtering techniques, crucial for optimizing performance and expanding their application scope. It presents recent advancements in growing AlN thin films via magnetron sputtering, elucidating the mechanisms of AlN growth and navigating the complexities of thin-film fabrication. Emphasis is placed on different sputtering methods such as DC, RF, pulsed DC, and high-power impulse DC, highlighting how tailored sputtering conditions enhance film characteristics in each method. Additionally, the review discusses recent research findings showcasing the dynamic potential of these techniques. The practical applications of AlN thin films, including wave resonators, energy harvesting devices, and thermal management solutions, are outlined, demonstrating their relevance in addressing real-world engineering challenges. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 10556 KiB  
Article
Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films
by Xincheng Liu, Heda Bai, Yongjie Ren, Jin Li and Xiangli Liu
Materials 2024, 17(10), 2342; https://doi.org/10.3390/ma17102342 - 15 May 2024
Cited by 2 | Viewed by 1553
Abstract
High-power pulse magnetron sputtering is a new type of magnetron sputtering technology that has advantages such as high peak power density and a high ionization rate compared to DC magnetron sputtering. In this paper, we report the effects of different pulse widths on [...] Read more.
High-power pulse magnetron sputtering is a new type of magnetron sputtering technology that has advantages such as high peak power density and a high ionization rate compared to DC magnetron sputtering. In this paper, we report the effects of different pulse widths on the current waveform and plasma spectrum of target material sputtering, as well as the structure and properties of Cu films prepared under the same sputtering voltage and duty cycle. Extending the pulse width can make the sputtering enter the self-sputtering (SS) stage and improve the ion quantity of sputtered particles. The Cu film prepared by HiPIMS with long pulse width has higher bond strength and lower electrical resistivity compared to the Cu film prepared by short pulse width. In terms of microstructure, the Cu film prepared by HiPIMS with the long pulse width has a larger grain size and lower micro-surface roughness. When the pulse width is bigger than 200 μs, the microstructure of the Cu film changes from granular to branched. This transformation reduces the interface on the Cu film, further reducing the resistivity of the Cu film. Compared to short pulses, long pulse width HiPIMS can obtain higher quality Cu films. This result provides a new process approach for preparing high-quality Cu films using HiPIMS technology. Full article
Show Figures

Figure 1

13 pages, 10209 KiB  
Article
Plasma Bombardment-Induced Amorphization of (TiNbZrCr)Nx High-Entropy Alloy Nitride Films
by Yantao Li, Donglin Ma, Jun Liang, Deming Huang, Libo Wang, Diqi Ren, Xin Jiang and Yongxiang Leng
Coatings 2024, 14(4), 505; https://doi.org/10.3390/coatings14040505 - 19 Apr 2024
Cited by 5 | Viewed by 1741
Abstract
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. [...] Read more.
The (TiNbZrCr)Nx high-entropy nitride films (HENFs) were prepared by high-power pulsed magnetron sputtering (HPPMS). The effect of the N2 flow rate (FN) on the HPPMS plasma discharge, film composition, microstructure, residual stress, tribological properties, and corrosion resistance was investigated. Results show that, with the increase in FN, plasma discharge is enhanced. Firstly, the introduced N atoms react with Ti, Nb, Cr, and Zr to form an FCC nitride phase structure. Then, with the increase in plasma bombardment on the deposited film, the HENFs undergo amorphization to form an FCC+ amorphous structure, accompanied by a decrease in grain size and a change in the preferred orientation from (1 1 1) to (2 0 0). The HENFs deposited at FN = 8 sccm show the highest hardness of 27.8 GPa. The HENFs deposited at FN = 12 sccm present the best tribological properties, with a low wear rate of 4.0 × 10−6 mm3N−1m−1. The corrosion resistance of the (TiNbZrCr)Nx HENFs shows a strong correlation with the amorphous phase. The corrosion resistance of the FCC nitride film is the worst, and the corrosion resistance gradually increases with the amorphous transformation of the film. Based on the above results, nanocomposite high-entropy films can be prepared using HPPMS technology and exhibit excellent, comprehensive performance. Full article
(This article belongs to the Special Issue Strong, Ductile and Corrosion-Resistant High-Entropy Alloys)
Show Figures

Figure 1

16 pages, 4471 KiB  
Article
Preparation of Alumina Thin Films by Reactive Modulated Pulsed Power Magnetron Sputtering with Millisecond Pulses
by Alexander V. Tumarkin, Dobrynya V. Kolodko, Maksim M. Kharkov, Tatiana V. Stepanova, Andrey V. Kaziev, Nikolay N. Samotaev and Konstantin Yu. Oblov
Coatings 2024, 14(1), 82; https://doi.org/10.3390/coatings14010082 - 7 Jan 2024
Cited by 2 | Viewed by 2027
Abstract
This paper aims to investigate the quality of thin alumina films deposited on glass samples using magnetron sputtering in the reactive modulated pulsed power mode (MPPMS) and evaluate the process productivity. The aluminum target was sputtered in Ar/O2 gas mixtures with different [...] Read more.
This paper aims to investigate the quality of thin alumina films deposited on glass samples using magnetron sputtering in the reactive modulated pulsed power mode (MPPMS) and evaluate the process productivity. The aluminum target was sputtered in Ar/O2 gas mixtures with different fractions of oxygen in the total gas flow, in the fixed pulsed voltage mode. The pulse-on duration was varied between 5 and 10 ms, while the pulse-off time was 100 or 200 ms. The dependences of mass deposition rate and discharge current on the oxygen flow were measured, and the specific deposition rate values were calculated. Prepared coatings had a thicknesses of 100–400 nm. Their quality was assessed by scratch testing and by measuring density, refractory index, and extinction coefficient for different power management strategies. The strong influence of pulse parameters on the coating properties was observed, resulting in a maximum density of 3.6 g/cm3 and a refractive index of 1.68 for deposition modes with higher duty cycle values. Therefore, adjusting the pulse-on and pulse-off periods in MPPMS can be used not only to optimize the deposition rate but also as a tool to tune the optical characteristics of the films. The performance of the studied deposition method was evaluated by comparing the specific growth rates of alumina coatings with the relevant data for other magnetron discharge modes. In MPPMS, a specific deposition rate of 200 nm/min/kW was obtained for highly transparent Al2O3, without using any dedicated feedback loop system for oxygen pressure stabilization, which makes MPPMS superior to short-pulse high-power impulse magnetron sputtering (HiPIMS) modes. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

1 pages, 607 KiB  
Correction
Correction: Li et al. Dry Friction Performances of MoNx Coatings Deposited by High–Power Pulsed Magnetron Sputtering. Magnetochemistry 2023, 9, 60
by Fuqiang Li, Wei Dai, Qimin Wang, Haiqing Li and Zhengtao Wu
Magnetochemistry 2024, 10(1), 3; https://doi.org/10.3390/magnetochemistry10010003 - 29 Dec 2023
Viewed by 1612
Abstract
In the original publication [...] Full article
(This article belongs to the Section Magnetic Field)
Show Figures

Figure 5

17 pages, 7995 KiB  
Article
High-Power Impulse Magnetron Sputter-Deposited Chromium-Based Coatings for Corrosion Protection
by Yen-Chun Liu, Shih-Nan Hsiao, Ying-Hung Chen, Ping-Yen Hsieh and Ju-Liang He
Coatings 2023, 13(12), 2101; https://doi.org/10.3390/coatings13122101 - 18 Dec 2023
Cited by 7 | Viewed by 2453
Abstract
The use of high-power impulse magnetron sputtering (HIPIMS) to deposit chromium-based thin films on brass substrates for the purpose of corrosion-protective coating was investigated. By varying the process parameters (pulse frequency, pulse width and N2 flow rate) and structure design, including single-layer [...] Read more.
The use of high-power impulse magnetron sputtering (HIPIMS) to deposit chromium-based thin films on brass substrates for the purpose of corrosion-protective coating was investigated. By varying the process parameters (pulse frequency, pulse width and N2 flow rate) and structure design, including single-layer and multilayer structures, the obtained results revealed that the Cr-N films deposited through the use of HIPIMS exhibited higher film density and corrosion resistance compared to traditional direct-current magnetron sputtering. Based on the results of a field test using copper-accelerated acetic acid solution, the Cr-N film with a multilayered structure can further extend the time to corrosion onset. This is because the bottom layer in the multilayer structure can block structural defects in the layer above it, effectively reducing the penetration of corrosive agents into the substrate. The high bias voltage, coupled with increased temperature during deposition, led to a dezincification effect, resulting in the reduced adhesion of the film to the substrate and decreased overall corrosion resistance. Full article
Show Figures

Figure 1

15 pages, 12878 KiB  
Article
The Deposition and Properties of Titanium Films Prepared by High Power Pulsed Magnetron Sputtering
by Quanxin Jiang, Donglin Ma, Yantao Li and Changzi Chen
Materials 2023, 16(23), 7294; https://doi.org/10.3390/ma16237294 - 23 Nov 2023
Cited by 7 | Viewed by 2105
Abstract
Titanium thin films are particularly important as electrode layers, barrier layers, or intermediate buffer layers in the semiconductor industry. In order to improve the quality of Ti thin films and the adhesion and diffraction abilities of irregular parts, this paper used high-power pulsed [...] Read more.
Titanium thin films are particularly important as electrode layers, barrier layers, or intermediate buffer layers in the semiconductor industry. In order to improve the quality of Ti thin films and the adhesion and diffraction abilities of irregular parts, this paper used high-power pulsed magnetron sputtering (HPPMS/HiPIMS) to prepare titanium thin films. The effects of different trigger voltages (700 V, 800 V, and 900 V) on plasma properties were studied, and the microstructure, mechanical properties and corrosion resistance of the films were also studied. The results showed that as the voltage increased, the grain size of the thin films gradually increased. The residual stress of the titanium films changed from compressive stress (−333 MPa) to tensile stress (55 MPa) and then to low compressive stress (−178 MPa). The hardness values were 13 GPa, 9.45 GPa and 6.62 GPa, respectively. The wear resistance of the films gradually decreased, while the toughness gradually increased. The corrosion resistance of the films decreased as well. Full article
Show Figures

Figure 1

19 pages, 8992 KiB  
Article
Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process
by Jürgen Guljakow and Walter Lang
Plasma 2023, 6(4), 680-698; https://doi.org/10.3390/plasma6040047 - 20 Nov 2023
Viewed by 2289
Abstract
This work aims to provide information about the deposition of gold via bipolar high-power impulse magnetron sputtering (HIPIMS) in order to identify suitable process parameters. The influences of voltage, pulse length and the kick-pulse on an argon–gold plasma during a bipolar high-power impulse [...] Read more.
This work aims to provide information about the deposition of gold via bipolar high-power impulse magnetron sputtering (HIPIMS) in order to identify suitable process parameters. The influences of voltage, pulse length and the kick-pulse on an argon–gold plasma during a bipolar high-power impulse magnetron sputtering deposition process were analysed via optical emission spectroscopy (OES) and oscilloscope. The voltage was varied between 700 V and 1000 V, the pulse length was varied between 20 µs and 100 µs and the process was observed once with kick-pulse and once without. The influence of the voltage on the plasma was more pronounced than the influence of the pulse width. While the intensity of several Au I lines increased up to 13-fold with increasing voltages, only a less-than linear increase in Au I brightness with time could be identified for changes in pulse length. The intensity of excited argon is only minimally affected by changes in voltages, but follows the evolution of the discharge current, with increasing pulse lengths. Contrary to the excited argon, the intensity emitted by ionized argon grows nearly linearly with voltage and pulse length. The reverse polarised pulse mainly affects the excited argon atoms in the plasma, while the influence on the ionized argon is less pronounced, as can be seen in the the spectra. Unlike the excited argon atoms, the excited gold atoms appear to be completely unaffected by the kick-pulse. No ionization of gold was observed. During the pulse, a strong rarefaction of plasma takes place. Very short pulses of less than 50 µs and high voltages of about 1000 V are to be preferred for the deposition of gold layers. This paper offers a comprehensive overview of the gold spectrum during a HIPIMS process and makes use of optical emission spectroscopy as a simple measuring approach for evaluation of the reverse polarized pulse during a bipolar process. Future uses of the process may include the metallization of polymers. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

Back to TopTop