Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (117)

Search Parameters:
Keywords = high identity traits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1772 KB  
Article
Species and Functional Trait Determinants of Biochar Carbon Retention: Insights from Uniform Smoldering Experiments
by Jingyuan Wang
Forests 2026, 17(1), 116; https://doi.org/10.3390/f17010116 - 14 Jan 2026
Viewed by 62
Abstract
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar [...] Read more.
Understanding the influence of tree species and their intrinsic traits on biochar yield and carbon retention is essential for optimizing the conversion of biomass to biochar in carbon-negative systems. While it is well-established that pyrolysis temperature and broad feedstock categories significantly affect biochar properties, the extent of species-level variation within woody biomass under standardized pyrolysis conditions remains insufficiently quantified. Here, we synthesized biochar from seven common subtropical tree species at 600 °C under oxygen-limited smoldering conditions and quantified three key indices: biochar yield (Y), carbon recovery efficiency (ηC), and carbon enrichment factor (EC). We further examined the relationships of these indices with feedstock characteristics (initial carbon content, wood density) and functional group identity (conifer vs. broadleaf). Analysis of variance revealed significant interspecific differences in ηC but weaker effects on Y, indicating that species identity primarily governs carbon retention rather than total mass yield. Broadleaf species (Liquidambar formosana, Castanea mollissima) exhibited consistently higher ηC and EC than conifers (Pinus massoniana, P. elliottii), reflecting higher lignin content and wood density that favor aromatic char formation. Principal component and cluster analyses clearly separated coniferous and broadleaf taxa, accounting for over 80% of total variance in carbon-related traits. Regression models showed that feedstock carbon content, biochar carbon content, and wood density together explained 15.5% of the variance in ηC, with feedstock carbon content exerting a significant negative effect, whereas wood density correlated positively with carbon retention. These findings demonstrate that tree species and their functional traits jointly determine carbon fixation efficiency during smoldering. High initial carbon content alone does not guarantee enhanced carbon recovery; instead, wood density and lignin-derived structural stability dominate retention outcomes. Our results underscore the need for trait-based feedstock selection to improve biochar quality and carbon sequestration potential, and provide a mechanistic framework linking species identity, functional traits, and carbon stabilization in biochar production. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 831 KB  
Article
Bullying and Harassment in a University Context: Impact on the Mental Health of Medical Students
by Margarita L. Martinez-Fierro, Lorena Avila-Carrasco, Joselin M. Basconcelos-Sanchez, Isabel Peralta-Trejo, Yolanda Ortiz-Castro, María Elena Luna-Morales, Leticia A. Ramirez-Hernandez, Maria C. Martinez-Vazquez, Mentali Mental Health Collaborative Network and Idalia Garza-Veloz
Psychiatry Int. 2026, 7(1), 8; https://doi.org/10.3390/psychiatryint7010008 - 4 Jan 2026
Viewed by 322
Abstract
Background: Bullying in university settings is a significant yet understudied contributor to psychological distress. Differentiating the sources of victimization, may reveal distinct risk profiles associated with mental health and substance use outcomes. Objective: To evaluate the frequency and risk factors associated [...] Read more.
Background: Bullying in university settings is a significant yet understudied contributor to psychological distress. Differentiating the sources of victimization, may reveal distinct risk profiles associated with mental health and substance use outcomes. Objective: To evaluate the frequency and risk factors associated with bullying victimization among medical students, and to identify associations with mental disorders and substance use. Methods: A nested case–control cohort study was conducted with 124 medical students. Participants completed nine validated psychometric instruments evaluating neurobehavioral traits, emotional distress, substance use, and scholar bullying. Bivariate and multivariate regression models were used to estimate coefficients and odds ratios for key outcomes. Results: 42.7% of the students reported victimization, with teacher harassment (37.1%) more frequent than peer harassment (27.4%); 22.6% experienced both. Teacher harassment was primarily characterized by intentional harm (78%); peer harassment involved abuse of authority (63%). ADHD, severe stress, and substance use were associated with teacher-related victimization, while peer victimization was linked to ADHD, stress, impulsivity, and suicide risk. Childhood abuse, high stress levels, and non-heterosexual orientation as predictors of teacher harassment (p < 0.05). Notably, students with a non-heterosexual orientation were over six times more likely to report teacher harassment, highlighting the disproportionate vulnerability of sexual minorities within academic power dynamics. Conclusions: Teacher- and peer-related harassment are prevalent and often co-occur, with teacher-perpetrated bullying emerging as both more frequent and more strongly associated with mental health and identity-based vulnerabilities. Students with ADHD, high stress levels, and non-heterosexual orientation are at significantly greater risk. These findings emphasize the need for institutional accountability, inclusive academic policies, and targeted mental health support to protect vulnerable students and prevent harm within educational environments. Full article
Show Figures

Figure 1

13 pages, 1218 KB  
Article
Absorptive Roots Prioritize Chemical over Morphological Investment Under Litter Addition in a Qinling Pine–Oak Mixed Forest
by Xuehong Ma, Chengling Gong, Shuiqiang Yu, Jianhui Xue, Qian Wang, Jian Zhou and Weifeng Wang
Plants 2025, 14(24), 3768; https://doi.org/10.3390/plants14243768 - 10 Dec 2025
Viewed by 328
Abstract
The root economics spectrum predicts coordinated trait shifts to a heterogeneous soil environment, yet how roots strategically respond to litter-driven nutrient patches is not fully understood. We conducted a litter addition experiment (CK: 0, Low: 30, Medium: 60, High: 120 g) in a [...] Read more.
The root economics spectrum predicts coordinated trait shifts to a heterogeneous soil environment, yet how roots strategically respond to litter-driven nutrient patches is not fully understood. We conducted a litter addition experiment (CK: 0, Low: 30, Medium: 60, High: 120 g) in a Qinling mixed forest, quantifying root responses of Pinus tabuliformis (Pt) and Quercus aliena var. acuteserrata (Qa). Soil inorganic nitrogen (NH4+-N and NO3-N) increased significantly only under high litter inputs (by 138% and 130%, respectively; p < 0.001), indicating a threshold effect. Root carbon and nitrogen concentration generally increased under the Medium and High litter addition treatments compared to the Low treatments (p < 0.05), while morphological traits remained conservative (p > 0.05). Species identity showed no significant effect in the multivariate root trait syndrome (redundance analysis, p = 0.716), though species-specific responses were observed in the root carbon concentration (Pt: p < 0.05; Qa: n.s.). These results demonstrate a hierarchical foraging strategy where physiological plasticity dominates over morphological change, challenging the root economics spectrum and providing a multidimensional framework for predicting root function in heterogeneous environments. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

34 pages, 1746 KB  
Review
Why “Where” Matters as Much as “How Much”: Single-Cell and Spatial Transcriptomics in Plants
by Kinga Moskal, Marta Puchta-Jasińska, Paulina Bolc, Adrian Motor, Rafał Frankowski, Aleksandra Pietrusińska-Radzio, Anna Rucińska, Karolina Tomiczak and Maja Boczkowska
Int. J. Mol. Sci. 2025, 26(24), 11819; https://doi.org/10.3390/ijms262411819 - 7 Dec 2025
Viewed by 859
Abstract
Plant tissues exhibit a layered architecture that makes spatial context decisive for interpreting transcriptional changes. This review explains why the location of gene expression is as important as its magnitude and synthesizes advances uniting single-cell/nucleus RNA-seq with spatial transcriptomics in plants. Surveyed topics [...] Read more.
Plant tissues exhibit a layered architecture that makes spatial context decisive for interpreting transcriptional changes. This review explains why the location of gene expression is as important as its magnitude and synthesizes advances uniting single-cell/nucleus RNA-seq with spatial transcriptomics in plants. Surveyed topics include platform selection and material preparation; plant-specific sample processing and quality control; integration with epigenomic assays such as single-nucleus Assay for Transposase-Accessible Chromatin using sequencing (ATAC) and Multiome; and computational workflows for label transfer, deconvolution, spatial embedding, and neighborhood-aware cell–cell communication. Protoplast-based single-cell RNA sequencing (scRNA-seq) enables high-resolution profiling but introduces dissociation artifacts and cell-type biases, whereas ingle-nucleus RNA sequencing (snRNA-seq) improves the representation of recalcitrant lineages and reduces stress signatures while remaining compatible with multiomics profiling. Practical guidance is provided for mitigating ambient RNA, interpreting organellar and intronic metrics, identifying doublets, and harmonizing batches across chemistries and studies. Spatial platforms (Visium HD, Stereo-seq, bead arrays) and targeted imaging (Single-molecule fluorescence in situ hybridization (smFISH), Hairpin-chain-reaction FISH (HCR-FISH), Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH)) are contrasted with plant-specific adaptations and integration pipelines that anchor dissociated profiles in anatomical coordinates. Recent atlases in Arabidopsis, soybean, and maize illustrate how cell identities, chromatin accessibility, and spatial niches reveal developmental trajectories and stress responses jointly. A roadmap is outlined for moving from atlases to interventions by deriving gene regulatory networks, prioritizing cis-regulatory targets, and validating perturbations with spatial readouts in crops. Together, these principles support a transition from descriptive maps to mechanism-informed, low-pleiotropy engineering of agronomic traits. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition: 2nd Edition)
Show Figures

Figure 1

16 pages, 1007 KB  
Article
Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism
by Jiayi Chen, Yongmei Wu, Jianhua He, Yaodong Wang, Min Wang, Yifei Lu, Fengming Chen and Yurong Zhao
Nutrients 2025, 17(23), 3648; https://doi.org/10.3390/nu17233648 - 21 Nov 2025
Viewed by 569
Abstract
Objectives: This experiment investigated the response of carcass composition, digestive function, hepatic lipid metabolism, intestinal microbiota, and serum metabolomics to excessive or restrictive dietary energy in Ningxiang pigs. Methods: A total of 36 Ningxiang pigs (210 ± 2 d, 43.26 ± 3.21 kg) [...] Read more.
Objectives: This experiment investigated the response of carcass composition, digestive function, hepatic lipid metabolism, intestinal microbiota, and serum metabolomics to excessive or restrictive dietary energy in Ningxiang pigs. Methods: A total of 36 Ningxiang pigs (210 ± 2 d, 43.26 ± 3.21 kg) were randomly assigned to three treatments (6 pens of 2 piglets each) and fed a control diet (CON, digestive energy (DE) 13.02 MJ/kg,), excessive energy diet (EE, 15.22 MJ/kg), and restrictive energy diet (RE, DE 10.84 MJ/kg), respectively. Results: Results showed that EE significantly increased the apparent digestibility of crude protein and total energy (p < 0.01), as well as the activities of jejunum neutral protease and ileal lipase (p < 0.05). With the increase in energy level, the apparent digestibility of ash, dry matter, and ether extract significantly increased (p < 0.01). RE significantly increased high-density lipoprotein cholesterol (HDL-C) content, significantly decreased triglycerides (TG), free fatty acid (NEFA), and total cholesterol (TC) contents, and up-regulated lipoprotein lipase (LPL) mRNA expression in the liver (p < 0.05). EE significantly increased the hepatosomatic index, the contents of low-density lipoprotein cholesterol (LDL-C) and total bile acids (TBA), and significantly up-regulated the mRNA expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and sterol regulatory element-binding protein-1C (SREBP-1C) in the liver (p < 0.05). The abundance of p_Firmicutes was significantly increased and the abundance of p_Bacteroidetes was significantly decreased in test groups, while the ratio of the two was significantly increased in the RE group (p < 0.05). EE also significantly increased the abundance of g_Clostridium_sensu_stricto_1 (p < 0.05). The identical serum differential metabolites between the EE and RE group belong to phosphatidylcholine (PC), mostly being up-regulated in the EE group and down-regulated in the RE group (p < 0.05), one of which was mapped to the pathway of glycerophospholipid metabolism (KEGG ID: C00157). The relative content of serum trimethylamine N-oxide (TMAO, a microbial metabolite) was significantly decreased in the EE group (p < 0.05). Conclusions: The findings suggest RE had no obvious negative effect on carcass traits of Ningxiang pigs. Apart from exacerbated body fat deposition, EE promoted fat accumulation in the liver by up-regulating the expression of lipogenic genes. Dietary energy changes affect hepatic bile acid metabolism, which may be mediated through the glycerophospholipid metabolism pathway, as well as disturbances in the gut microbiota. Full article
(This article belongs to the Section Prebiotics, Probiotics and Postbiotics)
Show Figures

Figure 1

16 pages, 2754 KB  
Article
Tree Size Inequalities Induced by Stand Age and Functional Trait Identities Control Biomass Productivity Across Stand Types of Temperate Forests in South Korea
by Yong-Ju Lee and Chang-Bae Lee
Forests 2025, 16(12), 1759; https://doi.org/10.3390/f16121759 - 21 Nov 2025
Viewed by 439
Abstract
Enhancing forest biodiversity and carbon sinks in the face of climate change is a high priority on the global agenda. The aim of our study was to explore the feasibility and potential of enhancing biodiversity and stand biomass productivity, which are strongly linked [...] Read more.
Enhancing forest biodiversity and carbon sinks in the face of climate change is a high priority on the global agenda. The aim of our study was to explore the feasibility and potential of enhancing biodiversity and stand biomass productivity, which are strongly linked to forest ecosystem functioning and services in temperate forests. Based on data from the 5th to 7th National Forest Inventory of South Korea, 1760 natural forest plots (0.16 ha) were used, of which 344 plots belonged to conifer stands, 711 plots belonged to broadleaved stands, and 705 plots belonged to mixed stands. Forest succession-related factor (i.e., stand age), and abiotic (i.e., climatic and topographic conditions, and soil properties) and biotic drivers (i.e., species diversity, functional trait diversity, functional trait identity, and stand structural diversity) were jointly included as independent variables in an integrated model to explain variations in stand biomass productivity. In order to reveal the key drivers and relationships that regulate stand biomass productivity across forest stand types, we applied a multi-model averaging approach and piecewise structural equation modelling (pSEM). As a key finding, across all forest stand types, forest stand age-induced tree size inequality (i.e., DBH STD) in all forest stand types commonly increased stand biomass productivity, showing strong positive standardized effects (β > 0.5, p < 0.001). We also found that the functional trait identities controlling stand biomass productivity within each forest stand type differed according to their functional traits of dominant species, and that these mechanisms were controlled directly or indirectly by environmental conditions. Our research suggests that appropriate forest management plans should be developed in accordance with environmental gradients to simultaneously promote biodiversity and stand biomass productivity in different forest stand types. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 2485 KB  
Article
Gluconacetobacter brunescens sp. nov., a Novel Acetic Acid Bacterium Isolated from Pear Vinegar, Producing a Water-Soluble Brown Pigment
by Bernarda Karničnik, Igor Jugović, Tomaž Accetto, Lijana Fanedl, Gorazd Avguštin and Janja Trček
Microorganisms 2025, 13(11), 2620; https://doi.org/10.3390/microorganisms13112620 - 18 Nov 2025
Viewed by 621
Abstract
The clade Gluconacetobacter comprises eleven species originating from various sources such as rhizosphere soil, pink sugarcane mealybug, and vinegar. During sampling of organic vinegars, we isolated strain Hr-1-5, which exhibits high 16S rRNA gene sequence identities (≤98.6%) and low 16S-23S rRNA gene internal [...] Read more.
The clade Gluconacetobacter comprises eleven species originating from various sources such as rhizosphere soil, pink sugarcane mealybug, and vinegar. During sampling of organic vinegars, we isolated strain Hr-1-5, which exhibits high 16S rRNA gene sequence identities (≤98.6%) and low 16S-23S rRNA gene internal transcribed spacer (ITS) sequence identities (≤92.1%) with Gluconacetobacter species. Further genome analysis confirmed that strain Hr-1-5 is a distinct species, supported by an average nucleotide identity (ANIb) of ≤90.6% and an in silico DNA–DNA hybridization (dDDH) value of ≤46% compared with other recognized Gluconacetobacter species. Strain Hr-1-5 darkens the growth medium to a deep brown after 4–5 days of submerged cultivation and similarly colors agar medium after 5–6 days. In silico genome analysis suggests that the strain synthesizes pyomelanin. Phenotypically, it is distinguished from its closest Gluconacetobacter relatives by its ability to produce 5-keto-D-gluconic acid, but not 2-keto-D-gluconic acid, and by its capacity to grow on D-ribose, among other traits. These findings support the classification of strain Hr-1-5 as a novel species, for which we propose the name Gluconacetobacter brunescens sp. nov. Hr-1-5T (=ZIM B1168T = LMG 33629T). Strain Hr-1-5 is of biotechnological interest for its pigment production and enables the in situ production of colored cellulose in a co-culture with a cellulose-producing acetic acid bacterium. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 10735 KB  
Article
Multi-Omics Deciphers Divergent Mechanisms in Differentially Cardiac-Remodeled Yili Horses Under Conditions of Equivalent Power Output
by Tongliang Wang, Xixi Yang, Wanlu Ren, Jun Meng, Xinkui Yao, Hongzhong Chu, Runchen Yao, Manjun Zhai and Yaqi Zeng
Animals 2025, 15(22), 3251; https://doi.org/10.3390/ani15223251 - 9 Nov 2025
Viewed by 515
Abstract
Exercise performance is a critical trait for evaluating the economic and breeding value of working and athletic horses, with cardiac structure and function serving as essential physiological determinants of athletic capacity. This study aimed to investigate the multi-omics response mechanisms associated with varying [...] Read more.
Exercise performance is a critical trait for evaluating the economic and breeding value of working and athletic horses, with cardiac structure and function serving as essential physiological determinants of athletic capacity. This study aimed to investigate the multi-omics response mechanisms associated with varying degrees of cardiac remodeling under identical exercise intensity. Twenty 2-year-old Yili horses were selected and categorized based on echocardiographic parameters into a high cardiac remodeling group (BH; EDV > 500 mL, SV > 350 mL, EF > 66%) and a low cardiac remodeling group (BL; EDV < 450 mL, SV < 330 mL, EF < 64%). Blood samples were collected before and after the 1000 m constant-speed test (pre-test high cardiac remodeling group (BH, n = 10), post-test high cardiac remodeling group (AH, n = 10), pre-test low cardiac remodeling group (BL, n = 10), post-test low cardiac remodeling group (AL, n = 10)), and integrated metabolomic, transcriptomic, and miRNA profiling were conducted to systematically characterize molecular responses to exercise-induced stress. Metabolomic analysis identified a total of 1936 lipid metabolites, with the BH group exhibiting stronger post-exercise lipid mobilization and significant enrichment of sphingolipid signaling pathways. Transcriptomic and miRNA analyses further revealed that key miRNAs in the BH group, including miR-186, miR-23a/b, and the let-7 family, along with their target genes (e.g., GNB4, RGS5, ALAS2), were involved in fine regulation of cardiac electrophysiology, oxidative stress, and energy metabolism. Integrated analysis indicated that the AH vs. BH comparison uniquely enriched pathways related to glycine-serine-threonine metabolism and glycosylphosphatidylinositol (GPI)-anchor biosynthesis, whereas the AL vs. BL comparison showed unique enrichment of α-linolenic acid and arachidonic acid metabolism pathways. Ultimately, multi-omics integration identified that in the BH group, eca-let-7d, eca-let-7e, eca-miR-196b, eca-miR-2483, and eca-miR-98 regulate ALAS2 and, together with GCSH, influence the enrichment of lipids such as PS(17:0_16:1), PS(18:0_18:1), and PS(20:0_18:1). These lipids participate in glycine, serine, and threonine metabolism through complex pathways, collectively modulating energy supply, inflammatory responses, and muscle function during exercise. This study reveals the molecular mechanisms by which horses with high cardiac remodeling maintain energy homeostasis and myocardial protection during exercise. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

26 pages, 2934 KB  
Article
Unsupervised Learning of Fine-Grained and Explainable Driving Style Representations from Car-Following Trajectories
by Jinyue Yu, Zhiqiang Sun and Chengcheng Yu
Appl. Sci. 2025, 15(18), 10041; https://doi.org/10.3390/app151810041 - 14 Sep 2025
Viewed by 978
Abstract
Fine-grained modeling of driving styles is critical for decision making in autonomous driving. However, existing methods are constrained by the high cost of manual labeling and a lack of interpretability. This study proposes an unsupervised disentanglement framework based on a variational autoencoder (VAE), [...] Read more.
Fine-grained modeling of driving styles is critical for decision making in autonomous driving. However, existing methods are constrained by the high cost of manual labeling and a lack of interpretability. This study proposes an unsupervised disentanglement framework based on a variational autoencoder (VAE), which, for the first time, enables the automatic extraction of interpretable driving style representations from car-following trajectories. The key innovations of this work are threefold: (1) a dual-decoder VAE architecture is designed, leveraging driver identity as a proxy label to guide the learning of the latent space; (2) self-dynamics and interaction dynamics features are decoupled, with an attention mechanism employed to quantify the influence of the lead vehicle; (3) a bidirectional interpretability verification framework is established between latent variables and trajectory behaviors. Evaluated on a car-following dataset comprising 25 drivers, the model achieves a Driver Identification accuracy of 98.88%. Mutual information analysis reveals the physical semantics encoded in major latent dimensions. For instance, latent dimension z22 is strongly correlated with the minimum following distance and car-following efficiency. One-dimensional latent traversal further confirms that individual dimensions modulate specific behavioral traits: increasing z22 improves safety margins by 18% but reduces efficiency by 23%, demonstrating that it encodes a trade-off between safety and efficiency. This work provides a controllable representation framework for driving style transfer in autonomous systems and offers a more granular approach for analyzing driver behavior in car-following scenarios, with potential for extension to broader driving contexts. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

18 pages, 662 KB  
Article
Marbling and Meat Quality of Kazakh Finewool Purebred and Suffolk × Finewool Crossbred Sheep on an Intensive Fattening Diet
by Gulmira Kenenbay, Urishbay Chomanov, Zhanayna Kramsakova and Arailym Abilda
Processes 2025, 13(9), 2874; https://doi.org/10.3390/pr13092874 - 8 Sep 2025
Viewed by 2129
Abstract
This study evaluated marbling and meat quality traits in lambs of three genotypes under a uniform high-energy fattening regimen. Male lambs (6–7 months old, n = 12 per group) from purebred Kazakh Finewool (control) and two independent Suffolk × Kazakh Finewool F1 [...] Read more.
This study evaluated marbling and meat quality traits in lambs of three genotypes under a uniform high-energy fattening regimen. Male lambs (6–7 months old, n = 12 per group) from purebred Kazakh Finewool (control) and two independent Suffolk × Kazakh Finewool F1 crossbred lines (Groups 1 and 2) were fed identical diets and raised under the same conditions. Meat samples were analyzed for composition, fatty acid profile, micronutrients, color, visual marbling, and microbiological safety. Group 2 crossbreds had significantly higher intramuscular fat (~9.0%) than the controls (~6.5%) (p < 0.05), with corresponding increases in monounsaturated and polyunsaturated fatty acids. Vitamin A, vitamin E, and zinc levels were also higher in Group 2 (p < 0.05), while other nutrients were similar across groups. All samples had normal pH (~5.7–5.8) and high water activity (~0.985) and met microbial safety standards. Visual marbling was more pronounced in crossbreds, and meat color remained bright red with no significant group differences in redness (a value). These findings suggest that crossbreeding Kazakh Finewool with Suffolk sheep, combined with controlled grain fattening, enhances marbling and nutritional traits without compromising safety or appearance, offering a viable approach to improving lamb meat quality. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

19 pages, 1529 KB  
Article
Comprehensive Characterization of the Microbiological and Quality Attributes of Traditional Sicilian Canestrato Fresco Cheese
by Chiara Pisana, Margherita Caccamo, Marcella Barbera, Giovanni Marino, Graziella Serio, Elena Franciosi, Luca Settanni, Raimondo Gaglio and Cinzia Caggia
Foods 2025, 14(17), 3123; https://doi.org/10.3390/foods14173123 - 6 Sep 2025
Cited by 2 | Viewed by 1486
Abstract
This study provides a comprehensive characterization of the microbiological, chemical, and sensory profiles of Sicilian Canestrato Fresco (SCF) cheese, a traditional agri-food product (TAP) made from raw cow’s milk using artisanal methods and typically consumed after 20 d of ripening. Plate count analyses [...] Read more.
This study provides a comprehensive characterization of the microbiological, chemical, and sensory profiles of Sicilian Canestrato Fresco (SCF) cheese, a traditional agri-food product (TAP) made from raw cow’s milk using artisanal methods and typically consumed after 20 d of ripening. Plate count analyses confirmed high levels of mesophilic lactic acid bacteria (LAB) exceeding 108 CFU/g. Both rod- and coccus-shaped LAB populations were present at these elevated levels. Pathogens such as Listeria monocytogenes and Salmonella spp. were not detected, although potential contaminants including Enterobacteriaceae, total coliforms, and Escherichia coli were detected at levels of 1.0–3.5 log CFU/g. High-throughput sequencing confirmed LAB as the dominant taxa, comprising the majority of the bacterial community, which accounted for 78.12% to 99.63% of the total relative abundance (RA) across all cheese samples. The fatty acid profile was typical of cow’s milk cheeses, with long-chain fatty acids (C15–C18) representing ~75% of the total, followed by medium- (~17%) and short-chain (<8%) fatty acids. Volatile organic compound analysis showed free fatty acids as the most abundant class, followed by esters, alcohols, ketones, and aldehydes. These findings highlight the role of traditional practices in preserving the sensory and chemical identity of SCF cheese. However, the presence of hygiene indicators suggests a need for improving sanitary measures along the production chain. Future research should explore the impact of targeted microbial management and packaging conditions to enhance both safety and product standardization without compromising artisanal traits. Full article
(This article belongs to the Special Issue Quality Characteristics of Traditional and Innovative Foods)
Show Figures

Figure 1

19 pages, 3354 KB  
Article
Microbial Assembly and Stress-Tolerance Mechanisms in Salt-Adapted Plants Along the Shore of a Salt Lake: Implications for Saline–Alkaline Soil Remediation
by Xiaodong Wang, Liu Xu, Xinyu Qi, Jianrong Huang, Mingxian Han, Chuanxu Wang, Xin Li and Hongchen Jiang
Microorganisms 2025, 13(8), 1942; https://doi.org/10.3390/microorganisms13081942 - 20 Aug 2025
Cited by 4 | Viewed by 1522
Abstract
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted [...] Read more.
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted species (Suaeda glauca, Artemisia carvifolia, Chloris virgata, and Limonium bicolor) from the Yuncheng Salt Lake region in China using high-throughput sequencing. Cultivable salt-tolerant plant growth-promoting rhizobacteria (PGPR) were isolated and characterized to identify functional genes related to stress resistance. Results revealed that plant identity and soil physicochemical properties jointly shaped the microbial community composition, with total organic carbon being a dominant driver explaining 17.6% of the variation. Cyanobacteria dominated low-salinity environments, while Firmicutes thrived in high-salinity niches. Isolated PGPR strains exhibited tolerance up to 15% salinity and harbored genes associated with heat (htpX), osmotic stress (otsA), oxidative stress (katE), and UV radiation (uvrA). Notably, Peribacillus and Isoptericola strains demonstrated broad functional versatility and robust halotolerance. Our findings highlight that TOC (total organic carbon) plays a pivotal role in microbial assembly under extreme salinity, surpassing host genetic influences. The identified PGPR strains, with their stress-resistance traits and functional gene repertoires, hold significant promise for biotechnological applications in saline–alkaline soil remediation and sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

24 pages, 4701 KB  
Article
Evidence of Graft Incompatibility and Rootstock Scion Interactions in Cacao
by Ashley E. DuVal, Alexandra Tempeleu, Jennifer E. Schmidt, Alina Puig, Benjamin J. Knollenberg, José X. Chaparro, Micah E. Stevens and Juan Carlos Motamayor
Horticulturae 2025, 11(8), 899; https://doi.org/10.3390/horticulturae11080899 - 3 Aug 2025
Cited by 1 | Viewed by 2586
Abstract
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound [...] Read more.
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound 7) and nine diverse open-pollinated seedling populations (BYNC, EQX 3348, GNV 360, IMC 14, PA 107, SCA 6, T 294, T 384, T 484). We found evidence for both local and translocated graft incompatibility. Cross sections and Micro-XCT imaging revealed anatomical anomalies, including necrosis and cavitation at the junction and accumulation of starch in the rootstock directly below the graft junction. Scion genetics were a significant factor in explaining differences in graft take, and graft take varied from 47% (Criollo 22) to 72% (Pound 7). Rootstock and scion identity both accounted for differences in survival over the course of the 30-month greenhouse study, with a low of 28.5% survival of Criollo 22 scions and a high of 72% for Pound 7 scions. Survival by rootstocks varied from 14.3% on GNV 360 to 100% survival on T 294 rootstock. A positive correlation of 0.34 (p = 0.098) was found between the graft success of different rootstock–scion combinations and their kinship coefficient, suggesting that relatedness of stock and scion could be a driver of incompatibility. Significant rootstock–scion effects were also observed for nutrient use efficiency, plant vigor, and resistance to Phytophthora palmivora. These findings, while preliminary in nature, highlight the potential of rootstock breeding to improve plant nutrition, resilience, and disease resistance in cacao. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

19 pages, 2268 KB  
Article
Methyl Jasmonate and Ammonium Bicarbonate: Distinct and Synergistic Impacts on Indoor Cannabis Production Dynamics
by Jose F. Da Cunha Leme Filho, Spencer Schuchman, Avery Shikanai, Shiksha Sharma, Thais Alberti, Andre A. Diatta, Alan Walters and Karla L. Gage
Int. J. Plant Biol. 2025, 16(3), 78; https://doi.org/10.3390/ijpb16030078 - 8 Jul 2025
Cited by 1 | Viewed by 1600
Abstract
As high-CBD cannabis (Cannabis sativa L.) gains legal and commercial relevance in the United States, studies evaluating how external inputs impact critical traits remain limited. This study investigates the effects of methyl jasmonate (MeJA), ammonium bicarbonate (AB), and the genetic source (mother [...] Read more.
As high-CBD cannabis (Cannabis sativa L.) gains legal and commercial relevance in the United States, studies evaluating how external inputs impact critical traits remain limited. This study investigates the effects of methyl jasmonate (MeJA), ammonium bicarbonate (AB), and the genetic source (mother plant identity) on the growth and secondary metabolite traits of indoor cannabis. Plants were treated with 1 mM MeJA and/or AB under controlled conditions, and key traits, such as plant height, chlorophyll content, biomass, trichome density, and cannabinoid concentration, were measured. The MeJA treatment led to a significant 32% increase in trichome density. However, it did not significantly alter CBD or THC concentrations. The AB treatment enhanced vegetative growth, increasing chlorophyll content and plant height while reducing CBD concentrations, but the biomass gains could compensate for the lower cannabinoid in the total production. An interaction between MeJA and AB altered the CBD content, suggesting that MeJA may mitigate AB’s negative effect on cannabinoid synthesis. The genetic source significantly influenced most of the measured traits, highlighting the role of the genotype in trait expression and the importance of clonal consistency. These findings highlight the complex dynamics of external inputs and genetic factors in cannabis production, emphasizing the need for further research to optimize cultivation strategies. Future studies should refine input combinations and doses to improve both yield and cannabinoid profiles. Full article
Show Figures

Figure 1

20 pages, 313 KB  
Article
Meat Production Potential of Local Horse Breeds: Sustainable Conservation Through Valorization
by Ante Ivanković, Mateja Pećina, Giovanni Bittante, Nicoló Amalfitano, Miljenko Konjačić and Nikolina Kelava Ugarković
Animals 2025, 15(13), 1911; https://doi.org/10.3390/ani15131911 - 28 Jun 2025
Viewed by 1004
Abstract
Local horse breeds, particularly cold-blood types, are often marginalized in economic and social contexts, primarily due to the neglect of their economic, genetic, and cultural potential, as well as their role in preserving the identity of rural areas, local communities, and ecosystems. The [...] Read more.
Local horse breeds, particularly cold-blood types, are often marginalized in economic and social contexts, primarily due to the neglect of their economic, genetic, and cultural potential, as well as their role in preserving the identity of rural areas, local communities, and ecosystems. The valorization of these breeds is a crucial prerequisite for their economic repositioning. The Croatian Posavina horse is a local breed, well adapted to harsh, extensive production systems. Its sustainability is achieved through pasture-based meat production, primarily targeting foreign European markets. Ensuring the sustainability of conservation programs requires a thorough understanding of growth dynamics, carcass traits, and meat quality. This study assessed growth performance and carcass characteristics in a sample of 30 male foals, with ten animals selected for detailed analysis of fatty acid, amino acid, and volatile aromatic compound profiles. At eleven months of age, the foals reached a live weight of 347 kg and a dressing percentage of 60.62%. Color, tenderness, and water-holding capacity parameters were favorable for consumers. The meat’s high protein content (22.37%) and low intramuscular fat (3.61%) make it suitable for health-conscious or sensitive consumer groups. A high proportion of polyunsaturated fatty acids (28.5%) and a nutritionally balanced ω-6/ω-3 ratio (3.46) highlight the meat’s functional properties. The essential-to-non-essential amino acid ratio (0.81) further supports its nutritional value. Sensory analysis confirmed an attractive appearance, desirable texture and flavor, and a rich aromatic profile. The carcass and meat quality results, when compared with the production traits of other horse breeds, indicate that Croatian Posavina foal meat is a high-quality and nutritionally valuable alternative to conventional red meat. With optimized conservation and production strategies, the Croatian Posavina horse holds strong potential for market repositioning within sustainable and functional meat production systems. Full article
(This article belongs to the Section Equids)
Show Figures

Graphical abstract

Back to TopTop