Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Sampling
2.2. Sample Handling and Characterization
2.3. Determination of Hg
2.4. Determination of Other Selected Potentially Toxic Elements (PTEs)
2.5. QA/QC, Statistical Analyses
3. Results and Discussion
3.1. Sample Physicochemical Properties
3.2. Hg in Soils and Sediments
3.3. Hg in Surface Water and Groundwater
3.4. PTEs in Soils and Sediments
3.5. Comparison of Hg Contamination with Literature
3.6. Contamination in CAP-Affected Area vs. Nearby Urban Zone
3.6.1. Effect of Distance from Source on Hg Contamination Level
3.6.2. Contamination by Hg and Other PTEs in Affected Area vs. Urban Zone
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- UNEP (United Nations Environment Programme). Study on the Possible Effects on Human Health and the Environment in Asia and the Pacific of the Trade of Products Containing Lead, Cadmium and Mercury; United Nations Environment Programme: Geneva, Switzerland, 2011. [Google Scholar]
- WHO (World Health Organization). Preventing Disease through Healthy Environments Exposure to Mercury: A Major Public Health Concern. 2007. Available online: https://apps.who.int/iris/handle/10665/340687 (accessed on 13 December 2021).
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chem. Phys. Discuss. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Biester, H.; Müller, G.; Schöler, H. Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: Part I. Sci. Total Environ. 2002, 284, 177–189. [Google Scholar] [CrossRef]
- Bose-O’Reilly, S.; McCarty, K.M.; Steckling, N.; Lettmeier, B. Mercury Exposure and Children’s Health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 186–215. [Google Scholar] [CrossRef] [Green Version]
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition. 2001. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=73 (accessed on 13 December 2021).
- Guney, M.; Welfringer, B.; de Repentigny, C.; Zagury, G.J. Children’s Exposure to Mercury-Contaminated Soils: Exposure Assessment and Risk Characterization. Arch. Environ. Contam. Toxicol. 2013, 65, 345–355. [Google Scholar] [CrossRef]
- Bravo, A.G.; Cosio, C.; Amouroux, D.; Zopfi, J.; Chevalley, P.-A.; Spangenberg, J.E.; Ungureanu, V.-G.; Dominik, J. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Res. 2014, 49, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, L.; Huang, Q.; Yang, Y.; Nie, Z.; Cheng, J.; Yang, J.; Wang, Y.; Chai, M. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol. Environ. Saf. 2015, 122, 343–351. [Google Scholar] [CrossRef]
- Song, Z.; Li, P.; Ding, L.; Li, Z.; Zhu, W.; He, T.; Feng, X. Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J. Geochem. Explor. 2018, 194, 81–87. [Google Scholar] [CrossRef]
- Stewart, A.J.; Smith, J.G.; Loar, J.M. Long-Term Water-Quality Changes in East Fork Poplar Creek, Tennessee: Background, Trends, and Potential Biological Consequences. Environ. Manag. 2011, 47, 1021–1032. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Role of Potentially Toxic Elements in Soils. In Soil Components and Human Health; Springer: Berlin/Heidelberg, Germany, 2018; pp. 375–450. [Google Scholar] [CrossRef]
- Ahmed, I.; Iqbal, H.M.N.; Dhama, K. Enzyme-Based Biodegradation of Hazardous Pollutants—An Overview. J. Exp. Biol. Agric. Sci. 2017, 5, 402–411. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Iqbal, H.M.; Yan, Y. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Sci. Total Environ. 2018, 644, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Global Mercury. Supply, Trade, and Demand; UNEP: Geneva, Switzerland, 2017. [Google Scholar]
- WCC (World Chlorine Council). Reporting On Mercury Use—World Chlorine Council; WCC: Brussels, Belgium, 2021. [Google Scholar]
- Kanibolotskaya, Y.; Listkov, W.; Shmidt, N. Heavy metals in soil and plants (Agropyron pectiniforme Roem. Et Schult.) of the Pavlodar region (Kazakhstan). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Barnaul, Russia, 19–20 April 2019; Volume 395, p. 012037. [Google Scholar]
- Randall, P.; Ilyushchenko, M.; Lapshin, E.; Kuzmenko, L. Case Study: Mercury Pollution near a Chemical Plant in Northern Kazakhstan; EM: Air and Waste Management Association’s Magazine for Environmental Managers, (FEB): Pittsburgh, PA, USA, 2006. [Google Scholar]
- Ullrich, S.M.; Ilyushchenko, M.A.; Kamberov, I.M.; Tanton, T.W. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: Sediment and water contamination of Lake Balkyldak and the River Irtysh. Sci. Total Environ. 2007, 381, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Akimzhanova, Z.; Kumisbek, A.; Beisova, K.; Kismelyeva, S.; Satayeva, A.; Inglezakis, V.; Karaca, F. Mercury (Hg) Contaminated Sites in Kazakhstan: Review of Current Cases and Site Remediation Responses. Int. J. Environ. Res. Public Health 2020, 17, 8936. [Google Scholar] [CrossRef]
- Guney, M.; Kumisbek, A.; Akimzhanova, Z.; Kismelyeva, S.; Beisova, K.; Zhakiyenova, A.; Inglezakis, V.; Karaca, F. Environmental Partitioning, Spatial Distribution, and Transport of Atmospheric Mercury (Hg) Originating from a Site of Former Chlor-Alkali Plant. Atmosphere 2021, 12, 275. [Google Scholar] [CrossRef]
- Ilyushchenko, M.A.; Daukeyev, G.B.; Tanton, T.W. Post-containment Management and Monitoring of Mercury Pollution in Site of Former PO “Khimprom” and Assessment of Environmental Risk Posed by Contamination of Groundwater and Adjacent Water Bodies of the Northern Industrial Area of Pavlodar. Almaty. 2011. Available online: http://hgpavlodar.narod.ru/ (accessed on 13 December 2021).
- Woodruff, S.; Dack, S. Analysis of risk from mercury contamination at the Khimprom Plant in Kazakhstan. Land Contam. Reclam. 2004, 12, 213–218. [Google Scholar] [CrossRef]
- Goldman, L.R.; Shannon, M.W. The committee on environmental health technical report: Mercury in the environment: Implications for pediatricians. Pediatrics 2001, 108, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajenthira, A.; Holmes, J.; McDonnell, R. The role of qualitative risk assessment in environmental management: A Kazakhstani case study. Sci. Total Environ. 2012, 420, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bureau of National Statistics. Agency for Strategic Planning and Reforms of the Republic of Kazakhstan Main Socio-Economic Indicators. 2021. Available online: https://stat.gov.kz/region/263009 (accessed on 13 December 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions. Eur. Geosci. Union 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). FAO/UNESCO Soil Map of the World: Central Asia. 1992. Available online: http://www.fao.org/soils-portal/soil-survey/soilmaps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 13 December 2021).
- Mitra, S.; Patnaik, P.; Kebbekus, B.B. Environmental Chemical Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Semenova, Y.; Zhunussov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalny, A.; Zhanaspayev, M.; Bulegenov, T.; Glushkova, N.; et al. Trace element biomonitoring in hair and blood of occupationally unexposed population residing in polluted areas of East Kazakhstan and Pavlodar regions. J. Trace Elem. Med. Biol. 2019, 56, 31–37. [Google Scholar] [CrossRef]
- ASTM (American Society for Testing and Materials). Section D4972–95a, Standard Test Method for pH of Soils; ASTM (American Society for Testing and Materials): West Conshohocken, PA, USA, 1995. [Google Scholar]
- ASTM. Section D1293–99, Standard Test Method for pH of Water; ASTM: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Lumex Marketing. RA-915M Mercury Analyzer. Operation Manual; “Lumex-Marketing” LLC: Saint Petersburg, Russia, 2005. [Google Scholar]
- McLean, J.E.; Bledsoe, B.E. Behavior of Metals in Soils; Office of Research and Development: Washington, DC, USA, 1992; EPA/540/S-92-018. [Google Scholar]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, Y.; Lian, J.; Luo, Y.; Niu, Y.; Gong, X. Spatial pattern of soil organic carbon and total nitrogen, and analysis of related factors in an agro-pastoral zone in Northern China. PLoS ONE 2018, 13, e0197451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszkowski, M.; Kosiorek, M. Content of organic carbon, total nitrogen and available forms of macronutrients in soil contaminated with cobalt. J. Elem. 2012, 22, 1427–1437. [Google Scholar] [CrossRef]
- Panda, K.K.; Lenka, M.; Panda, B.B. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant I. Distribution, availability and genotoxicity of sediment mercury in the Rushikulya estuary, India. Sci. Total Environ. 1990, 96, 281–296. [Google Scholar] [CrossRef]
- Basak, B.; Alagha, O. Trace metals solubility in rainwater: Evaluation of rainwater quality at a watershed area, Istanbul. Environ. Monit. Assess. 2009, 167, 493–503. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Indicators: Conductivity. US EPA. 2016. Available online: https://www.epa.gov/national-aquatic-resource-surveys/indicators-conductivity (accessed on 13 December 2021).
- hrwc.org. Conductivity. 2013. Available online: https://www.hrwc.org/wp-content/uploads/2013/09/Conductivity.pdf (accessed on 13 December 2021).
- MDDELCC (Ministere du Developpement Durable, Environnement et Lutte Contre les Changements Climatiques du Quebec). Annex 2: Tableau 1: Politique Deprotection des Sols et de Réhabilitation des Terrains Contaminés. 2019. Available online: http://www.environnement.gouv.qc.ca/sol/terrains/guide-intervention/annexe2.pdf (accessed on 13 December 2021).
- MEPRK (Ministry of Environmental Protection of the Republic of Kazakhstan). The Norms of Maximum Permissible Concentrations of Hazardous Substances, Organisms and Other Biological Substances Polluting the Soil; Consignment Order No. 99 of the Ministry of Health of the Republic of Kazakhstan and No. 21 of the MEPRK, Astana, Kazakhstan; MEPRK (Ministry of Environmental Protection of the Republic of Kazakhstan): Astana, Kazakhstan, 2004. [Google Scholar]
- Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, O.M. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl. Water Sci. 2017, 7, 3267–3280. [Google Scholar] [CrossRef] [Green Version]
- Panin, M.S.; Geldymamedova, E.A. Ecological and geochemical characteristics of the soils of Pavlodar of the Republic of Kazakhstan (Rus). Vestn. TSU 2006, 292, 171–177. [Google Scholar]
- Falciglia, P.P.; Malarbi, D.; Roccaro, P.; Vagliasindi, F. Innovative thermal and physico-chemical treatments for the clean-up of marine sediments dredged from the Augusta Bay (Southern Italy). Reg. Stud. Mar. Sci. 2020, 39, 101426. [Google Scholar] [CrossRef]
- Romano, E.; Bergamin, L.; Croudace, I.W.; Pierfrancheschi, G.; Sesta, G.; Ausili, A. Measuring anthropogenic impacts on an industrialised coastal marine area using chemical and textural signatures in sediments: A case study of Augusta Harbour (Sicily, Italy). Sci. Total Environ. 2020, 755, 142683. [Google Scholar] [CrossRef] [PubMed]
- Esbri, J.M.; Lopez-Berdonces, M.A.; Fernandez-Calderon, S.; Higueras, P.; Diez, S. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): An integrated analysis. Environ. Sci. Pollut. Res. 2014, 22, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Palanques, A.; Grimalt, J.; Belzunces, M.; Estrada, F.; Puig, P.; Guillen, J. Massive accumulation of highly polluted sedimentary deposits by river damming. Sci. Total Environ. 2014, 497–498, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Navrátil, T.; Nováková, T.; Shanley, J.B.; Rohovec, J.; Vaňková, M. Distribution and pools of mercury in forest soils near recent and historical mercury emission sources in the central Czech Republic. J. Geochem. Explor. 2021, 226, 106782. [Google Scholar] [CrossRef]
- Araujo, P.R.M.; Biondi, C.M.; Nascimento, C.W.A.; Silva, F.B.V. Bioavailability and sequential extraction of mercury in soils and organisms of a mangrove contaminated by a chlor-alkali plant. Ecotoxicol. Environ. Saf. 2019, 183, 109469. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, X.; Cao, M.; Pan, Y.; Xiao, C.; Wang, P.; Liang, Y.; Liu, G.; Cai, Y. Release of legacy mercury and effect of aquaculture on mercury biogeochemical cycling in highly polluted Ya-Er Lake, China. Chemosphere 2021, 275, 130011. [Google Scholar] [CrossRef]
- Ilyushchenko, M.A.; Uskov, G.A.; Zyryanova, N.A. Mercury (Hg) contamination of fish fauna of Balkyldak technical pond. KazNU Sci. J. Environ. Ser. 2002, 11, 102–105. (In Russian) [Google Scholar]
- Ilyushchenko, M.A.; Randall, P.M.; Tanton, T.W.; Akhmetov, A.D.; Lapshin, E.V.; Kamberov, R.I. 99e Activities for Prevention the Threat of River Irtysh Mercury Pollution in. 2005. Available online: http://Hg-Pavlodar.narod.ru (accessed on 13 December 2021).
- Ullrich, S.M.; Ilyushchenko, M.A.; Tanton, T.W.; Uskov, G.A. Mercury contamination in the vicinity of a derelict chlor-alkali plant: Part II: Contamination of the aquatic and terrestrial food chain and potential risks to the local population. Sci. Total Environ. 2007, 381, 290–306. [Google Scholar] [CrossRef]
- Shaimardanova, B.H.; Korogod, N.P.; Bigaliyev, A.B.; Assylbekova, G.E. Heavy Metals Accumulation in Children Hair. Novosib. State Univ. Bulletin. Ser. Biol. Clin. Med. 2009, 8, 107–111. (In Russian) [Google Scholar]
- Shakhova, T.S.; Talovskaya, A.V.; Yazikov, E.G.; Filimonenko, E.A.; Lyapina, E.E. Evaluation of mercury contamination in the vicinity of enterprises of the petrochemical complex in the winter period (based on the example of Pavlodar, Republic of Kazakhstan). Bull. Tomsk. Polytech. University. Geo Assets Eng. 2016, 327, 16–25. (In Russian) [Google Scholar]
- Nilson, S.; Costa, M.F.; Akagi, H. Total and methylmercury levels of a coastal human population and of fish from the Brazilian northeast. Environ. Pollut. Sci. Res. 2001, 8, 280–284. [Google Scholar] [CrossRef]
- Tamburrino, S.; Passaro, S.; Barsanti, M.; Schirone, A.; Delbono, I.; Conte, F.; Delfanti, R.; Bonsignore, M.; Del Core, M.; Gherardi, S.; et al. Pathways of inorganic and organic contaminants from land to deep sea: The case study of the Gulf of Cagliari (W Tyrrhenian Sea). Sci. Total Environ. 2019, 647, 334–341. [Google Scholar] [CrossRef]
- Manta, D.S.; Bonsignore, M.; Oliveri, E.; Barra, M.; Tranchida, G.; Giaramita, L.; Mazzola, S.; Sprovieri, M. Fluxes and the mass balance of mercury in Augusta Bay (Sicily, southern Italy). Estuar. Coast. Shelf Sci. 2016, 181, 134–143. [Google Scholar] [CrossRef]
- Fernandez-Martinez, R.; Esbri, J.M.; Higueras, P.; Rucandio, I. Comparison of mercury distribution and mobility in soils affected by anthropogenic pollution around chloralkali plants and ancient mining sites. Sci. Total Environ. 2019, 671, 1066–1076. [Google Scholar] [CrossRef]
- Bravo, A.G.; Loizeau, J.L.; Ancey, L.; Ungureanu, V.G.; Dominik, J. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania. Environ. Sci. Pollut. Res. 2009, 16, S66–S75. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.R. Mercury concentrations in marine sediments near a former mercury cell chlor-alkali plant in eastern Canada. Mar. Pollut. Bull. 2016, 107, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Garron, C.; Gagne, F.; Ernst, W.; Julien, G.; Bernier, M.; Caldwell, C. Mercury Contamination of Marine Sediments and Blue Mussels (Mytilus edulis) in the Vicinity of a Mercury Cell Chlor-Alkali Plant in Dalhousie, New Brunswick, Canada. Water Qual. Res. J. 2005, 40, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Du, R.; Luo, X.; Huang, Y.; Chen, L.; Huang, Z.; Mao, X.; Liang, Y.; Zhang, Q.; Wang, P. Polychlorinated dibenzo-p-dioxins and dibenzofurans in lotus from a lake historically polluted by the chlor-alkali industry: Occurrence, organ distribution and health risk from dietary intake. Environ. Pollut. 2021, 292, 118395. [Google Scholar] [CrossRef]
- Araujo, P.R.M.; Biondi, C.M.; Nascimento, C.W.A.; Silva, F.B.V. Assessing the spatial distribution and ecologic and human health risks in mangrove soils polluted by Hg in northeastern Brazil. Chemosphere 2020, 266, 129019. [Google Scholar] [CrossRef] [PubMed]
- CCME (Canadian Council of Ministers of the Environment). Canadian soil quality guidelines for the protection of environmental and human health: Mercury (inorganic). In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999. [Google Scholar]
Hg Form | Notes | Major Sources | Toxicity | Adverse Health Effects |
---|---|---|---|---|
Elemental, Hg0 | Liquid or vapor at room T (> 25 ℃) | Burning fossil fuels, chlor-alkali production, mining and smelting, incinerators, volcanoes | Has little toxicity, when ingested (<0.1% is absorbed from the GI tract). Dermal absorption—minimal exposure. Absorbed by inhalation | Respiratory diseases. Toxic to central and peripheral nervous system. Toxic to nervous, digestive, and immune system. |
Inorganic or Ionic | Salts Hg+, Hg2+ | Mercurous chloride (calomel), mercuric oxide | Extremely caustic; 10% absorbed | Absorption is fatal. Corrosive to skin, eyes, and GI system. |
Organic | MeHg+, MeHg2+, EtHg+, phenylHg | Industrial compounds Biological processes | Lipid soluble, 90–100% absorbed by GI tract | Highly toxic to fetus. Neurodevelopmental problems |
PTE | Range in the Present Study | Residential Limits (Quebec, Canada) | Non-Residential Limits (Quebec, Canada) | National Standards (Kazakhstan) |
---|---|---|---|---|
Hg | 0.00063–24 | 2 | 10 | 2.1 |
0.000004–1.4 * | - | - | 0.0005 * | |
As | 0.22–37 | 30 | 50 | 2 |
Ba | 77–540 | 500 | 2000 | - |
Cd | 0.0012–2.5 | 5 | 20 | 0.5 |
Co | 7.2–57 | 50 | 300 | 5 |
Cr | 0.61–150 | 250 | 800 | 6 |
Cu | 13–1390 | 100 | 500 | 33 |
Mn | 93–8170 | 1000 | 2200 | 1500 |
Ni | 0.096–120 | 100 | 500 | 4 |
Pb | 11–280 | 500 | 1000 | 32 |
Sb | 1.1–1.1 | 31 | - | 4.5 |
Se | 0.60–21 | 3 | 10 | - |
Zn | 1.5–290 | 500 | 1500 | 23 |
PTE | Medium | Average | Standard Deviation | Min | 25th Percentile | 50th Percentile | 75th Percentile | 90th Percentile | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
Hg | soils, sediments | 0.56 | 2.3 | 0.00063 | 0.0092 | 0.021 | 0.14 | 1.2 | 24 | 8.3 | 81 |
Hg | surface water, groundwater | 0.093 | 0.26 | 4.00 × 10−6 | 7.00 × 10−6 | 1.70 × 10−5 | 0.0003 | 0.17 | 1.3 | 3.4 | 15 |
As | soils, sediments | 12 | 13 | 0.22 | 0.22 | 0.22 | 24 | 30 | 37 | 0.36 | −1.6 |
Ba | soils, sediments | 270 | 110 | 77 | 180 | 250 | 360 | 420 | 540 | 0.25 | −0.69 |
Cd | soils, sediments | 0.3 | 0.32 | 0.0012 | 0.14 | 0.24 | 0.41 | 0.56 | 2.5 | 4.8 | 32 |
Co | soils, sediments | 21 | 7.9 | 7.2 | 16 | 20 | 24 | 29 | 57 | 1.8 | 5.8 |
Cr | soils, sediments | 69 | 47 | 0.61 | 0.64 | 81 | 100 | 120 | 150 | −0.31 | 1.9 |
Cu | soils, sediments | 94 | 240 | 13 | 28 | 36 | 45 | 77 | 1390 | 4.5 | 20 |
Mn | soils, sediments | 870 | 980 | 93 | 430 | 690 | 1070 | 1470 | 8170 | 6.3 | 47 |
Ni | soils, sediments | 50 | 22 | 0.096 | 39 | 49 | 61 | 74 | 120 | 0.39 | 1.5 |
Pb | soils, sediments | 36 | 47 | 11 | 19 | 24 | 31 | 55 | 280 | 4.1 | 17 |
Sb | soils, sediments | 1.1 | 0.02 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 0.76 | −0.085 |
Se | soils, sediments | 0.6 | 0.01 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.21 | 0.04 |
Zn | soils, sediments | 77 | 91 | 1.5 | 1.4 | 1.5 | 130 | 220 | 290 | 0.77 | −0.69 |
PTE | p-Value | W | Distribution | Outlier Points (Concentration in mg/kg) |
---|---|---|---|---|
Hg | 0.007 | 0.235 | Non-normal | P-Sed-04 (24.1) |
As | 0.000 | 0.779 | Non-normal | - |
Ba | 0.164 | 0.975 | Non-normal | - |
Cd | 0.000 | 0.598 | Non-normal | 52(1) (2.50) |
Co | 0.000 | 0.885 | Non-normal | - |
Cr | 0.000 | 0.897 | Non-normal | - |
Cu | 0.000 | 0.298 | Non-normal | 17 (1100), 16 (1110), 18 (1390) |
Mn | 0.000 | 0.452 | Non-normal | 8 (1) (8170) |
Ni | 0.054 | 0.966 | Non-normal | 42 (120) |
Pb | 0.000 | 0.442 | Non-normal | 17 (188), 16 (252), 18 (280) |
Sb | 0.000 | 0.931 | Non-normal | - |
Se | 0.000 | 0.101 | Non-normal | 39(10) (21.3) |
Zn | 0.000 | 0.782 | Non-normal | - |
THg | pH | TC | TOC | TN | |
---|---|---|---|---|---|
THg | 1.000 | −0.454 | 0.720 * | 0.731 * | 0.894 ** |
pH | 1.000 | −0.488 | −0.341 | −0.345 | |
TC | 1.000 | 0.932 ** | 0.837 ** | ||
TOC | 1.000 | 0.920 ** | |||
TN | 1.000 |
Hg | As | Ba | Cd | Co | Cr | Cu | Mn | Ni | Pb | Sb | Se | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hg | 1.000 | 0.264 * | −0.130 | −0.099 | −0.175 | 0.036 | −0.067 | −0.098 | −0.134 | −0.078 | −0.264 * | −0.054 | −0.058 |
As | 1.000 | 0.371 ** | −0.059 | 0.145 | 0.425 ** | −0.170 | 0.313 ** | 0.373 ** | −0.119 | 0.439 ** | −0.003 | −0.167 | |
Ba | 1.000 | 0.305 * | 0.618 ** | 0.759 ** | 0.198 | 0.412 ** | 0.596 ** | 0.330 ** | 0.155 | −0.077 | 0.214 | ||
Cd | 1.000 | 0.333 ** | 0.190 | 0.065 | 0.270 * | 0.336 ** | 0.171 | 0.044 | −0.073 | 0.368 ** | |||
Co | 1.000 | 0.580 ** | 0.405 ** | 0.335 ** | 0.471 ** | 0.500 ** | −0.026 | −0.123 | 0.258 * | ||||
Cr | 1.000 | 0.223 | 0.288 * | 0.447 ** | 0.310 ** | 0.232 | −0.043 | 0.094 | |||||
Cu | 1.000 | −0.147 | −0.451 ** | 0.953 ** | 0.167 | −0.027 | −0.128 | ||||||
Mn | 1.000 | 0.461 ** | −0.066 | 0.132 | −0.062 | 0.015 | |||||||
Ni | 1.000 | −0.325 ** | −0.191 | −0.032 | 0.432 ** | ||||||||
Pb | 1.000 | 0.182 | −0.037 | −0.036 | |||||||||
Sb | 1.000 | −0.068 | −0.302 * | ||||||||||
Se | 1.000 | 0.004 | |||||||||||
Zn | 1.000 |
Study | Title | Analysis Method | Hg |
---|---|---|---|
[53] | Mercury (Hg) contamination of fish fauna of Balkyldak technical pond | Acid, bromide-bromate digestion + CV-AFS (PSA 10.025 Millenium-Merlin) | Biota (Lake Balkyldak): 0.16–2.20 mg/kg |
[23] | Analysis of risk from mercury contamination at the Khimprom Plant in Kazakhstan | (1) UK Contaminated Land Exposure Assessment (CLEA) model; (2) the Netherlands, Van Hall Institute Risk-Human Model Version 3.0 | On-site: 835.9 mg/kg (mean, surface soils), 18 mg/L (mean, groundwater); Urban zone: 1.5 mg/kg (mean, surface soils), 0.005 mg/L (mean, groundwater) |
[54] | Activities for prevention of the threat of river Irtysh mercury pollution in Pavlodar, Kazakhstan | - | Max. value in groundwater: 150 µg/L; surface water: 3–30 µg/L; biota: 0.075–0.16 mg/kg |
[45] | Ecological and geochemical characteristics of soils in Pavlodar, Republic of Kazakhstan | Acid digestion + AAS (Perkin Elmer 403 + HGA-74) | Soils (n = 609): 0.08–18.96 mg/kg |
[19] | Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: Sediment and water contamination of Lake Balkyldak and the River Irtysh | Acid digestion + CV-AAS, CV-AFS | Sediments–lake Balkyldak (n = 55): 0.11–617 mg/kg; sediments–Irtysh river (n = 38): 0.001–0.046 mg/kg; sediments from oxbow lakes (n = 18): 0.010–0.360 mg/kg; surface water from Balkyldak (n = 38): 0.11–1.39 µg/L; surface water from Irtysh river: < 2 ng/L; surface water from oxbow lakes: < 2–8.5 ng/L; soil around Balkyldak: 0.22–5.72 mg/kg; soil around Irtysh river: 0.106–4.300 mg/kg |
[55] | Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part II: Contamination of the aquatic and terrestrial food chain and potential risks to the local population | Acid digestion + CV-AFS | Fish from Lake Balkyldak (n = 55): 0.16–2.20 mg/kg; fish from Irtysh river (n = 30): 0.075–0.159 mg/kg; soil (n = 24): 0.10–3.30 mg/kg; groundwater from drinking wells (n = 30): <5 ng/L; kidney: 10.96 µg/kg, liver: 5.74 µg/kg; bovine milk: <2 µg/kg |
[56] | Heavy Metals Accumulation in Children Hair | Instrumental neutron activation analysis (INAA) | Children’s hair (n = 100): 0.20–0.70 mg/kg |
[22] | Final technical report | AAS (Lumex RA 915+), AFS (PS Analytical Millenium Merlin System) | soil (n = 610): 2.1–95.1 mg/kg; gramma grass (mean value, n = 4): <0.2 mg/kg; bottom sediments in Lake Balkyldak (n = 334): 135336 kg of Hg; biota (n = 132): 1.0–1.5 mg/kg |
[57] | Evaluation of mercury contamination in the vicinity of enterprises of the petrochemical complex in the winter period (based on the example of Pavlodar, Republic of Kazakhstan) | AAS (Lumex RA 915+ and PYRO 915) | Snow samples (n = 17): >0.15 mg/kg (background level) by 1.5–7 times; daily mean Hg deposited on snow cover: 4.9–221 mg/(km2 × day) |
The present study | Assessment of distribution of potentially toxic elements in different environmental media impacted by a former chlor-alkali plant | AAS (Lumex RA 915+ and PYRO 915) | soil: 0.006–7.0 mg/kg; sediments: 0.004–24 mg/kg; groundwater: 0.004–1340 µg/L; surface water: 0.003–720 µg/L |
Location | Operation Period | Estimated Discharge | Soils | Sediments | Water | Other Pollutants | Main Remarks |
---|---|---|---|---|---|---|---|
Botafogo River, Brazil | 1963–1987 | 22–35 t of THg [51] | 0.1–14.4 mg/kg [50] | 1.2–2.5 t in Santa Cruz Channel [51]; 0.13–10.44 mg/kg [51] | Not reported in reviewed references | Not reported in reviewed references | THg in human hair samples: 0.1–12.5 ng/mg < MPC [58]; THg in biota samples: 4.5–167.0 ng/mg < MPC [58]; Preferential accumulation of elemental Hg in soils and sediments was confirmed [51]; Hg in oysters: 0.804–1.644 mg/kg, implying with Brazil’s food security agency standards [51]; Hg in plants: 0.019–0.081 mg/kg [51]; Direct correlation between the Hg concentration values and proximity to the former CAP has been reported [50] |
Augusta Bay, Italy | 1958–2003 | 500 t of Hg [47] | Not reported in reviewed references | 0.3 × 3 mg/kg [59]; max = 680.10 mg/kg [47]; 0.42–43.2 mg/kg [46] | Not reported in reviewed references | Ba: max = 7199 mg/kg (sediments) [47]; PAHs, PCBs, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn [59]; PCBs: ~0.0–0.386 mg/kg [47]; HCBs: ~0.0–0.0007 mg/kg [47] | Hg benthic fluxes: 1.3 kmol/yr, outflowing bottom fluxes: 0.54 kmol/yr [60]; Southernmost area considered highly contaminated area, acting as a secondary source of contamination due to reworking, resuspension, and transport [47] |
Flix, Spain | 1949–2017 | Not reported in reviewed references | 44.0–12900 ng/g [48]; 0.4–61.6 µg/g [61] | 98.0–495000 ng/g [48]; up to 640 mg/kg [49] | Not reported in reviewed references | Cd: max = 12.15 mg/kg, Cr: max = 749.05 mg/kg, Zn: max = 394.32 mg/kg, Ni: max = 159.31 mg/kg, Cu: max = 106.01 mg/kg, As = 37.87 mg/kg, Pb: max = 52.06 mg/kg, Se: max = 42.78 mg/kg, Mn: max = 1406.86 mg/kg, P: max = 31.3 g/kg, S: max = 13.98 g/kg, Ti: max = 2.92 g/kg, Al: max = 69.94 g/kg, Ca: max = 380.81g/kg, Fe: max = 34.22 g/kg (sediments) [49] | Hg in biota: 4.49 ± 0.65, Cd in biota: 0.04 ± 0.02, As in biota: 17.53 ± 1.95, Se in biota: 1.4 ± 0.5, Zn in biota: 23.2 ± 5.6, Cu in biota: 2.0 ± 0.2, Cr in biota: 23.1 ± 6.2, Pb in biota: 0.06 ± 0.03 [Soto et al., 2011]; Hg in lichens: 387–3750 ng/g [48]; PTEs including Hg tend to accumulate in finer fractions rather than in medium and coarse soils [61] |
Rm Valcea, Romania | 1968–present | 36–53 t [62] | Not reported in reviewed references | 0.01–0.08 mg/kg [62] | 9–88 ng/L [8] | Cd in sediments: 0.5 ± 0.24, Cu in sediments: 46 ± 5, Pb in sediments: 23 ± 3, Zn in sediments: 127 ± 16 [62] | Increased concentrations of MMHg (0.7 ng/L) in the reservoir [8] |
Dalhousie, NB Canada | 1963–2008 1970–1992 | 141–163 t (discharge from 2 CAPs) | Not reported in reviewed references | 0.04–0.28 µg/g [63]; 0.02–1.96 mg/kg [64] | 0.84–4.32 µg/L [64] | Not reported in reviewed references | Hg in biota: 0.02–1.40 mg/kg (level decreases with distance), Hg concentrations in sediments decrease with distance from the former CAP [64] |
Neratovice, Czech Republic | 1941–2017 | 77 kg/yr in 2007–2017 [50] | O horizon: 479 µg/kg, mineral soil: 15 µg/kg [50] | Not reported in reviewed references | Not reported in reviewed references | Al0 in O horizon: 1259 mg/kg, min. soil: 438 mg/kg; Fe0 in O horizon: 1833 mg/kg, min. soil: 687 mg/kg [50] | Hg in bark and needles (Pinus sylvestris): 158 and 30 µg/kg, respectively [50] |
Ya-Er Lake, Hubei Province China | 1962–1987 [65] | Not reported in reviewed references | Not reported in reviewed references | THg: 44–2766 ng/g MeHg: ND–2.6 ng/g [52] | Surface water THg: 6.2–48.6 ng/; MeHg: ND–0.41 ng/L; PorewaterTHg: 2.3–317.7, MeHg: 0.22–3.62 ng/L [52] | Se in fish: 388.6–1502.3 µg/kg | THg and MeHg in fish: 0.05–0.44 and 0.01–0.29 mg/kg, respectively [52] |
Pavlodar, Kazakhstan | 1975–1993 | 1000–1300 t of Hg | 0.006–7.0 mg/kg | 0.004–24 mg/kg | 0.003–1340 µg/L | Selected PTEs in soils (mg/kg): As: 0.22–37, Ba: 77–540, Cd: 0.0012–2.5, Co: 7.2–57, Cr: 0.61–160, Cu: 13–1390, Mn: 92–8170, Ni: 0.10–120, Pb: 11–280, Sb: <1.1, Se: <0.60, Zn: 1.5–290 | Hg concentrations in CAP impacted zone significantly higher than in nearby urban area. Concentrations of other selected PTEs don’t differ except for Cd. Refer to Table 7 for more remarks on Hg levels. |
Elements | Average Concentration for Urban Area | Average Concentration for CAP−Impacted Area | p-Value | t-Statistic | Null Hypothesis at α = 0.050 |
---|---|---|---|---|---|
Hg (soils, sediments) | 0.019 | 0.87 | 0.00881 | 2.68 | Rejected |
Hg (surface water, groundwater) | 5.4 × 10−5 | 0.072 | 0.00374 | 2.98 | Rejected |
As (soils) | 4.8 | 13 | 0.076 | 1.80 | Accepted |
Ba (soils) | 270 | 270 | 0.847 | −0.19 | Accepted |
Cd (soils) | 0.40 | 0.24 | 0.000 | −4.49 | Rejected |
Co (soils) | 23 | 20 | 0.371 | −0.90 | Accepted |
Cr (soils) | 47 | 72 | 0.142 | 1.49 | Accepted |
Cu (soils) | 47 | 100 | 0.533 | 0.63 | Accepted |
Mn (soils) | 1040 | 840 | 0.574 | −0.57 | Accepted |
Ni (soils) | 57 | 49 | 0.355 | −0.93 | Accepted |
Pb (soils) | 42 | 36 | 0.700 | −0.39 | Accepted |
Sb (soils) | 1.1 | 1.1 | 0.515 | −0.66 | Accepted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guney, M.; Akimzhanova, Z.; Kumisbek, A.; Kismelyeva, S.; Guney, A.; Karaca, F.; Inglezakis, V. Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant. Sustainability 2021, 13, 13829. https://doi.org/10.3390/su132413829
Guney M, Akimzhanova Z, Kumisbek A, Kismelyeva S, Guney A, Karaca F, Inglezakis V. Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant. Sustainability. 2021; 13(24):13829. https://doi.org/10.3390/su132413829
Chicago/Turabian StyleGuney, Mert, Zhanel Akimzhanova, Aiganym Kumisbek, Symbat Kismelyeva, Almira Guney, Ferhat Karaca, and Vassilis Inglezakis. 2021. "Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant" Sustainability 13, no. 24: 13829. https://doi.org/10.3390/su132413829
APA StyleGuney, M., Akimzhanova, Z., Kumisbek, A., Kismelyeva, S., Guney, A., Karaca, F., & Inglezakis, V. (2021). Assessment of Distribution of Potentially Toxic Elements in Different Environmental Media Impacted by a Former Chlor-Alkali Plant. Sustainability, 13(24), 13829. https://doi.org/10.3390/su132413829