Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = high ground temperature environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3204 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 204
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 203
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 3225 KiB  
Article
Multiple Slater Determinants and Strong Spin-Fluctuations as Key Ingredients of the Electronic Structure of Electron- and Hole-Doped Pb10−xCux(PO4)6O
by Dimitar Pashov, Swagata Acharya, Stephan Lany, Daniel S. Dessau and Mark van Schilfgaarde
Crystals 2025, 15(7), 621; https://doi.org/10.3390/cryst15070621 - 2 Jul 2025
Viewed by 953
Abstract
LK-99, with chemical formula Pb10−xCux(PO4)6O, was recently reported to be a room-temperature superconductor. While this claim has met with little support in a flurry of ensuing work, a variety of calculations (mostly based on [...] Read more.
LK-99, with chemical formula Pb10−xCux(PO4)6O, was recently reported to be a room-temperature superconductor. While this claim has met with little support in a flurry of ensuing work, a variety of calculations (mostly based on density-functional theory) have demonstrated that the system possesses some unusual characteristics in the electronic structure, in particular flat bands. We have established previously that within DFT, the system is insulating with many characteristics resembling the classic cuprates, provided the structure is not constrained to the P3(143) symmetry nominally assigned to it. Here we describe the basic electronic structure of LK-99 within self-consistent many-body perturbative approach, quasiparticle self-consistent GW (QSGW) approximation and their diagrammatic extensions. QSGW predicts that pristine LK-99 is indeed a Mott/charge transfer insulator, with a bandgap gap in excess of 3 eV, whether or not constrained to the P3(143) symmetry. When Pb9Cu(PO4)6O is hole-doped, the valence bands modify only slightly, and a hole pocket appears. However, two solutions emerge: a high-moment solution with the Cu local moment aligned parallel to neighbors, and a low-moment solution with Cu aligned antiparallel to its environment. In the electron-doped case the conduction band structure changes significantly: states of mostly Pb character merge with the formerly dispersionless Cu d state, and high-spin and low spin solutions once again appear. Thus we conclude that with suitable doping, the ground state of the system is not adequately described by a band picture, and that strong correlations are likely. Irrespective of whether this system class hosts superconductivity or not, the transition of Pb10(PO4)6O from being a band insulator to Pb9Cu(PO4)6O, a Mott insulator, and multi-determinantal nature of doped Mott physics make this an extremely interesting case-study for strongly correlated many-body physics. Full article
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Fault-Tolerant Operation of Photovoltaic Systems Using Quasi-Z-Source Boost Converters: A Hardware-in-the-Loop Validation with Typhoon HIL
by Basit Ali, Mothana S. A. Al Sunjury, Adnan Ashraf, Mohammad Meraj and Pietro Tricoli
Electronics 2025, 14(13), 2522; https://doi.org/10.3390/electronics14132522 - 21 Jun 2025
Viewed by 719
Abstract
Photovoltaic (PV) systems are prone to different types of faults, primarily electrical faults such as line-to-ground (L-G) and line-to-line (L-L) faults, which can significantly reduce system performance, efficiency, and lead to increased power losses. Moreover, mechanical damage caused by environmental stressors (such as [...] Read more.
Photovoltaic (PV) systems are prone to different types of faults, primarily electrical faults such as line-to-ground (L-G) and line-to-line (L-L) faults, which can significantly reduce system performance, efficiency, and lead to increased power losses. Moreover, mechanical damage caused by environmental stressors (such as wind, hail, or temperature variations), aging, or improper installation also contribute to system degradation. This study specifically focuses on electrical faults and proposes a method that not only enables the isolation of faulty modules but also ensures the uninterrupted operation of the remaining healthy modules and also assists in the localization of faults. Unlike benchmarked techniques-based boost converters, the Quasi-Z-Source Boost Converter (QZBC) topology offers improved voltage boosting with high gain values, reduced component stress, and enhanced reliability when the PV system is undergoing fault identification and localization algorithms. A 600-watt PV system connected with a Quasi-Z-Source Boost Converter was implemented and tested under different fault conditions using a hardware-in-the-loop (HIL) setup with Typhoon HIL. All the component values of the QZBC were calculated based on the system requirements rather than assumed, ensuring both practical feasibility and design accuracy. The experimental results show that the converter achieved an efficiency of over 96% under electrical-fault conditions, confirming the effectiveness of the quasi-Z-source boost converter in maintaining a stable power output when the PV system is undergoing fault identification and localization algorithms. The study further highlights the benefits of HIL-based testing for evaluating PV-system resilience and fault-handling capabilities in real-time conditions using a Typhoon HIL 404 environment. Full article
(This article belongs to the Special Issue Compatibility, Power Electronics and Power Engineering)
Show Figures

Figure 1

20 pages, 2848 KiB  
Article
Risk Assessment of Urban Low-Temperature Vulnerability: Climate Resilience and Strategic Adaptations
by Yiwen Zhai and Hong Jiao
Sustainability 2025, 17(13), 5705; https://doi.org/10.3390/su17135705 - 20 Jun 2025
Viewed by 417
Abstract
In recent years, the increasing frequency and intensity of climate-related disasters have underscored the urgent need for resilient urban development. In cold-region cities, low temperatures pose a distinct and underexplored threat, with serious implications for human well-being, infrastructure performance, and ecological stability. Despite [...] Read more.
In recent years, the increasing frequency and intensity of climate-related disasters have underscored the urgent need for resilient urban development. In cold-region cities, low temperatures pose a distinct and underexplored threat, with serious implications for human well-being, infrastructure performance, and ecological stability. Despite growing attention to climate resilience, existing urban risk assessments have largely focused on heatwaves and flooding, leaving a notable gap in research on cold-weather vulnerability. To address this gap, this study develops a fine-scale cold-climate vulnerability assessment framework grounded in the widely recognized “Exposure–Sensitivity–Adaptive Capacity” (ESA) model. Using subdistricts as the basic units of analysis, we integrate multi-source spatial data—including demographics, built environment, services, and ecological indicators—to construct a comprehensive evaluation system tailored to low-temperature conditions. The model is applied to the central urban area of Harbin, China, a representative cold-region city. The results reveal distinct spatial disparities in vulnerability: older urban districts exhibit higher vulnerability due to high population density and inadequate public services, while newly developed areas show relatively greater adaptive capacity. Further analysis identifies key drivers of vulnerability in different zones. Based on these insights, the study proposes differentiated, subdistrict-level planning strategies aimed at reducing exposure, mitigating sensitivity, and enhancing adaptive capacity. By extending the ESA model to cold-climate scenarios and operationalizing it at the subdistrict scale, this research contributes both methodologically and practically to the field of urban climate resilience. The findings offer actionable strategies for policymakers and provide a replicable framework applicable to other cold-region cities facing similar challenges. Full article
Show Figures

Figure 1

22 pages, 5040 KiB  
Article
Multi-Partition Mapping Simulation Method for Stellar Spectral Information
by Yu Zhang, Da Xu, Bin Zhao, Songzhou Yang, Zhipeng Wei, Jian Zhang, Taiyang Ren, Junjie Yang and Yao Meng
Photonics 2025, 12(6), 585; https://doi.org/10.3390/photonics12060585 - 9 Jun 2025
Viewed by 1699
Abstract
Stellar radiation simulation is critical in the space industry; however, with the current simulation methods, only a single color temperature and magnitude can be modulated at a time. Furthermore, star sensors rely on star observation tests for accurate calibration; this seriously restricts their [...] Read more.
Stellar radiation simulation is critical in the space industry; however, with the current simulation methods, only a single color temperature and magnitude can be modulated at a time. Furthermore, star sensors rely on star observation tests for accurate calibration; this seriously restricts their development. This paper presents a novel star spectral information multi-partition mapping simulation method to closely simulate real sky star map information, thus replacing non-scenario-specific field stargazing experiments. First, using the stellar spectral simulation principle, a multi-partition mapping principle based on a digital micro-mirror device is proposed, and the theoretical basis of sub-region division is provided. Second, multi-component mapping simulation of stellar spectral information is expounded, and a general architecture for the same based on a double-prism symmetry structure is presented. Next, the influence of peak spectral half-peak width and peak interval on spectral simulation accuracy is analyzed, and a pre-collimated beam expansion system, multi-dimensional slit, and spectral splitting system are designed accordingly. Finally, a test platform is set up, and single-region simulation results and multi-region consistency experiments are conducted to verify the feasibility of the proposed method. Our method can realize high-precision simulation and independently control the output of various color temperatures and magnitudes. It provides a theoretical and technical basis for the development of star sensor ground calibration tests and space target detection light environment simulation. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

26 pages, 2906 KiB  
Article
Street-Scale Urban Air Temperatures Predicted by Simple High-Resolution Cover- and Shade-Weighted Surface Temperature Mosaics in a Variety of Residential Neighborhoods
by Katarina Kubiniec, Kevan B. Moffett and Kyle Blount
Remote Sens. 2025, 17(11), 1932; https://doi.org/10.3390/rs17111932 - 3 Jun 2025
Viewed by 1101
Abstract
A simple statistical model capturing the degree to which different patterns of urban development intensify urban heat islands (UHIs) and stress human health would be useful but has remained elusive. Accurately predicting street-level urban air temperatures from land cover and thermal data is [...] Read more.
A simple statistical model capturing the degree to which different patterns of urban development intensify urban heat islands (UHIs) and stress human health would be useful but has remained elusive. Accurately predicting street-level urban air temperatures from land cover and thermal data is difficult due to (1) the coarse scale of common remote sensing data, which do not observe the key environments beneath urban tree canopies, and, (2) conversely, the immense labor of intense, location-specific, ground-based survey campaigns. This work tested whether remotely sensed urban heat merged with land cover heterogeneity and shade/sun fractions, if combined at a sufficiently fine scale so as to be linearly additive, would enable simple and accurate statistical modeling of street-scale urban air temperatures with minimal empirical fitting. We used ground-based thermography of a sample of 12 residential streetscapes in Portland, Oregon, to characterize the land surface temperatures (LSTg) of eleven common urban surface cover types when sun-exposed and in shade. Surfaces were cooler in shade than sun, but with surface-specific differences not explained by greenery nor (im)perviousness. Also, surfaces on streetscapes with more canopy cover, even when sun-exposed at midday, remained significantly cooler than comparable sun-exposed surfaces on streets with less canopy cover, indicating the key significance of partial diurnal shading, not typically accounted for in urban thermal statistical models. We used high-resolution orthoimagery to quantify the area of each surface cover type within each streetscape and computed an area-weighted average surface temperature (Ts), accounting for sun/shade heterogeneity. The data revealed a significant, nearly 1:1 relationship between calculated Ts values and sun-shielded air temperatures (Ta). In contrast, relationships of Ta to tree coverage, impervious area, or the LSTg of dominant surface cover types were all statistically insignificant. These results suggest that statistical models may more reliably bridge the gap between remote sensing urban surface temperatures and reliable predictions of street-scale air temperatures if (1) analysis is at a sufficiently high resolution (e.g., <10 m) to avoid some of the known scale-dependence of urban thermal environments and enable simple weighted linear models, and (2) distinctions between thermal contributions of sunlit and shaded surfaces are included along with the influence of diurnal shading. Such models may provide effective and low-cost predictions of local UHIs and help inform effective street-level approaches to mitigating urban heat. Full article
Show Figures

Figure 1

16 pages, 8824 KiB  
Article
Role of Surface Morphology Evolution in the Tribological Behavior of Superalloy Under High-Temperature Fretting
by Xuan He, Zidan Wang, Ying Yan, Kailun Zheng and Qian Bai
Materials 2025, 18(10), 2350; https://doi.org/10.3390/ma18102350 - 18 May 2025
Viewed by 520
Abstract
High-temperature fretting wear typically occurs on mechanical contact surfaces in high-temperature environments, with displacement amplitudes generally in the micrometer range (≤300 μm), such as the turbine disks and blades in aerospace engines, and the piston rings in automotive engines. The study performed tangential [...] Read more.
High-temperature fretting wear typically occurs on mechanical contact surfaces in high-temperature environments, with displacement amplitudes generally in the micrometer range (≤300 μm), such as the turbine disks and blades in aerospace engines, and the piston rings in automotive engines. The study performed tangential fretting wear tests between superalloy specimens and Si3N4 balls under 700 °C to investigate the influence of ground and milled surface morphologies on the high-temperature fretting wear behavior. The experimental results show distinct wear mechanisms for the two surface types: ground specimens exhibit adhesive and oxidative wear, while milled specimens experience fatigue and abrasive wear. Both wear modes intensify with increasing load and fretting frequency. A comprehensive surface morphology characterization method, combining fractal dimension (FD) and surface roughness, is proposed. The study reveals that the roughness parameters Sa and Ra are strongly correlated with the Coefficient of Friction, while FD is strongly correlated with the wear volume. This study provides a novel approach to characterizing the evolution of surface morphology during high-temperature fretting wear. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2448 KiB  
Article
The History of a Pinus Stand on a Bog Degraded by Post-War Drainage and Exploitation in Southern Poland
by Anna Cedro, Bernard Cedro, Katarzyna Piotrowicz, Anna Hrynowiecka, Tomasz Mirosław Karasiewicz and Michał Mirgos
Appl. Sci. 2025, 15(9), 5172; https://doi.org/10.3390/app15095172 - 6 May 2025
Viewed by 526
Abstract
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection [...] Read more.
A dendrochronological study was conducted on a submontane raised bog, Bór na Czerwonem, in the Orava–Nowy Targ Basin in Southern Poland. In the past, the bog was drained to enable peat extraction. In recent years, a number of measures considered as active protection were undertaken, including the construction of ridges and locks, filling of the drainage trenches, and clearance of most of the tree stand on the bog dome. Pinus sylvestris, P. × rhaetica, and P. mugo were the focuses of the study, which aimed to determine the age of the genus stand and its age structure and to identify the factors influencing tree ring width. The age of the trees indicates a post-war succession induced by large-scale drainage in 1942, although single trees were present on the bog dome as early as the late 19th century, and probably earlier. High values of pith eccentricity at ground level testify to substratum instability and the impact of strong winds on tree ring formation. The growth–climate relationships change with the progressive climate change: the significance of insolation increases, while the significance of the absolute air temperature decreases. The thermal and pluvial conditions of the summer in the previous growth season, however, make the strongest impact on the tree ring width in the following growth season. The health of the trees left growing on the bog, due to the constantly rising water level, will likely deteriorate, and a decreasing number of seedlings will be observed. A full assessment of the conducted restoration efforts, however, will be possible after years of monitoring of the bog environment. Full article
Show Figures

Figure 1

15 pages, 13064 KiB  
Article
Thermal Regime Characteristics of Alpine Springs in the Marginal Periglacial Environment of the Southern Carpathians
by Oana Berzescu, Florina Ardelean, Petru Urdea, Andrei Ioniță and Alexandru Onaca
Sustainability 2025, 17(9), 4182; https://doi.org/10.3390/su17094182 - 6 May 2025
Viewed by 499
Abstract
Mountain watersheds play a crucial role in sustaining freshwater resources, yet they are highly vulnerable to climate change. In this study, we investigated the summer water temperature of 35 alpine springs in the highest part of the Retezat Mountains, Southern Carpathians, between 2020 [...] Read more.
Mountain watersheds play a crucial role in sustaining freshwater resources, yet they are highly vulnerable to climate change. In this study, we investigated the summer water temperature of 35 alpine springs in the highest part of the Retezat Mountains, Southern Carpathians, between 2020 and 2023. During the four-year monitoring period, water temperatures across all springs ranged from 1.2 °C to 10.5 °C. Springs emerging from rock glaciers had the lowest average temperature (2.37 °C), while those on cirque and valley floors were the warmest (6.20 °C), followed closely by springs from meadow-covered slopes (6.20 °C) and those from scree and talus slopes (4.70 °C). However, only four springs recorded summer temperatures below 2 °C, suggesting a direct interaction with ground ice. The majority of springs exhibited temperatures between 2 and 4 °C, exceeding conventional thresholds for permafrost presence. This challenges the applicability of traditional thermal indicators in marginal periglacial environments, where reduced ground ice content within rock glaciers and talus slopes can lead to spring water temperatures ranging from 2 °C to 4 °C during summer. Additionally, cold springs emerging from rock glaciers displayed minimal daily and seasonal temperature fluctuations, highlighting their thermal stability and decoupling from atmospheric conditions. These findings underscore the critical role of rock glaciers in maintaining alpine spring temperatures and acting as refugia for cold-adapted organisms. As climate change accelerates permafrost degradation, these ecosystems face increasing threats, with potential consequences for biodiversity and hydrological stability. This study emphasizes the need for long-term monitoring and expanded investigations into water chemistry and discharge dynamics to improve our understanding of high-altitude hydrological systems. Furthermore, it provides valuable insights for the sustainable management of water resources in Retezat National Park, advocating for conservation strategies to mitigate the impacts of climate change on mountain hydrology and biodiversity. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

19 pages, 5119 KiB  
Article
Linking Satellite and Ground Observations of NO2 in Spanish Cities: Influence of Meteorology and O3
by Carlos Morillas, Sergio Álvarez, José C. M. Pires, Adrián Jesús García and Sara Martínez
Nitrogen 2025, 6(2), 32; https://doi.org/10.3390/nitrogen6020032 - 2 May 2025
Viewed by 686
Abstract
In Spain, several major cities face high rates of avoidable deaths due to NO2 exposure. Understanding NO2 atmospheric dynamics is essential to support public health efforts and policymaking. Recent satellite products have proven useful in characterizing urban atmospheric composition in various [...] Read more.
In Spain, several major cities face high rates of avoidable deaths due to NO2 exposure. Understanding NO2 atmospheric dynamics is essential to support public health efforts and policymaking. Recent satellite products have proven useful in characterizing urban atmospheric composition in various regions. This study compares NO2 concentration data from in situ air quality monitoring networks and the Sentinel-5P TROPOMI satellite in Spain’s three largest cities (Madrid, Barcelona, and Valencia), alongside O3 levels —due to its close photochemical relationship with NOx—wind speed and direction, temperature, relative humidity, and solar radiation. Data from 2022 were analyzed using Pearson correlation coefficients and Principal Component Analysis (PCA) to identify key relationships and patterns. Results showed a consistent negative correlation between NO2 and O3, wind speed, temperature, and solar radiation. Differences between in situ and satellite data were more pronounced in coastal cities, influenced by wind patterns and urban morphology (Madrid: r = 0.86, v = 1.34 m/s; Valencia: r = 0.68, v = 2.97 m/s; Barcelona: r = 0.65, v = 8.04 m/s). These insights enhance the understanding of NO2 behavior in urban environments and support the use of remote sensing to estimate surface-level pollution in areas lacking ground-based monitoring infrastructure. This is the first study in Spain to jointly evaluate NO2 from satellite and in situ data across multiple cities, linking pollutant concentrations with meteorological and chemical drivers to improve surface-level estimation strategies and support air quality assessment in under-monitored areas. Full article
Show Figures

Graphical abstract

21 pages, 466 KiB  
Review
What Are the Key Built Environment Features Associated with Heat-Related Health Risks Among Older People in High Income Countries?
by Susan Strickland and Michael Tong
Green Health 2025, 1(1), 2; https://doi.org/10.3390/greenhealth1010002 - 30 Apr 2025
Viewed by 637
Abstract
The study aims to identify key features in the built environment that are associated with heat-related health risks among older people in high-income countries, which could inform the development of targeted interventions to reduce built-environment-related heat risks for older populations in the context [...] Read more.
The study aims to identify key features in the built environment that are associated with heat-related health risks among older people in high-income countries, which could inform the development of targeted interventions to reduce built-environment-related heat risks for older populations in the context of climate change. We conducted a systematic review to identify features of the built environment associated with the health impacts of heat amongst people aged 65 or over, living in urban areas. Three databases, PubMed, Scopus, and Web of Science, were searched for the period from database inception until February 2025. The key built environment features associated with adverse health outcomes among older people included urban land surface vegetation, impervious ground surfaces, orientation of bedrooms, top floor locations of apartments, housing age, and the presence and use of air conditioning. The health indicators used in this study were heat-related mortality and morbidity represented by hospitalisations and ambulance call-outs. Built environment features were significantly associated with heat-related health risks among older people. Given the increasing high temperatures and more frequent and intense heatwaves in the context of climate change, there is an urgent need to develop targeted built environment adaptation plans for older people to strengthen their resilience to heat and reduce heat-related adverse health impacts. Full article
Show Figures

Figure 1

27 pages, 28923 KiB  
Article
Research on Microclimate Influencing Factors and Thermal Comfort Improvement Strategies in Old Residential Areas in the Post-Urbanization Stage
by Haolin Tian, Sarula Chen, Guoqing Zhang, Chen Hu, Weiyi Zhang, Jiapeng Feng, Tao Hong and Hao Yu
Sustainability 2025, 17(8), 3655; https://doi.org/10.3390/su17083655 - 18 Apr 2025
Cited by 1 | Viewed by 452
Abstract
China’s urbanization process has entered the stage of mid-to-late transformation and upgrading, with the urbanization and population growth rates having passed the turning point. Urban renewal has become an increasingly important issue, among which the renovation of old residential areas holds enormous potential. [...] Read more.
China’s urbanization process has entered the stage of mid-to-late transformation and upgrading, with the urbanization and population growth rates having passed the turning point. Urban renewal has become an increasingly important issue, among which the renovation of old residential areas holds enormous potential. The improvement of the living environment is urgent, and enhancing the microclimate to improve the livability and comfort of outdoor residential spaces is a critical factor. This study presents for the first time a quantitative framework for multifactor synergistic optimization by coupling building layout closure and material albedo effects. This paper takes typical old residential areas in Fuyang as an example and uses 3D microclimate simulation software (ENVI-met Version 4.3) to establish a simulation model. It evaluates the microclimate and thermal comfort under different building layouts, green infrastructures, building envelope materials, and various surface materials. The results show that: (1) Regarding building layout, the point-cluster layout generally results in the best improvement of daily cumulative physiological equivalent temperature (PET) values, followed by row-type and enclosed layouts; (2) The optimal solutions for improving the daily average PET value are as follows: using glass as the building envelope material in the point-cluster layout; 100% tree coverage in the row-type layout; and 100% asphalt coverage as the surface material in the point-cluster layout. These three conditions reduce the daily average PET by 3.51 °C, 23.87 °C, and 2.65 °C, respectively; (3) The degree of impact on PET is ranked as: green infrastructure configuration > building layout > building envelope materials > surface materials; (4) When the building layout of the residential area is more enclosed, such as using row-type or enclosed layouts, the order of building envelope materials improving thermal comfort is: brick, concrete, and glass. When the building layout is less enclosed, such as using point-cluster layouts, the order of building envelope materials improving thermal comfort is: glass, brick, and concrete. Therefore, it is concluded that applying point-cluster layout in buildings, using glass as the building envelope material, and having 100% coverage of asphalt pavement as the surface material and 100% coverage of trees can maximize the improvement of the thermal environment of the buildings. The conclusion is applicable to old residential areas in warm temperate semi-humid monsoon climatic zones characterized by high densities (floor area ratios > 2.5) and high rates of hardening of the ground (≥80%), and is particularly instructive for medium-sized urban renewal projects with an urbanization rate between 45% and 60%. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

22 pages, 20934 KiB  
Article
Urban Green Spaces Under Climate Warming: Controlling the Spread of Allergenic Pollution Through Residential Area Spatial Layout Optimization
by Ying Hui, Xina Ma, Fushun Han, Qi An and Jingyuan Zhao
Sustainability 2025, 17(7), 3235; https://doi.org/10.3390/su17073235 - 5 Apr 2025
Viewed by 570
Abstract
In response to the demands of climate change and urban sustainability, urban green space construction in China has rapidly expanded, while simultaneously giving rise to allergenic pollen pollution. Focusing on the central urban area of Xi’an, Shaanxi Province, China, this study utilizes urban [...] Read more.
In response to the demands of climate change and urban sustainability, urban green space construction in China has rapidly expanded, while simultaneously giving rise to allergenic pollen pollution. Focusing on the central urban area of Xi’an, Shaanxi Province, China, this study utilizes urban surveys, field measurements, and pollen particle microscopy to analyze the seasonal variation in allergenic pollen pollution concentrations and the physical dispersion characteristics of allergenic pollen particles in residential areas. The study also examines the impact of urban residential area spatial layout on regulating allergenic pollen pollution. The results show that (1) allergenic pollen pollution in Xi’an’s residential areas exhibits significant seasonal characteristics, with spring, summer, and autumn being the primary seasons. The highest concentrations occur in spring, dominated by tree pollen, followed by summer and autumn with a predominance of herbaceous pollen. (2) Pollution concentrations in residential areas are affected by the diurnal temperature variation, with higher concentrations observed in public green spaces compared to residential green spaces and roadside green spaces. (3) Allergenic pollen pollution shows a layered characteristic in the vertical direction, with concentrations concentrated around 13 m above ground due to the effects of diurnal temperature variation and local microclimate. (4) Urban pollen pollution concentrations are positively correlated with high temperatures and negatively correlated with high humidity, while local circulations influence pollen dispersion concentrations in residential areas. (5) Design indicators such as plot ratio and building stagger affect the dispersion concentrations of allergenic pollen pollution in residential areas. The findings provide a scientific basis for optimizing residential area spatial design to mitigate allergenic pollen pollution and offer strategic guidance for improving the health and livability of urban environments. Full article
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Cooling Efficiency of Two-Phase Closed Thermosyphon Installed in Cast-in-Place Pile Foundation for Overhead Transmission Lines in High-Latitude Permafrost Regions
by Lei Zhao, Yao Xiao, Yunhu Shang, Yan Lu and Xuyang Wu
Processes 2025, 13(4), 1080; https://doi.org/10.3390/pr13041080 - 3 Apr 2025
Viewed by 423
Abstract
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these [...] Read more.
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these pile foundations. However, research on the prevention and control of pile foundation diseases caused by permafrost degradation is relatively limited, and engineering practices are insufficient. To address this, this study proposes embedding a two-phase closed thermosyphon (TPCT) inside a concrete pile foundation to create a composite structural system with both load-bearing and cooling functions. A mathematical model is developed to focus on the cooling performance and temperature control efficiency of the composite structure. The results indicate that: (1) The TPCT can alleviate, to some extent, the downward shift of the permafrost table around the transmission tower foundation due to climate warming. The cooling effect of the TPCT slows the rate of permafrost degradation, but its control effect on the permafrost table is limited. (2) The performance of the cast-in-place piles with an embedded TPCT is closely related to temperature, with an effective operational period from early October to late March each year. (3) This device effectively mitigates the impact of permafrost degradation due to climate change, significantly lowering the risk of foundation-related issues in transmission towers. The findings of this study are crucial for maintaining ground temperature stability in cast-in-place pile foundations for transmission projects in high-latitude permafrost areas, as well as enhancing the theoretical framework for pile foundation design. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

Back to TopTop