Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,394)

Search Parameters:
Keywords = high dielectric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7494 KiB  
Article
Fowler–Nordheim Tunneling in AlGaN MIS Heterostructures with Atomically Thin h-BN Layer Dependence and Performance Limits
by Jiarui Zhang, Yikun Li, Shijun Luo, Yan Zhang, Man Luo, Hailu Wang and Chenhui Yu
Nanomaterials 2025, 15(15), 1209; https://doi.org/10.3390/nano15151209 - 7 Aug 2025
Abstract
Hexagonal Boron Nitride (h-BN) is an exceptional dielectric material with significant potential for high-performance electronic and optoelectronic devices. While previous studies have explored its role in GaN-based MIS (metal/insulator/semiconductor) structures, the influence of few-layer h-BN on AlGaN MIS devices—particularly with [...] Read more.
Hexagonal Boron Nitride (h-BN) is an exceptional dielectric material with significant potential for high-performance electronic and optoelectronic devices. While previous studies have explored its role in GaN-based MIS (metal/insulator/semiconductor) structures, the influence of few-layer h-BN on AlGaN MIS devices—particularly with varying Al compositions—remains unexplored. In this work, we systematically investigate the Fowler–Nordheim tunneling effect in few-layer h-BN integrated into AlGaN MIS architectures, focusing on the critical roles h-BN layer count, AlGaN alloy composition, and interfacial properties in determining device performance. Through combined simulations and experiments, we accurately determine key physical parameters, such as the layer-dependent effective mass and band alignment, and analyze their role in optimizing MIS device characteristics. Our findings reveal that the 2D h-BN insulating layer not only enhances breakdown voltage and reduces leakage current but also mitigates interfacial defects and Shockley–Read–Hall recombination, enabling high-performance AlGaN MIS devices under elevated voltage and power conditions. This study provides fundamental insights into h-BN-based AlGaN MIS structures and advances their applications in next-generation high-power and high-frequency electronics. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

15 pages, 2161 KiB  
Article
Preparation of PLLA and PLGA Copolymers with Poly(ethylene adipate) Through Reactive Melt Mixing: Structural Characterization, Thermal Properties, and Molecular Mobility Insights
by Evi Christodoulou, Christina Samiotaki, Alexandra Zamboulis, Rizos Evangelos Bikiaris, Panagiotis A. Klonos, Apostolos Kyritsis and Dimitrios N. Bikiaris
Macromol 2025, 5(3), 35; https://doi.org/10.3390/macromol5030035 - 7 Aug 2025
Abstract
In this study, a series of copolymers was synthesized using the promising biodegradable polymers Poly(L-lactic acid) (PLLA), Poly(lactic-co-glycolic acid) (PLGA), and Poly(ethylene adipate) (PEAd), known for their high potential. PEAd was synthesized through a two-step melt polycondensation process and then used to prepare [...] Read more.
In this study, a series of copolymers was synthesized using the promising biodegradable polymers Poly(L-lactic acid) (PLLA), Poly(lactic-co-glycolic acid) (PLGA), and Poly(ethylene adipate) (PEAd), known for their high potential. PEAd was synthesized through a two-step melt polycondensation process and then used to prepare copolymers with PLLA (PLLA-co-PEAd) and PLGA (PLGA-co-PEAd) at weight ratios of 90/10 and 75/25, respectively. The synthesized materials, along with the starting polymers, were extensively characterized for their structure, molecular weight, crystallinity, and thermal behavior. These novel systems exhibit single thermal transitions, e.g., glass transition. The incorporation of PEAd into the copolymers induced a plasticizing effect, evidenced by a consistent decrease in the glass transition temperature. Due to the latter effect in combination with the Mw drop, the facilitation of crystal nucleation was observed. Finally, the results by dielectric spectroscopy on the local and segmental molecular mobility provided additional proof for the homogeneity of the systems, as manifested, e.g., by the recording of single segmental relaxation processes. Overall, the findings indicate that the PLLA-co-PEAd and PLGA-co-PEAd copolymers hold significant potential, and the use of complementary experimental techniques offers valuable insights and indirect indications of their properties. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 4383 KiB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 - 4 Aug 2025
Viewed by 115
Abstract
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications. Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 170
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

12 pages, 3794 KiB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 (registering DOI) - 2 Aug 2025
Viewed by 212
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

12 pages, 5607 KiB  
Article
Tunable Dual-Mode Resonant Excitation of Dumbbell-Shaped Structures in the Mid-Infrared Band
by Tao Jiang, Yafei Li, Zhuangzhuang Xu, Xike Qian, Rui Shi, Xiufei Li, Meng Wang and Ze Li
Nanomaterials 2025, 15(15), 1181; https://doi.org/10.3390/nano15151181 - 31 Jul 2025
Viewed by 160
Abstract
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we [...] Read more.
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we designed and investigated novel dimeric dumbbell-shaped metasurfaces incorporating two independently tunable asymmetric parameters. This structural innovation enables the simultaneous excitation of both electric anapole and QBIC modes under normally incident MIR illumination. More importantly, by adjusting these two asymmetric parameters, one can independently tune the resonance peaks of the two modes, thereby overcoming the performance limits of conventional single-peak modulation. This metasurface design demonstrates outstanding performance for dielectric environment-sensing applications. We conducted a comprehensive investigation of the sensing sensitivity for dumbbell-shaped metasurfaces of various geometries. Our simulation results show that the circular-shaped configuration achieved high sensitivity, reaching 20,930 GHz/RIU. This work offers a novel design paradigm for multi-mode control and functionalization of metasurface structures. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

22 pages, 6682 KiB  
Article
An FR4-Based Oscillator Loading an Additional High-Q Cavity for Phase Noise Reduction Using SISL Technology
by Jingwen Han, Ningning Yan and Kaixue Ma
Electronics 2025, 14(15), 3041; https://doi.org/10.3390/electronics14153041 - 30 Jul 2025
Viewed by 179
Abstract
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the [...] Read more.
An FR4-based X-band low phase noise oscillator loading an additional high-Q cavity resonator was designed in this study using substrate-integrated suspended line (SISL) technology. The additional resonator was coupled to an oscillator by the transmission line (coupling TL). The impact of the additional resonator on startup conditions, Q factor enhancement, and phase noise reduction was thoroughly investigated. Three oscillators loading an additional high-Q cavity resonator, loading an additional high-Q cavity resonator and performing partial dielectric extraction, and loading an original parallel feedback oscillator for comparison were presented. The experimental results showed that the proposed oscillator had a low phase noise of −131.79 dBc/Hz at 1 MHz offset from the carrier frequency of 10.088 GHz, and the FOM was −197.79 dBc/Hz. The phase noise was reduced by 1.66 dB through loading the additional resonator and further reduced by 1.87 dB through partially excising the substrate. To the best of our knowledge, the proposed oscillator showed the lowest phase noise and FOM compared with other all-FR4-based oscillators. The cost of fabrication was markedly reduced. The proposed oscillator also has the advantages of compact size and self-packaging properties. Full article
Show Figures

Figure 1

13 pages, 5624 KiB  
Article
Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
by Elena Blundo, Niklas H. T. Schmidt, Andreas V. Stier and Jonathan J. Finley
Appl. Sci. 2025, 15(15), 8400; https://doi.org/10.3390/app15158400 - 29 Jul 2025
Viewed by 228
Abstract
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat [...] Read more.
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat tunnel barriers, and it can be used to form high finesse photonic nanocavities. Moreover, it is an ideal encapsulating dielectric for two-dimensional (2D) materials and heterostructures, with highly beneficial effects on their electronic and optical properties. Depending on the use case, the thickness of hBN is a critical parameter and needs to be carefully controlled from the monolayer to hundreds of layers. This calls for quick and non-invasive methods to unambiguously identify the thickness of exfoliated flakes. Here, we show that the apparent color of hBN flakes on different SiO2/Si substrates can be made to be highly indicative of the flake thickness, providing a simple method to infer the hBN thickness. Using experimental determination of the colour of hBN flakes and calculating the optical contrast, we derived the optimal substrates for the most reliable hBN thickness identification for flakes with thickness ranging from a few layers towards bulk-like hBN. Our results offer a practical guide for the determination of hBN flake thickness for widespread applications using 2D materials and heterostructures. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 3788 KiB  
Article
On-Wafer Gate Screening Test for Improved Pre-Reliability in p-GaN HEMTs
by Giovanni Giorgino, Cristina Miccoli, Marcello Cioni, Santo Reina, Tariq Wakrim, Virgil Guillon, Nossikpendou Yves Sama, Pauline Gaillard, Mohammed Zeghouane, Hyon-Ju Chauveau, Maria Eloisa Castagna, Aurore Constant, Ferdinando Iucolano and Alessandro Chini
Micromachines 2025, 16(8), 873; https://doi.org/10.3390/mi16080873 - 29 Jul 2025
Viewed by 404
Abstract
In this paper, preliminary gate reliability of p-GaN HEMTs under high positive gate bias is studied. Gate robustness is of great interest both from an academic and industrial point of view; in fact, different tests and models can be explored to estimate the [...] Read more.
In this paper, preliminary gate reliability of p-GaN HEMTs under high positive gate bias is studied. Gate robustness is of great interest both from an academic and industrial point of view; in fact, different tests and models can be explored to estimate the device lifetime, which must meet some minimum product requirements, as specified by international standards (AEC Q101, JESD47, etc.). However, reliability characterizations are usually time-consuming and are performed in parallel on multiple packaged devices. Therefore, it would be useful to have a faster method to screen out weaker gate trials, already on-wafer, before reaching the packaging step. For this purpose, a room-temperature stress procedure is presented and described in detail. Then, this screening test is applied to devices with a reference gate process, and, as a result, high gate leakage degradation is observed. Afterwards, a different process implementing a dielectric layer between p-GaN and gate metal is evaluated, highlighting the improved behavior during the stress test. However, it is also observed that devices with this process suffer from very high drain leakage, and this effect is then studied and understood through TCAD (technology computer-aided design) simulations. Finally, the effect of a surface treatment performed on the p-GaN is analyzed, showing improved gate pre-reliability while maintaining low drain leakage. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

19 pages, 590 KiB  
Review
Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines
by Mohammad-Reza Pourramezan, Abbas Rohani and Mohammad Hossein Abbaspour-Fard
Lubricants 2025, 13(8), 328; https://doi.org/10.3390/lubricants13080328 - 29 Jul 2025
Viewed by 375
Abstract
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. [...] Read more.
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. In contrast, dielectric spectroscopy, impedance analysis, and soft computing offer real-time, non-destructive, and cost-effective alternatives. This review examines recent advances in integrating these techniques to predict lubricant properties, evaluate wear conditions, and optimize maintenance scheduling. In particular, dielectric and impedance spectroscopies offer insights into electrical properties linked to oil degradation, such as changes in viscosity and the presence of wear particles. When combined with soft computing algorithms, these methods enhance data analysis, reduce reliance on expert interpretation, and improve predictive accuracy. The review also addresses challenges—including complex data interpretation, limited sample sizes, and the necessity for robust models to manage variability in real-world operations. Future research directions emphasize miniaturization, expanding the range of detectable contaminants, and incorporating multi-modal artificial intelligence to further bolster system robustness. Collectively, these innovations signal a shift from reactive to predictive maintenance strategies, with the potential to reduce costs, minimize downtime, and enhance overall engine reliability. This comprehensive review provides valuable insights for researchers, engineers, and maintenance professionals dedicated to advancing diesel engine lubricant monitoring. Full article
Show Figures

Graphical abstract

14 pages, 6801 KiB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 147
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

26 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 176
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

8 pages, 4452 KiB  
Proceeding Paper
Synthetic Aperture Radar Imagery Modelling and Simulation for Investigating the Composite Scattering Between Targets and the Environment
by Raphaël Valeri, Fabrice Comblet, Ali Khenchaf, Jacques Petit-Frère and Philippe Pouliguen
Eng. Proc. 2025, 94(1), 11; https://doi.org/10.3390/engproc2025094011 - 25 Jul 2025
Viewed by 236
Abstract
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s [...] Read more.
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s characteristics. Moreover, for a complex scene of interest with targets located on a rough soil, a composite scattering between the target and the surface occurs and creates distortions on the SAR image. These characteristics can make the SAR images difficult to analyse and process. To better understand the complex EM phenomena and their signature in the SAR image, we propose a methodology to generate raw SAR signals and SAR images for scenes of interest with a target located on a rough surface. With this prospect, the entire radar acquisition chain is considered: the sensor parameters, the atmospheric attenuation, the interactions between the incident EM field and the scene, and the SAR image formation. Simulation results are presented for a rough dielectric soil and a canonical target considered as a Perfect Electric Conductor (PEC). These results highlight the importance of the composite scattering signature between the target and the soil. Its power is 21 dB higher that that of the target for the target–soil configuration considered. Finally, these simulations allow for the retrieval of characteristics present in actual SAR images and show the potential of the presented model in investigating EM phenomena and their signatures in SAR images. Full article
Show Figures

Figure 1

17 pages, 1441 KiB  
Article
The Relaxation Behavior of Water Confined in AOT-Based Reverse Micelles Under Temperature-Induced Clustering
by Ivan V. Lunev, Alexander N. Turanov, Mariya A. Klimovitskaya, Artur A. Galiullin, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(15), 7152; https://doi.org/10.3390/ijms26157152 - 24 Jul 2025
Viewed by 260
Abstract
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, [...] Read more.
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, in low, high and microwave frequencies, anchoring with relaxation of shell (bound) water, orientation of surfactant anions at water-surfactant interface and relaxation of bulk water confined in reverse micelles. The analysis of dielectric relaxation processes in AOT-based w/o microemulsions under temperature induced clustering of reverse micelles were made according to structural information obtained in NMR and conductometry experiments. The “wait and switch” relaxation mechanism was applied for the explanation of results for water in the bound and bulk states under spatial limitation in reverse micelles. It was shown that surfactant layer predominantly influences the bound water. The properties of water close to AOT interface are determined by strong interactions between water and ionic AOT molecules, which perturb water H-bonding network. The decrease in micelle size causes a weakening of hydrogen bonds, deformation of its steric network and reduction in co-operative relaxation effects. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

32 pages, 4464 KiB  
Review
Multifunctional Polyimide for Packaging and Thermal Management of Electronics: Design, Synthesis, Molecular Structure, and Composite Engineering
by Xi Chen, Xin Fu, Zhansheng Chen, Zaiteng Zhai, Hongkang Miu and Peng Tao
Nanomaterials 2025, 15(15), 1148; https://doi.org/10.3390/nano15151148 - 24 Jul 2025
Viewed by 491
Abstract
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. [...] Read more.
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. Recent advances have focused on molecular design and composite engineering strategies to address these limitations. This review first summarizes the intrinsic properties of polyimides, followed by a systematic discussion of chemical synthesis, surface modification approaches, molecular design principles, and composite fabrication methods. We comprehensively examine both conventional polymerization synthetic routes and emerging techniques such as microwave-assisted thermal imidization and chemical vapor deposition. Special emphasis is placed on porous structure engineering via solid-template and liquid-template methods. Three key modification strategies are highlighted: (1) surface modifications for enhanced hydrophobicity, chemical stability, and tribological properties; (2) molecular design for optimized dielectric performance and thermal stability; and (3) composite engineering for developing high-thermal-conductivity materials with improved mechanical strength and electromagnetic interference (EMI) shielding capabilities. The dielectric constant of polyimide is reduced while chemical stability and wear resistance can be enhanced through the introduction of fluorine groups. Ultra-low dielectric constant and high-temperature resistance can be achieved by employing rigid monomers and porous structures. Furthermore, the incorporation of fillers such as graphene and boron nitride can endow the composite materials with high thermal conductivity, excellent EMI shielding efficiency, and improved mechanical properties. Finally, we discuss representative applications of polyimide and composites in electronic device packaging, EMI shielding, and thermal management systems, providing insights into future development directions. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Figure 1

Back to TopTop