Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process
Abstract
:1. Introduction
1.1. High-Power Impulse Magnetron Sputtering (HIPIMS)
1.2. Bipolar HIPIMS
1.3. This Work
2. Materials and Methods
3. Results
3.1. Influence of Voltage
3.2. Influence of Pulse Length
3.3. Influence of Kick-Pulse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCMS | Direct Current Magnetron Sputtering |
FAD | Filtered Arc Deposition |
HIPIMS | High Power Magnetron Sputtering |
IPVD | Ionized physical vapour deposition |
OES | Optical Emission Spectroscopy |
PVD | Physical Vapour Deposition |
SEM | Scanning Electron Microscopy |
Appendix A
Wavelength [nm] | 800 V | 900 V | 1000 V |
---|---|---|---|
404 | 2.4 | 4.3 | 6.5 |
406 | 2.8 | 5.1 | 8.1 |
431 | 2.6 | 5.1 | 8.4 |
443 | 2.3 | 4.1 | 6.5 |
449 | 3.2 | 7 | 11.9 |
460 | 2.2 | 3.7 | 5.2 |
479 | 2.7 | 5.1 | 7.8 |
506 | 2.7 | 5.2 | 8.5 |
523 | 3.6 | 7.7 | 13.1 |
565 | 2.4 | 4.6 | 7.4 |
583 | 2.7 | 5.2 | 8.3 |
595 | 2.6 | 5.4 | 9.2 |
627 | 3.4 | 7.5 | 13.2 |
665 | 1.4 | 1.8 | 2.4 |
751 | 1.6 | 2.3 | 3.2 |
References
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.; Canal, C.; et al. The 2022 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Mumtaz, S.; Khan, R.; Rana, J.N.; Javed, R.; Iqbal, M.; Choi, E.H.; Han, I. Review on the Biomedical and Environmental Applications of Nonthermal Plasma. Catalysts 2023, 13, 685. [Google Scholar] [CrossRef]
- Kouznetsov, V.; Macak, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999, 122, 290–293. [Google Scholar] [CrossRef]
- Mozgrin, D.V.; Fetisov, I.; Khodachenko, G. High-current low-pressure quasi-stationary discharge in a magnetic field: Experimental research. Plasma Phys. Rep. 1995, 21, 400–409. [Google Scholar]
- Benzeggouta, D. Etude de Procédés de Dépôts de Films Minces par Décharge Magnétron Fortement Ionisée. Ph.D. Thesis, Université Paris-Sud, Paris, France, 2008. [Google Scholar]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Film. 2006, 513, 1–24. [Google Scholar] [CrossRef]
- Power, R.; Rossnagel, S. PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing; Academic Press: Cambridge, MA, USA, 1999; Volume 26. [Google Scholar]
- Ehiasarian, A.P. High-power impulse magnetron sputtering and its applications. Pure Appl. Chem. 2010, 82, 1247–1258. [Google Scholar] [CrossRef]
- Tiron, V.; Velicu, I.L.; Matei, T.; Cristea, D.; Cunha, L.; Stoian, G. Ultra-short pulse HiPIMS: A strategy to suppress arcing during reactive deposition of SiO2 thin films with enhanced mechanical and optical properties. Coatings 2020, 10, 633. [Google Scholar] [CrossRef]
- Anders, A. Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Technol. 2011, 205, S1–S9. [Google Scholar] [CrossRef]
- Papa, F.; Gerdes, H.; Bandorf, R.; Ehiasarian, A.; Kolev, I.; Braeuer, G.; Tietema, R.; Krug, T. Deposition rate characteristics for steady state high power impulse magnetron sputtering (HIPIMS) discharges generated with a modulated pulsed power (MPP) generator. Thin Solid Film. 2011, 520, 1559–1563. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Brenning, N.; Lundin, D.; Helmersson, U. High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. Vac. Surfaces Film. 2012, 30, 030801. [Google Scholar] [CrossRef]
- Anders, A.; Čapek, J.; Hála, M.; Martinu, L. The ‘recycling trap’: A generalized explanation of discharge runaway in high-power impulse magnetron sputtering. J. Phys. Appl. Phys. 2011, 45, 012003. [Google Scholar] [CrossRef]
- Čapek, J.; Hála, M.; Zabeida, O.; Klemberg-Sapieha, J.; Martinu, L. Steady state discharge optimization in high-power impulse magnetron sputtering through the control of the magnetic field. J. Appl. Phys. 2012, 111, 023301. [Google Scholar] [CrossRef]
- Rossnagel, S.M.; Kaufman, H. Current–voltage relations in magnetrons. J. Vac. Sci. Technol. Vac. Surf. Film. 1988, 6, 223–229. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, D.; Chen, R.; Ke, P.; Odén, M.; Wang, A. Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge mode. Plasma Sources Sci. Technol. 2020, 29, 015013. [Google Scholar] [CrossRef]
- Vetushka, A.; Ehiasarian, A.P. Plasma dynamic in chromium and titanium HIPIMS discharges. J. Phys. Appl. Phys. 2007, 41, 015204. [Google Scholar] [CrossRef]
- Olejnícek, J.; HubiČka, Z.; Kohout, M.; Kšírová, P.; Brunclíková, M.; Kment, Š.; Čada, M.; Darveau, S.A.; Exstrom, C.L. Optical emission spectroscopy of high power impulse magnetron sputtering (HiPIMS) of CIGS thin films. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1666–1669. [Google Scholar]
- Karzin, V.; Karapets, K. Investigation of gas discharge features during HiPIMS using optical emission spectroscopy. Iop Conf. Ser. Mater. Sci. Eng. 2018, 387, 012029. [Google Scholar] [CrossRef]
- Fantz, U. Basics of plasma spectroscopy. Plasma Sources Sci. Technol. 2006, 15, S137. [Google Scholar] [CrossRef]
- Wu, B.; Haehnlein, I.; Shchelkanov, I.; McLain, J.; Patel, D.; Uhlig, J.; Jurczyk, B.; Leng, Y.; Ruzic, D.N. Cu films prepared by bipolar pulsed high power impulse magnetron sputtering. Vacuum 2018, 150, 216–221. [Google Scholar] [CrossRef]
- Fernández-Martínez, I.; Santiago, J.A.; Mendez, Á.; Panizo-Laiz, M.; Diaz-Rodríguez, P.; Mendizábal, L.; Díez-Sierra, J.; Zubizarreta, C.; Monclus, M.A.; Molina-Aldareguia, J. Selective Metal Ion Irradiation Using Bipolar HIPIMS: A New Route to Tailor Film Nanostructure and the Resulting Mechanical Properties. Coatings 2022, 12, 191. [Google Scholar] [CrossRef]
- Batková, Š.; Čapek, J.; Rezek, J.; Čerstvỳ, R.; Zeman, P. Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure, microstructure and mechanical properties of CrN films. Surf. Coat. Technol. 2020, 393, 125773. [Google Scholar] [CrossRef]
- Bai, X.; Cai, Q.; Xie, W.; Zeng, Y.; Zhang, X. Effect of ion control strategies on the deposition rate and properties of copper films in bipolar pulse high power impulse magnetron sputtering. J. Mater. Sci. 2022, 58, 1243–1259. [Google Scholar] [CrossRef]
- Viloan, R.P.B.; Helmersson, U.; Lundin, D. Copper thin films deposited using different ion acceleration strategies in HiPIMS. Surf. Coat. Technol. 2021, 422, 127487. [Google Scholar] [CrossRef]
- Avino, F.; Fonnesu, D.; Koettig, T.; Bonura, M.; Senatore, C.; Fontenla, A.P.; Sublet, A.; Taborelli, M. Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse. Thin Solid Film. 2020, 706, 138058. [Google Scholar] [CrossRef]
- Huber, W.; Houlahan, T.; Jeckell, Z.; Barlaz, D.; Haehnlein, I.; Jurczyk, B.; Ruzic, D.N. Time-resolved electron energy distribution functions at the substrate during a HiPIMS discharge with cathode voltage reversal. Plasma Sources Sci. Technol. 2022, 31, 065001. [Google Scholar] [CrossRef]
- Zanáška, M.; Lundin, D.; Brenning, N.; Du, H.; Dvořák, P.; Vašina, P.; Helmersson, U. Dynamics of bipolar HiPIMS discharges by plasma potential probe measurements. Plasma Sources Sci. Technol. 2022, 31, 025007. [Google Scholar] [CrossRef]
- Michiels, M.; Godfroid, T.; Snyders, R.; Britun, N. A poly-diagnostic study of bipolar high-power magnetron sputtering: Role of electrical parameters. J. Phys. Appl. Phys. 2020, 53, 435205. [Google Scholar] [CrossRef]
- Law, M.A.; Estrin, F.L.; Bowden, M.D.; Bradley, J.W. Diagnosing asymmetric bipolar HiPIMS discharges using laser Thomson scattering. Plasma Sources Sci. Technol. 2021, 30, 105019. [Google Scholar] [CrossRef]
- Hippler, R.; Cada, M.; Hubicka, Z. Time-resolved diagnostics of a bipolar HiPIMS discharge. J. Appl. Phys. 2020, 127, 203303. [Google Scholar] [CrossRef]
- Hippler, R.; Cada, M.; Stranak, V.; Hubicka, Z. Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target. Plasma Sources Sci. Technol. 2019, 28, 115020. [Google Scholar] [CrossRef]
- Guljakow, J.; Lang, W. Adhesion of HIPIMS-Deposited Gold to a Polyimide Substrate. Coatings 2023, 13, 250. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 7 November 2023).
- Yahya, K. Effect of electrode separation in magnetron DC plasma sputtering on grain size of gold coated samples. Iraqi J. Phys. 2017, 15, 202–210. [Google Scholar] [CrossRef]
- Amin, A.; Datta, S.; Keniry, M.; Touhami, A.; Huq, H. Preparation and Characterization of DC Magnetron Sputtered Thin Films of Titanium, Silver, Gold and Their Compound. In Proceedings of the 2022 IEEE Green Technologies Conference (GreenTech), Houston, TX, USA, 30 March–1 April 2022; pp. 136–141. [Google Scholar]
- Dhawan, R.; Yadav, P. Synthesis of Gold Thin Films in Nitrogen Environment by DC Magnetron Sputtering. In Proceedings of the DAE Solid State Physics Symposium, Ranchi, India, 18–22 December 2022; pp. 278–281. [Google Scholar]
- Syed, M.; Glaser, C.; Hynes, C.; Syed, M. Thermal Annealing of Gold Thin Films on the Structure and Surface Morphology Using RF Magnetron Sputtering. J. Mater. Sci. Eng. B 2018, 8, 66–76. [Google Scholar]
- Syed, M.; Caleb, G.; Syed, M. Surface Morphology of Gold Thin Films using RF Magnetron Sputtering. In Proceedings of the 60th Annual Technical Conference, SVC TechCon, Providence, RI, USA, 1 May 2017; Volume 29. [Google Scholar]
- Bendavid, A.; Martin, P.; Wieczorek, L. Morphology and optical properties of gold thin films prepared by filtered arc deposition. Thin Solid Film. 1999, 354, 169–175. [Google Scholar] [CrossRef]
- Huang, S.Y.; Hsieh, P.Y.; Chung, C.J.; Chou, C.M.; He, J.L. Nanoarchitectonics for ultrathin gold films deposited on collagen fabric by high-power impulse magnetron sputtering. Nanomaterials 2022, 12, 1627. [Google Scholar] [CrossRef] [PubMed]
- Cuynet, S.; Lecas, T.; Caillard, A.; Brault, P. An efficient way to evidence and to measure the metal ion fraction in high power impulse magnetron sputtering (HiPIMS) post-discharge with Pt, Au, Pd and mixed targets. J. Plasma Phys. 2016, 82, 695820601. [Google Scholar] [CrossRef]
- Ehiasarian, A.; New, R.; Münz, W.D.; Hultman, L.; Helmersson, U.; Kouznetsov, V. Influence of high power densities on the composition of pulsed magnetron plasmas. Vacuum 2002, 65, 147–154. [Google Scholar] [CrossRef]
- Shimizu, T.; Zanáška, M.; Villoan, R.; Brenning, N.; Helmersson, U.; Lundin, D. Experimental verification of deposition rate increase, with maintained high ionized flux fraction, by shortening the HiPIMS pulse. Plasma Sources Sci. Technol. 2021, 30, 045006. [Google Scholar] [CrossRef]
Wavelength [nm] | 800 V | 900 V | 1000 V |
---|---|---|---|
565.51 | 2.4 | 4.6 | 7.4 |
583.75 | 2.7 | 5.2 | 8.3 |
595.91 | 2.6 | 5.4 | 9.2 |
627.93 | 3.4 | 7.5 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guljakow, J.; Lang, W. Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process. Plasma 2023, 6, 680-698. https://doi.org/10.3390/plasma6040047
Guljakow J, Lang W. Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process. Plasma. 2023; 6(4):680-698. https://doi.org/10.3390/plasma6040047
Chicago/Turabian StyleGuljakow, Jürgen, and Walter Lang. 2023. "Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process" Plasma 6, no. 4: 680-698. https://doi.org/10.3390/plasma6040047
APA StyleGuljakow, J., & Lang, W. (2023). Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process. Plasma, 6(4), 680-698. https://doi.org/10.3390/plasma6040047