Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = high current emitting discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8486 KiB  
Article
Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy)
by Sofia De Gregorio, Marco Camarda, Antonino Pisciotta and Vincenzo Francofonte
Environments 2025, 12(6), 197; https://doi.org/10.3390/environments12060197 - 11 Jun 2025
Viewed by 564
Abstract
The Earth’s degassing is an important factor in evaluating global carbon budget estimates and understanding the carbon cycle. As a result, numerous studies have focused on this topic. However, current estimates predominantly focus on subaerial CO2 emissions and CO2 deep submarine [...] Read more.
The Earth’s degassing is an important factor in evaluating global carbon budget estimates and understanding the carbon cycle. As a result, numerous studies have focused on this topic. However, current estimates predominantly focus on subaerial CO2 emissions and CO2 deep submarine emissions, particularly along mid-ocean ridges (MORs), whereas very few and only spatially limited estimates of shallow submarine CO2 emissions have been reported, despite being widespread features of the seafloor. This study reports the results of measuring the dissolved CO2 concentrations in shallow submarine environments along the coast of Vulcano Island (Aeolian Islands, Italy). For the areas exhibiting the highest concentrations, we calculated the amount of diffuse degassing by computing the sea–air CO2 flux. The results revealed extremely high dissolved CO2 concentrations, reaching up to 24 vol.% in areas with visible hydrothermal activity, including one location far from the island’s main crater. Notably, elevated CO2 levels were also detected in areas with minimal or no apparent hydrothermal discharge, indicating the occurrence of diffuse degassing processes in these areas. In addition, the calculated diffuse degassing flux was comparable in magnitude to the CO2 flux directly emitted into the atmosphere from the island’s main bubbling pools. Full article
Show Figures

Figure 1

13 pages, 8381 KiB  
Communication
Correlation between the Channel Discharge Current and Spectrum of a Single-Stroke Lightning Flash to Canton Tower
by Weiqun Xu, Weitao Lyu, Xuejuan Wang, Lyuwen Chen, Bin Wu, Qi Qi, Ying Ma and Leyan Hua
Remote Sens. 2023, 15(24), 5746; https://doi.org/10.3390/rs15245746 - 15 Dec 2023
Cited by 4 | Viewed by 1328
Abstract
The intense current of lightning plasma can emit radiation across various parts of the electromagnetic spectrum. Spectral observation is an effective means to understand the radiation characteristics of lightning channels at different wavelengths. In this context, the spectra and channel current of a [...] Read more.
The intense current of lightning plasma can emit radiation across various parts of the electromagnetic spectrum. Spectral observation is an effective means to understand the radiation characteristics of lightning channels at different wavelengths. In this context, the spectra and channel current of a single-stroke lightning flash to Canton Tower were acquired from the Tall-Object Lightning Observatory in Guangzhou using a slitless high-speed spectrograph and a Rogowski coil. Spectral correction was applied for enhanced spectral analysis. The relationship between the intensities of different spectral lines and the directly measured current of the lightning channel was investigated for the first time. The results indicated that the duration of the ionic lines in the visible region can be up to one millisecond during the entire discharge process, which is clearly longer than the duration reported in previous research. There always exists a good exponential relationship (y = axb) between the intensities of ionic lines and the channel current with an exponent value (b) very close to 2 and with a coefficient of determination (R2 value) higher than 0.99, whereas the exponential relationship between many atomic lines and the channel current has an exponent value clearly smaller than 2 with a relatively lower R2 value, which implies that the intensities of ionic lines are evidently associated with the square of the current, while the intensities of atomic lines have relatively weak exponential correlation with the current. We also preliminarily verified this conclusion with temperature derived from the ionic and atomic lines. The results indicated that due to the time integral of the current squared, the cooling rate of the temperature derived from the ionic lines in the channel core is not significant when the current decreases, while the cooling rate of the temperature derived from the atomic lines of the surrounding corona sheath channel presents a pronounced decline with a decrease in current. Full article
Show Figures

Figure 1

14 pages, 1803 KiB  
Article
Analysis of Equivalent CO2 Emissions of the Irrigation System—A Case Study
by Daniel Benalcázar-Murillo, Silvia Vilcekova and Miguel Ángel Pardo
Sustainability 2023, 15(23), 16240; https://doi.org/10.3390/su152316240 - 23 Nov 2023
Cited by 3 | Viewed by 1668
Abstract
This work aims to assess the emissions related to the useful life of the irrigation network on the campus of the University of Alicante (Spain). A life cycle assessment has been developed employing the One Click LCA software to calculate material proportion, repair [...] Read more.
This work aims to assess the emissions related to the useful life of the irrigation network on the campus of the University of Alicante (Spain). A life cycle assessment has been developed employing the One Click LCA software to calculate material proportion, repair rate, energy consumption, water volume, transport, and irrigation surface. This has been used in a real pressurised irrigation network, such as the one at the University of Alicante delivering water to the grass. Two potential cases which consider the pipelines made of polyvinyl chloride (variant 1) and high-density polyethene (variant 2) have also been analysed. Energy consumption had the most influence on emissions discharges (42%), followed by materials (37%) and repairs (18%) in the current water irrigation network. Variant 1 shows higher emissions produced in network materials (47%), energy consumption (27%), and repairs (24%). Variant 2 has high emissions because of energy consumption (47%), materials manufacturing and transport (34%), and repairs (17%). It has been determined that a network of disposed polyethene pipes will reduce the total Global Warming Potential emitted into the atmosphere. Materials (127.9 Tn CO2e) and energy (145.5 Tn CO2e) are the stages where the highest Global Warming Potential is produced. Other stages that also stand out are repairs (62 Tn CO2e), construction (6.3 Tn CO2e), and transport of materials (3.5 Tn CO2e). Renewable energy sources could reduce energy consumption. Variant 2 has 11% lower emissions than the current network (variant 0), making it a workable choice for infrastructure design. Full article
Show Figures

Figure 1

19 pages, 8992 KiB  
Article
Influence of Voltage, Pulselength and Presence of a Reverse Polarized Pulse on an Argon–Gold Plasma during a High-Power Impulse Magnetron Sputtering Process
by Jürgen Guljakow and Walter Lang
Plasma 2023, 6(4), 680-698; https://doi.org/10.3390/plasma6040047 - 20 Nov 2023
Viewed by 2283
Abstract
This work aims to provide information about the deposition of gold via bipolar high-power impulse magnetron sputtering (HIPIMS) in order to identify suitable process parameters. The influences of voltage, pulse length and the kick-pulse on an argon–gold plasma during a bipolar high-power impulse [...] Read more.
This work aims to provide information about the deposition of gold via bipolar high-power impulse magnetron sputtering (HIPIMS) in order to identify suitable process parameters. The influences of voltage, pulse length and the kick-pulse on an argon–gold plasma during a bipolar high-power impulse magnetron sputtering deposition process were analysed via optical emission spectroscopy (OES) and oscilloscope. The voltage was varied between 700 V and 1000 V, the pulse length was varied between 20 µs and 100 µs and the process was observed once with kick-pulse and once without. The influence of the voltage on the plasma was more pronounced than the influence of the pulse width. While the intensity of several Au I lines increased up to 13-fold with increasing voltages, only a less-than linear increase in Au I brightness with time could be identified for changes in pulse length. The intensity of excited argon is only minimally affected by changes in voltages, but follows the evolution of the discharge current, with increasing pulse lengths. Contrary to the excited argon, the intensity emitted by ionized argon grows nearly linearly with voltage and pulse length. The reverse polarised pulse mainly affects the excited argon atoms in the plasma, while the influence on the ionized argon is less pronounced, as can be seen in the the spectra. Unlike the excited argon atoms, the excited gold atoms appear to be completely unaffected by the kick-pulse. No ionization of gold was observed. During the pulse, a strong rarefaction of plasma takes place. Very short pulses of less than 50 µs and high voltages of about 1000 V are to be preferred for the deposition of gold layers. This paper offers a comprehensive overview of the gold spectrum during a HIPIMS process and makes use of optical emission spectroscopy as a simple measuring approach for evaluation of the reverse polarized pulse during a bipolar process. Future uses of the process may include the metallization of polymers. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

19 pages, 7415 KiB  
Article
Highly Conductive and Reusable Cellulose Hydrogels for Supercapacitor Applications
by Nujud Mohammed Badawi, Khalid Mujasam Batoo, Ramesh Subramaniam, Ramesh Kasi, Sajjad Hussain, Ahamad Imran and Muthumareeswaran Muthuramamoorthy
Micromachines 2023, 14(7), 1461; https://doi.org/10.3390/mi14071461 - 21 Jul 2023
Cited by 9 | Viewed by 2564
Abstract
We report Na-Alginate-based hydrogels with high ionic conductivity and water content fabrication using poly (3,4-ethylene dioxythiophene) (PEDOT): poly (4-styrene sulfonic acid) (PSS) and a hydrogel matrix based on dimethyl sulfoxide (DMSO). DMSO was incorporated within the PEDOT:PSS hydrogel. A hydrogel with higher conductivity [...] Read more.
We report Na-Alginate-based hydrogels with high ionic conductivity and water content fabrication using poly (3,4-ethylene dioxythiophene) (PEDOT): poly (4-styrene sulfonic acid) (PSS) and a hydrogel matrix based on dimethyl sulfoxide (DMSO). DMSO was incorporated within the PEDOT:PSS hydrogel. A hydrogel with higher conductivity was created through the in-situ synthesis of intra-Na-Alginate, which was then improved upon by H2SO4 treatment. Field emission scanning electron microscopy (FESEM) was used to examine the surface morphology of the pure and synthetic hydrogel. Structural analysis was performed using Fourier-transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA), which examines thermal properties, was also used. A specific capacitance of 312 F/g at 80 mV/s (energy density of 40.58 W/kg at a power density of 402.20 W/kg) at 100 DC mA/g was achieved by the symmetric Na-Alginate/PEDOT:PSS based flexible supercapacitor. The electrolyte achieved a higher ionic conductivity of 9.82 × 10−2 and 7.6 × 10−2 Scm−1 of Na-Alginate and a composite of Na-Alginate/PEDOT:PSS at 25 °C. Furthermore, the supercapacitor Na-Alginate/PEDOT:PSS//AC had excellent electrochemical stability by showing a capacity retention of 92.5% after 3000 continuous charge–discharge cycles at 10 mA current density. The Na- Alginate/PEDOT:PSS hydrogel displayed excellent flexibility and self-healing after re-contacting the two cut hydrogel samples of electrolyte for 90 min because of the dynamic cross-linking network efficiently dissipated energy. The illumination of a light-emitting diode (LED) verified the hydrogel’s capacity for self-healing. Full article
(This article belongs to the Special Issue Graphene-Nanocomposite-Based Flexible Supercapacitors)
Show Figures

Figure 1

13 pages, 5322 KiB  
Article
Nanostructured Iron Oxides: Structural, Optical, Magnetic, and Adsorption Characteristics for Cleaning Industrial Effluents
by Suriyaprabha Rajendran, Shivraj Gangadhar Wanale, Amel Gacem, Virendra Kumar Yadav, Inas A. Ahmed, Jari S. Algethami, Shakti Devi Kakodiya, Timsi Modi, Amnah Mohammed Alsuhaibani, Krishna Kumar Yadav and Simona Cavalu
Crystals 2023, 13(3), 472; https://doi.org/10.3390/cryst13030472 - 9 Mar 2023
Cited by 23 | Viewed by 3489
Abstract
Globally, efforts are being made to upgrade and improvise the current wastewater treatment technologies. Industrial wastewater is being generated exponentially, owing to the expansion in chemical industries and civilizations necessitating remediation to prevent further environmental damage and lower associated human risks. In this [...] Read more.
Globally, efforts are being made to upgrade and improvise the current wastewater treatment technologies. Industrial wastewater is being generated exponentially, owing to the expansion in chemical industries and civilizations necessitating remediation to prevent further environmental damage and lower associated human risks. In this work, iron oxide nanoparticles (IONPs) have been developed and employed as an efficient nanocatalyst for heavy metal adsorption via the chemical route. The shape, absorbance optical, crystal phase, and magnetization of as-prepared magnetic nanostructures were characterized using XRD (X-ray diffraction), UV-Vis (ultraviolet-visible), HRTEM (High-resolution transmission electron microscopy), FTIR (Fourier transfer infrared spectroscopy), and VSM. Further, the adsorption ability of iron oxide to remove the bulk metallic elements considering cadmium (Cd), lead (Pb), zinc (Zn), chromium (Cr), copper (Cu), and nickel (Ni), present in industrial effluents, were studied. The Maghemite Fe2O3 crystal phase having an R-3c group is observed in the XRD results. An identical shape of spherical nanostructures is determined using TEM including ≈21 nm for pure Fe2O3. A removal % was studied by using ICP-OES, and showed a Cr (61.2%), Cd (98%), Cu (66%), Ni (64%), Zn (97%), and Pb (98%) removal ability. The application of such monitored nanomaterials to effluent cleaning and sewage discharge emitted via labs and petrochemical industries could be expanded. Full article
Show Figures

Figure 1

20 pages, 4981 KiB  
Article
Towards the Development of Sustainable Hybrid Materials to Achieve High Cr(VI) Removals in a One-Pot Process
by David Gómez-Carnota, José L. Barriada and Roberto Herrero
Nanomaterials 2022, 12(22), 3952; https://doi.org/10.3390/nano12223952 - 9 Nov 2022
Cited by 1 | Viewed by 1619
Abstract
Rising manufacturing costs resulting from the current global situation make it necessary to economize at all stages of production, including waste management. Cost-effective materials that reduce the release of pollutants into the environment are becoming mandatory. In this work, a sodium silicate polymeric [...] Read more.
Rising manufacturing costs resulting from the current global situation make it necessary to economize at all stages of production, including waste management. Cost-effective materials that reduce the release of pollutants into the environment are becoming mandatory. In this work, a sodium silicate polymeric material, functionalized with iron, was synthesized. The material contains iron-rich nanostructures on the surface, which are responsible for the decontamination process. The inorganic material was further treated with a reducing eucalyptus extract to improve its decontamination performance. Both the inorganic and hybrid materials were used for decontamination of Cr(VI), a widely emitted chemical waste product. The hybrid material provided the best results (1.7 g Cr(VI)·g−1 Fe) in a one-pot process combining reduction and adsorption. The Langmuir–Freundlich model and a statistical thermodynamics adsorption model, together with removal rates, were used to study the processes. High adsorption energies were found, especially in the adsorption of Fe(II) on the polymeric base (33.2 kJ∙mol−1). All materials were characterized using SEM, EDS and N2 sorption, TGA, and IR analyses. In conclusion, the hybrid material synthesized in this study is cheap and easy to produce through environmentally friendly synthesis, and it is a promising adsorbent for the prevention of pollution issues in effluent discharges. Full article
(This article belongs to the Special Issue Nano-Adsorbents for the Removal of Heavy Metals and Dyes)
Show Figures

Graphical abstract

17 pages, 6064 KiB  
Article
Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires
by Antoni Różowicz, Henryk Wachta, Krzysztof Baran, Marcin Leśko and Sebastian Różowicz
Energies 2022, 15(21), 8142; https://doi.org/10.3390/en15218142 - 1 Nov 2022
Cited by 13 | Viewed by 2057
Abstract
Solid-state light sources are currently the fastest-growing group of light sources, replacing the previously used discharge and incandescent light sources. Thermal operating conditions of LEDs (Light Emitting Diode) play an important role in t maintaining long service life and constancy of luminous-electrical parameters. [...] Read more.
Solid-state light sources are currently the fastest-growing group of light sources, replacing the previously used discharge and incandescent light sources. Thermal operating conditions of LEDs (Light Emitting Diode) play an important role in t maintaining long service life and constancy of luminous-electrical parameters. In the field of illumination, the service life parameter of light sources is important for the costs of maintenance of the illumination system, while the maintenance of the value of certain light parameters over time, such as luminous flux, color temperature and color rendering index, is related to the aesthetic effect of the illumination. In addition, limiting the junction temperature of solid-state light sources is particularly important in high-power luminaires dedicated to flood illumination. One of the elements shaping the thermal operating conditions of multi-source LED luminaires is the number of luminaires used, their arrangement, and the distance between LEDs installed on the MCPCB (Metal Core Printed Circuit Board) substrate. This article presents the results of simulation studies, realized using CFD (Computational Fluid Dynamics) software, where the temperature distribution and the junction temperature of the LED panel were determined for different configurations and distances between the LEDs. The results obtained were analyzed and conclusions were drawn based on them. Thermal tests performed and presented in the article cover scientific issues related to shaping the temperature distribution of the LED panel. They make it possible to determine the influence of thermal couplings between the sources, related to their number, distance and the value of the forward current, on the final temperature of the LED junction temperature. The presented research results may constitute auxiliary materials for designers of lighting luminaires, especially high-power luminaires, where a large number of high-power LED sources are installed in close proximity. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings)
Show Figures

Figure 1

22 pages, 5812 KiB  
Article
Integrated Process for Producing Glycolic Acid from Carbon Dioxide Capture Coupling Green Hydrogen
by Dongliang Wang, Jingwei Li, Wenliang Meng, Jian Wang, Ke Wang, Huairong Zhou, Yong Yang, Zongliang Fan and Xueying Fan
Processes 2022, 10(8), 1610; https://doi.org/10.3390/pr10081610 - 15 Aug 2022
Cited by 13 | Viewed by 6250
Abstract
A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock, including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the perspectives of [...] Read more.
A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock, including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the perspectives of carbon utilization, CO2 emissions, total site energy integration, and techno-economic analysis. The carbon utilization ratio of the process is 82.5%, and the CO2 capture unit has the largest percentage of discharge in carbon utilization. Among the indirect emissions of each unit, the CO2 hydrogenation to methanol has the largest proportion of indirect carbon emissions, followed by the formaldehyde carbonylation to glycolic acid and the CO2 capture. After total site energy integration, the utility consumption is 1102.89 MW for cold utility, 409.67 MW for heat utility, and 45.98 MW for power. The CO2 hydrogenation to methanol makes the largest contribution to utility consumption due to the multi-stage compression of raw hydrogen and the distillation of crude methanol. The unit production cost is 834.75 $/t-GA; CO2 hydrogenation to methanol accounts for the largest proportion, at 70.8% of the total production cost. The total production cost of the unit depends on the price of hydrogen due to the currently high renewable energy cost. This study focuses on the capture and conversion of CO2 emitted from coal-fired power plants, which provides a path to a feasible low-carbon and clean use of CO2 resources. Full article
(This article belongs to the Special Issue Design and Optimization in Process Engineering)
Show Figures

Graphical abstract

15 pages, 2031 KiB  
Article
On-Road and Laboratory Emissions from Three Gasoline Plug-In Hybrid Vehicles-Part 2: Solid Particle Number Emissions
by Anastasios Melas, Tommaso Selleri, Jacopo Franzetti, Christian Ferrarese, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Energies 2022, 15(14), 5266; https://doi.org/10.3390/en15145266 - 20 Jul 2022
Cited by 9 | Viewed by 2375
Abstract
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. [...] Read more.
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. The rationale is the high ICE load during the cold start in combination with the cold conditions of the after-treatment devices. In this study, we measured the solid particle number (SPN) emissions of two Euro 6d and one Euro 6d-TEMP gasoline direct injection (GDI) PHEVs (electric range 52–61 km) all equipped with a gasoline particulate filter, in the laboratory and on-road with different states of charge of the rechargeable electric energy storage system (REESS) and ambient temperatures. All vehicles met the regulation limits but it was observed that, even for fully charged REESS, when the ICE ignited SPN emissions were similar or even higher in some cases compared to the operation of these vehicles solely with their ICE (discharged REESS) and also when compared to conventional GDI vehicles. On-road SPN emission rate spikes during the first 30 s after a cold start were, on average, 2 to 15 times higher with charged compared to discharged REESS due to higher SPN concentrations and exhaust flow rates. For one vehicle in the laboratory under identical driving conditions, the ICE ignition at high load resulted in 10-times-higher SPN emission rate spikes at cold-start compared to hot-start. At −10 °C, for all tested vehicles, the ICE ignited at the beginning of the cycle even when the REESS was fully charged, and SPN emissions increased from 30% to 80% compared to the cycle at 23 °C in which the ICE ignited. The concentration of particles below 23 nm, which is the currently regulated lower particle size, was low (≤18%), showing that particles larger than 23 nm were mainly emitted irrespective of cold or hot engine operation and ambient temperature. Full article
(This article belongs to the Special Issue Environmental Impact of New Energy Technologies)
Show Figures

Figure 1

16 pages, 4248 KiB  
Article
High-Efficiency Flicker-Free LED Driver with Soft-Switching Feature
by Hung-Liang Cheng, Lain-Chyr Hwang, Heidi H. Chang, Qi-You Wang and Chun-An Cheng
Micromachines 2022, 13(5), 797; https://doi.org/10.3390/mi13050797 - 20 May 2022
Cited by 3 | Viewed by 2517
Abstract
A novel interleaved DC-DC buck converter is proposed to drive high-brightness light-emitting diodes (LEDs). The circuit configuration mainly consists of two buck converters, which are connected in parallel and use interleaved operation. Through interleaved operation, the power capability of the converter is doubled. [...] Read more.
A novel interleaved DC-DC buck converter is proposed to drive high-brightness light-emitting diodes (LEDs). The circuit configuration mainly consists of two buck converters, which are connected in parallel and use interleaved operation. Through interleaved operation, the power capability of the converter is doubled. Traditionally, two individual inductors are used in the two buck converters. The difference between conventional parallel-operated buck converters using two energy storage inductors and the proposed circuit is that the proposed circuit uses two small inductors and a coupled inductor that replace the two inductors of the buck converters. In this way, both buck converters can be designed to operate in discontinuous-current mode (DCM), even if the magnetizing inductance of the coupled inductor is large. Therefore, the freewheeling diodes can achieve zero-current switching off (ZCS). Applying the principle of conservation of magnetic flux, the magnetizing current is converted between the two windings of the coupled inductor. Because nearly constant magnetizing current continuously flows into the output, the output voltage ripple can be effectively reduced without the use of large-value electrolytic capacitors. In addition, each winding current can drop from positive to negative, and this reverse current can discharge the parasitic capacitor of the active switch to zero volts. In this way, the active switches can operate at zero-voltage switching on (ZVS), leading to low switching losses. A 180 W prototype LED driver was built and tested. Our experimental results show satisfactory performance. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

33 pages, 10077 KiB  
Article
The VIIRS Day/Night Band: A Flicker Meter in Space?
by Christopher D. Elvidge, Mikhail Zhizhin, David Keith, Steven D. Miller, Feng Chi Hsu, Tilottama Ghosh, Sharolyn J. Anderson, Christian K. Monrad, Morgan Bazilian, Jay Taneja, Paul C. Sutton, John Barentine, William S. Kowalik, Christopher C. M. Kyba, Dee W. Pack and Dorit Hammerling
Remote Sens. 2022, 14(6), 1316; https://doi.org/10.3390/rs14061316 - 9 Mar 2022
Cited by 13 | Viewed by 4614
Abstract
The VIIRS day/night band (DNB) high gain stage (HGS) pixel effective dwell time is in the range of 2–3 milliseconds (ms), which is about one third of the flicker cycle present in lighting powered by alternating current. Thus, if flicker is present, it [...] Read more.
The VIIRS day/night band (DNB) high gain stage (HGS) pixel effective dwell time is in the range of 2–3 milliseconds (ms), which is about one third of the flicker cycle present in lighting powered by alternating current. Thus, if flicker is present, it induces random fluctuations in nightly DNB radiances. This results in increased variance in DNB temporal profiles. A survey of flicker characteristics conducted with high-speed camera data collected on a wide range of individual luminaires found that the flicker is most pronounced in high-intensity discharge (HID) lamps, such as high- and low-pressure sodium and metal halides. Flicker is muted, but detectable, in incandescent luminaires. Modern light-emitting diodes (LEDs) and fluorescent lights are often nearly flicker-free, thanks to high-quality voltage smoothing. DNB pixel footprints are about half a square kilometer and can contain vast numbers of individual luminaires, some of which flicker, while others do not. If many of the flickering lights are drawing from a common AC supplier, the flicker can be synchronized and leave an imprint on the DNB temporal profile. In contrast, multiple power supplies will throw the flickering out of synchronization, resulting in a cacophony with less radiance fluctuation. The examination of DNB temporal profiles for locations before and after the conversion of high-intensity discharge (HID) to LED streetlight conversions shows a reduction in the index of dispersion, calculated by dividing the annual variance by the mean. There are a number of variables that contribute to radiance variations in the VIIRS DNB, including the view angle, cloud optical thickness, atmospheric variability, snow cover, lunar illuminance, and the compilation of temporal profiles using pixels whose footprints are not perfectly aligned. It makes sense to adjust the DNB radiance for as many of these extraneous effects as possible. However, none of these adjustments will reduce the radiance instability introduced by flicker. Because flicker is known to affect organisms, including humans, the development of methods to detect and rate the strength of flickering from space will open up new areas of research on the biologic impacts of artificial lighting. Over time, there is a trend towards the reduction of flicker in outdoor lighting through the replacement of HID with low-flicker LED sources. This study indicates that the effects of LED conversions on the brightness and steadiness of outdoor lighting can be analyzed with VIIRS DNB temporal profiles. Full article
(This article belongs to the Special Issue Remote Sensing of Night-Time Light)
Show Figures

Figure 1

26 pages, 3229 KiB  
Article
Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant
by Mert Guney, Zhanel Akimzhanova, Aiganym Kumisbek, Symbat Kismelyeva, Almira Guney, Ferhat Karaca and Vassilis Inglezakis
Sustainability 2021, 13(24), 13829; https://doi.org/10.3390/su132413829 - 14 Dec 2021
Cited by 9 | Viewed by 3314
Abstract
Former industrially contaminated sites are a burden from the past that still pose environmental risks. During the second half of the 20th century, the Pavlodar region in North Kazakhstan had been a part of Soviet Union’s industrial system that operated a chlor-alkali plant [...] Read more.
Former industrially contaminated sites are a burden from the past that still pose environmental risks. During the second half of the 20th century, the Pavlodar region in North Kazakhstan had been a part of Soviet Union’s industrial system that operated a chlor-alkali plant (CAP). The former CAP discharged approximately 135 t Hg into nearby Lake Balkyldak with total losses to water, soil, and air estimated around 1000 t. Pollution by potentially toxic elements (PTEs) due to former and currently active industrial enterprises is an under-investigated concern in the Pavlodar region. The present study aims to provide a much-needed update on the situation around the CAP area by evaluating the contamination by Hg and other selected PTEs (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Zn) on the surrounding environment of the CAP and in the nearby urban zone. Soil, sediment, surface water, and groundwater samples have been collected in several sampling campaigns carried out in 2018 and 2019. Several samples had Hg concentrations exceeding maximum permissible concentrations (MPC), for soils and sediments (in mg/kg; range: 0.0006 to 24, average: 0.56) and for surface water and groundwater (in µg/L; range: 0.004 to 1340, average: 93). Critically high concentrations were mostly measured in the vicinity of Lake Balkyldak, where the majority of Hg had been discharged by the former CAP, indicating persisting Hg pollution in the studied zone. A comparison of the PTEs concentrations in soil and sediments showed less severe pollution but still some elevated values for As, Ba, Co, Cu, Mn, Ni, and Se. The inter-elemental relationship between Hg and assessed PTEs was weak, indicating the presence of sources independent from Hg emitting sources. Further research on Hg contamination on the exact territory of the former CAP is needed, and a detailed human health risk characterization to identify potential unacceptable risks is strongly recommended. Full article
(This article belongs to the Special Issue Chemical Pollution, Prevention, and Environmental Sustainability)
Show Figures

Figure 1

7 pages, 9027 KiB  
Proceeding Paper
Assessment of Partial Discharges Evolution in Bushing by Infrared Analysis
by Bruno Albuquerque de Castro, Guilherme Beraldi Lucas, Gabriel Scota Fernandes, José Renato Castro Pompéia Fraga, Rudolf Ribeiro Riehl and André Luiz Andreoli
Eng. Proc. 2021, 10(1), 18; https://doi.org/10.3390/ecsa-8-11253 - 1 Nov 2021
Cited by 4 | Viewed by 1597
Abstract
The quality of power systems is related to their capability to predict failures, avoid stoppages, and increase the lifetime of their components. Therefore, science has been developing monitoring systems to identify failures in induction motors, transformers, and transmission lines. In this context, one [...] Read more.
The quality of power systems is related to their capability to predict failures, avoid stoppages, and increase the lifetime of their components. Therefore, science has been developing monitoring systems to identify failures in induction motors, transformers, and transmission lines. In this context, one of the most crucial components of the electrical systems is the insulation devices such as bushings, which are constantly subjected to dust, thermal stresses, moisture, etc. These conditions promote insulation deterioration, leading to the occurrence of partial discharges. Partial discharges are localized dielectric breakdown that emits ultra-violet radiation, heat, electromagnet, and acoustics waves. The most traditional techniques to identify these flaws on bushings are based on the current, ultra high frequency, and acoustic emission analysis. However, thermal analysis stands out as a noise-resistant technique to monitor several components in the power systems. Although the thermal method is applied to detect different types of faults, such as bad contacts, overloads, etc, this technique has not been previously applied to perform partial discharge detection and evaluate its evolution on bushings. Based on this issue, this article proposes two new indexes to characterize the discharge evolution based on the infrared thermal analysis: the area ratio coefficient and the Red, Green, and Blue (RGB) ratio coefficient. Seven discharge levels were induced in a contaminated bushing, and an infrared thermal camera captured 20 images per condition, totalizing 140 images. New coefficients were used to perform the identification of discharge evolution. Results indicated that values of the new indexes increase with the partial discharge activity. Thus, the new imaging processing approach can be a promising contribution to literature, improving the reliability and maintenance planning for power transmission systems. Full article
Show Figures

Figure 1

14 pages, 1600 KiB  
Article
Effects of O2 Addition on the Discharge Parameters and Production of Reactive Species of a Transferred Atmospheric Pressure Plasma Jet
by Fellype Nascimento, Kleber Petroski and Konstantin Kostov
Appl. Sci. 2021, 11(14), 6311; https://doi.org/10.3390/app11146311 - 8 Jul 2021
Cited by 11 | Viewed by 2753
Abstract
The therapeutic effects of atmospheric pressure plasma jets (APPJs) have been associated with the presence of reactive species, mainly the reactive oxygen and nitrogen ones, generated in this kind of plasmas. Due to that, many studies attempting to enhance the production of reactive [...] Read more.
The therapeutic effects of atmospheric pressure plasma jets (APPJs) have been associated with the presence of reactive species, mainly the reactive oxygen and nitrogen ones, generated in this kind of plasmas. Due to that, many studies attempting to enhance the production of reactive species in APPJs have been performed. The employment of gas admixtures, usually mixing a noble gas with oxygen (O2) or water vapor, is one of the most common methods to achieve such goal. This work presents a study of how the addition of small amounts of O2 affects the electrical parameters and the production of reactive species in a transferred APPJ produced at the tip of a long and flexible plastic tube. The study was carried out employing helium (He) as the working gas and applying a high voltage (HV) in the form of amplitude-modulated sine waveform (burst mode). With this configuration it was possible to verify that the O2 addition reduces the discharge power and effective current, as a result of late ignition and shorter discharge duration. It was also found that the addition of O2 to a certain content in the gas admixture makes the light emission from oxygen atoms increase, indicating an increment in oxygen related reactive species in the plasma jet. However, at the same time the light emitted from hydroxyl (OH) and nitric oxide (NO) exhibits the opposite behavior, i.e., decrease, indicating a reduction of such species in the APPJ. For these reasons, the addition of O2 to the working gas seems to be useful for increasing the effectiveness of the plasma treatment only when the target modification effect is directly dependent on the content of atomic oxygen. Full article
(This article belongs to the Special Issue Frontiers in Atmospheric Pressure Plasma Technology)
Show Figures

Figure 1

Back to TopTop