Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Depth Range (m) | Surface (m2) | Flux (t yr−1) | Flux (t yr−1 m−2) | Ref. |
---|---|---|---|---|---|
Castello Aragonese vents, Ischia Island (Italy) | 0–10 | 5000 | 1498 | 0.300 | [34] |
Milos (Greece) | 0–200 | 70,000,000 | 2,244,000 | 0.032 | [39] |
Champagne Hot Springs (Lesser Antilles) | 1–5 | 100 | 0.198 | 0.002 | [63] |
Panarea hydrothermal field (Italy) | 7–200 | 120,000 | 9600 | 0.080 | [37] |
Kraternaya Bight, Yankich Island (Russia) | 0–60 | 700,000 | 1128 | 0.002 | [64] |
Tutum Bay, Ambitle Island (Papua New Guinea) | 5–10 | 450,000 | 8000 | 0.018 | [65] |
Secca delle Fumose, Campi Flegrei Caldera (Italy) | 4–20 | 140,000 | 18,906 | 0.135 | [28] |
Baia di Levante, Vulcano (Italy) | 0–1 | 11,500 | 1205 | 0.105 | [This study] |
Gelso, Vulcano (Italy) | 0–1 | 1200 | 66 | 0.055 | [This Study] |
References
- Dasgupta, R.; Hirschmann, M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 2010, 298, 1–13. [Google Scholar] [CrossRef]
- Lee, H.; Muirhead, J.D.; Fischer, T.P.; Ebinger, C.J.; Kattenhorn, S.A.; Sharp, Z.D.; Kianji, G. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 2016, 9, 145–149. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.; Sano, Y.; Zhang, M.; Sun, Y.; Cheng, Z.; Yang, T.F. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone. J. Asian Earth Sci. 2017, 149, 110–123. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Z.; Zhang, M.; Sun, Y.; Cheng, Z.; Li, J.; Dingwell, D.B. Continental subduction and the deep carbon cycle in northern Tibet. J. Geophys. Res. Solid Earth. 2025, 130, e2024JB028999. [Google Scholar] [CrossRef]
- Foley, S.F.; Fischer, T.P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 2017, 10, 897–902. [Google Scholar] [CrossRef]
- Ilyinskaya, E.; Mobbs, S.; Burton, R.; Burton, M.; Pardini, F.; Pfeffer, M.A.; Purvis, R.; Lee, J.; Bauguitte, S.; Brooks, B.; et al. Globally significant CO2 emissions from Katla, a subglacial volcano in Iceland. Geophys. Res. Lett. 2018, 45, 10332–10341. [Google Scholar] [CrossRef]
- Wong, K.; Mason, E.; Brune, S.; East, M.; Edmonds, M.; Zahirovic, S. Deep carbon cycling over the past 200 million years: A review of fluxes in different tectonic settings. Front. Earth Sci. 2019, 7, 263. [Google Scholar] [CrossRef]
- Fischer, T.P.; Aiuppa, A. AGU Centennial Grand Challenge: Volcanoes and deep carbon global CO2 emissions from subaerial volcanism—Recent progress and future challenges. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008690. [Google Scholar] [CrossRef]
- Werner, C.; Fischer, T.P.; Aiuppa, A.; Edmonds, M.; Cardellini, C.; Carn, S.; Chiodini, G.; Cottrell, E.; Burton, M.; Shinohara, H.; et al. Carbon dioxide emissions from subaerial volcanic regions: Two decades in review. In Deep Carbon: Past to Present; Orcutt, B.N., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 188–236. [Google Scholar]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 2013, 75, 323–355. [Google Scholar] [CrossRef]
- Elderfield, H.; Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 1996, 24, 191–224. [Google Scholar] [CrossRef]
- Javoy, M.; Pineau, F. The volatiles record of a “popping” rock from the Mid-Atlantic ridge at 14°N: Chemical and isotopic composition of a gas trapped in the vesicles. Earth Planet. Sci. Lett. 1991, 107, 598–611. [Google Scholar] [CrossRef]
- Le Voyer, M.; Hauri, E.H.; Cottrell, E.; Kelley, K.A.; Salters, V.J.M.; Langmuir, C.H.; Hilton, D.R.; Barry, P.H.; Füri, E. Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochem. Geophys. Geosyst. 2018, 20, 1387–1424. [Google Scholar] [CrossRef]
- Le Voyer, M.; Kelley, K.A.; Cottrell, E.; Hauri, E.H. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat. Commun. 2017, 8, 14062. [Google Scholar] [CrossRef] [PubMed]
- Hauri, E.H.; Cottrell, E.; Kelley, K.A.; Tucker, J.M.; Shimizu, K.; Le Voyer, M.; Marske, J.; Saal, A.E. Carbon in the convecting mantle. In Deep Carbon: Past to Present; Orcutt, B.N., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 237–275. [Google Scholar]
- Bekaert, D.V.; Turner, S.J.; Broadley, M.W.; Barnes, J.D.; Halldórsson, S.A.; Labidi, J.; Wade, J.; Walowski, K.J.; Barry, P.H. Subduction-Driven Volatile Recycling: A Global Mass Balance. Annu. Rev. Earth Planet. Sci. 2021, 49, 37–70. [Google Scholar] [CrossRef]
- Daskalopoulou, K.; D’Alessandro, W.; Longo, M.; Pecoraino, G.; Calabrese, S. Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization. Front. Mar. Sci. 2022, 8, 775247. [Google Scholar] [CrossRef]
- Price, R.E.; Giovannelli, D. A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Aiuppa, A.; Hall-Spencer, J.M.; Milazzo, M.; Turco, G.; Caliro, S.; Di Napoli, R. Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeochemistry 2021, 152, 93–115. [Google Scholar] [CrossRef]
- Fairley, J.P.; Hinds, J.J. Rapid transport pathways for geothermal fluids in an active Great Basin fault zone. Geology 2004, 32, 825–828. [Google Scholar] [CrossRef]
- Fossen, H.; Rotevatn, A. Fault linkage and relay structures in extensional settings-a review. Earth Sci. 2016, 154, 14–28. [Google Scholar] [CrossRef]
- Sibson, R.H.; Rowland, J.V. Stress, fluid-pressure, and structural permeability in seismogenic crust, NorthIsland, New Zealand. Geophys. J. Int. 2003, 154, 584–594. [Google Scholar] [CrossRef]
- Mancinella, D.; Mantero, D.; Testardi, M. Emissioni gassose sottomarine nel tratto costiero prospiciente Tor Caldara (Lazio meridionale, Italia) Submarine shallow-water gas vents facing Tor Caldara (Southern Latium, Italy). Mem. Descr. Carta Geol. d’It. 2020, 105, 29–33. [Google Scholar]
- Caramanna, G.; Sievert, S.M.; Bühring, S.I. Submarine Shallow-Water Fluid Emissions and Their Geomicrobiological Imprint: A Global Overview. Front. Mar. Sci. 2021, 8, 727199. [Google Scholar] [CrossRef]
- Passaro, S.; Genovese, S.; Sacchi, M.; Barra, M.; Rumolo, P.; Tamburrino, S.; Mazzola, S.; Basilone, G.; Placenti, F.; Aronica, S.; et al. First hydroacoustic evidence of marine, active fluid vents in the Naples Bay continental shelf (Southern Italy). J. Volcanol. Geotherm. Res. 2014, 285, 29–35. [Google Scholar] [CrossRef]
- D’Alessandro, M.; Gambi, M.C.; Bazzarro, M.; Caruso, C.; Di Bella, M.; Esposito, V.; Gattuso, A.; Giacobbe, S.; Kralj, M.; Italiano, F.; et al. Characterization of an undocumented CO2 hydrothermal vent system in the Mediterranean Sea: Implications for ocean acidification forecasting. PLoS ONE 2024, 19, e0292593. [Google Scholar] [CrossRef] [PubMed]
- Martorelli, E.; Italiano, F.; Ingrassia, M.; Macelloni, L.; Bosman, A.; Conte, A.M.; Beaubien, S.E.; Graziani, S.; Sposato, A.; Chiocci, F.L. Evidence of a shallow water submarine hydrothermal field off Zannone Island from morphological and geochemical characterization: Implications for Tyrrhenian Sea Quaternary volcanism. J. Geophys. Res. Solid Earth. 2016, 121, 8396–8414. [Google Scholar] [CrossRef]
- Di Napoli, R.; Aiuppa, A.; Sulli, A.; Caliro, S.; Chiodini, G.; Acocella, V.; Ciraolo, G.; Di Vito, M.A.; Interbartolo, F.; Nasello, C.; et al. Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera: A geochemical, geophysical, and volcanological study. Geochem. Geophys. Geosyst. 2016, 17, 4153–4178. [Google Scholar] [CrossRef]
- McGinnis, D.F.; Schmidt, M.; DelSontro, T.; Themann, S.; Rovelli, L.; Reitz, A.; Linke, P. Discovery of a natural CO2 seep in the German North Sea: Implications for shallow dissolved gas and seep detection. J. Geophys. Res. 2011, 116, C03013. [Google Scholar]
- Chen, X.G.; Zhang, H.Y.; Chen, C.T.; Chen, A.; Yang, T.F.; Ye, Y. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore Northeast Taiwan. Geochem. J. 2016, 50, 341–355. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lui, H.K.; Lee, J.; Chen, C.T.A.; Burr, G.S.; Chou, W.C.; Kuo, F.W. Fates of vent CO2 and its impact on carbonate chemistry in the shallow water hydrothermal field offshore Kueishantao Islet, NE Taiwan. Mar. Chem. 2019, 210, 1–12. [Google Scholar] [CrossRef]
- Arango-Galván, C.; Prol-Ledesma, R.M.; Flores-Márquez, E.L.; Canet, C.; Villanueva Estrada, R.E. Shallow submarine and subaerial, low-enthalpy hydrothermal manifestations in Punta Banda, Baja California, Mexico: Geophysical and geochemical characterization. Geothermics 2011, 40, 102–111. [Google Scholar] [CrossRef]
- Martelat, J.E.; Escartín, J.; Barreyre, T. Terrestrial shallow water hydrothermal outflow characterized from out of space. Mar. Geol. 2020, 422, 106119. [Google Scholar] [CrossRef]
- Hall-Spencer, J.M.; Rodolfo-Metalpa, R.; Martin, S.; Ransome, E.; Fine, M.; Turner, S.M.; Rowley, S.J.; Tedesco, D.; Buia, M.C. Volcanic carbon dioxide vents show ecosystem effects on ocean acidification. Nature 2008, 454, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Boatta, F.; D’Alessandro, W.; Gagliano, A.L.; Liotta, M.; Milazzo, M.; Rodolfo-Metalpa, R.; Hall-Spencer, J.M.; Parello, F. Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 2013, 73, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Caramanna, G.; Fietzekb, P.; Maroto-Valer, M. Monitoring techniques of a natural analogue for sub-seabed CO2 leakages. Energy Procedia 2011, 4, 3262–3268. [Google Scholar] [CrossRef]
- Gros, J.; Schmidt, M.; Dale, A.W.; Linke, P.; Vielstädte, L.; Bigalke, N.; Haeckel, M.; Wallmann, K.; Sommer, S. Simulating and quantifying multiple natural subsea CO2 seeps at Panarea Island (Aeolian Islands, Italy) as a proxy for potential leakage from subseabed carbon storage sites. Environ. Sci. Technol. 2019, 53, 10258–10268. [Google Scholar] [CrossRef]
- Dando, P.R.; Hughes, J.A.; Leahy, Y.; Niven, S.J.; Taylor, L.J.; Smith, C. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont. Shelf Res. 1995, 15, 913–929. [Google Scholar] [CrossRef]
- Dando, P.; Aliani, S.; Bianchi, N.; Kennedy, H.; Linke, P.; Morri, C. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014. EGU2014-8108-1. [Google Scholar]
- Khimasia, A.; Renshaw, C.E.; Price, R.E.; Pichler, T. Hydrothermal flux and porewater geochemistry in Paleochori Bay, Milos, Greece. Chem. Geol. 2021, 571, 120188. [Google Scholar] [CrossRef]
- Caliro, S.; Caracausi, A.; Chiodini, G.; Ditta, M.; Italiano, F.; Longo, M.; Minopoli, C.; Nuccio, P.M.; Ponita, A.; Rizzo, A. Evidence of a recent input ofmagmatic gases into the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy. Geophys. Res. Lett. 2004, 31, L07619. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fisher, C.; Perez, N.; Weber, K.; Di Piazza, A.; et al. Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy). J. Volcanol. Geoth. Res. 2011, 204, 130–144. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Mazot, A.; Diliberto, I.S.; Inguaggiato, C.; Madonia, P.; Rouwet, D.; Vita, F. Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem. Geophys. Geosyst. 2012, 13, Q02012. [Google Scholar] [CrossRef]
- Bastianoni, A.; Cascone, M.; de Moor, J.M.; Barry, P.H.; Price, R.; Cordone, A.; Aiuppa, A.; Fischer, T.P.; Marty, B.; Giovannelli, D. The missing carbon budget puzzle piece: Shallow-water hydrothermal vents contribution to global CO2 fluxes. EarthArXiv 2022. [Google Scholar] [CrossRef]
- Clocchiatti, R.; Del Moro, A.; Gioncada, A.; Joron, J.L.; Mosbah, M.; Pinarelli, L.; Sbrana, A. Assessment of a Shallow Magmatic System: The 1888–90 Eruption, Vulcano Island, Italy. Bull. Volcanol. 1994, 56, 466–486. [Google Scholar] [CrossRef]
- Capasso, G.; Favara, R.; Francofonte, S.; Inguaggiato, S. Chemical and Isotopic Variations in Fumarolic Discharge and Thermal Waters at Vulcano Island (Aeolian Islands, Italy) during 1996: Evidence of Resumed Volcanic Activity. J. Volcanol. Geotherm. Res. 1999, 88, 167–175. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Capasso, G.; Di Martino, R.M.; Gurrieri, S.; Prano, V. The Monitoring of Natural Soil CO2 Emissions: Issues and Perspectives. Earth-Sci. Rev. 2019, 198, 102928. [Google Scholar] [CrossRef]
- De Gregorio, S.; Gurrieri, S.; Valenza, M. A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications. Geochem. Geophys. Geosyst. 2005, 6, Q09005. [Google Scholar] [CrossRef]
- De Gregorio, S.; Camarda, M.; Longo, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S. Long-term continuous monitoring of the dissolved CO2 performed by using a new device in groundwater of the Mt. Etna (southern Italy). Water Res. 2011, 45, 3005–3011. [Google Scholar] [CrossRef]
- Italiano, F. Hydrothermal fluids vented at shallow depths at the Aeolian islands: Relationships with volcanic and geothermal systems. Freib. Online Geol. 2009, 22, 55–60. [Google Scholar]
- Sedwick, P.; Stuben, D. Chemistry of shallow submarinewarm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy. Mar. Chem. 1996, 53, 147–161. [Google Scholar] [CrossRef]
- Capaccioni, B.; Tassi, F.; Vaselli, O. Organic and inorganic geochemistry of low temperature gas discharge at the Baia di Levante beach, Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2001, 108, 173–185. [Google Scholar] [CrossRef]
- Federico, C.; Cocina, O.; Gambino, S.; Paonita, A.; Branca, S.; Coltelli, M.; Italiano, F.; Bruno, V.; Caltabiano, T.; Camarda, M.; et al. Inferences on the 2021 Ongoing Volcanic Unrest at Vulcano Island (Italy) through a Comprehensive Multidisciplinary Surveillance Network. Remote Sens. 2023, 15, 1405. [Google Scholar] [CrossRef]
- Paonita, A.; Federico, C.; Bonfanti, P.; Capasso, G.; Inguaggiato, S.; Italiano, F.; Madonia, P.; Pecoraino, G.; Sortino, F. The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim. Cosmochim. Acta 2013, 120, 158–178. [Google Scholar] [CrossRef]
- Daskalopoulou, K.; Gagliano, A.L.; Calabrese, S.; Longo, M.; Hantzis, K.; Kyriakopoulos, K.; D’Alessandro, W. Gas geochemistry and CO2 output estimation at the island of Milos, Greece. J. Volcanol. Geotherm. Res. 2018, 365, 13–22. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Huang, T.H.; Chen, Y.C.; Bai, Y.; He, X.; Kang, Y. Air-sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 2013, 10, 6509–6544. [Google Scholar] [CrossRef]
- Tomer, A.S.; McKenzie, T.; Majtényi-Hill, C.; Cabral, A.; Yau, Y.Y.Y.; Call, M.; Chen, X.; Correa, R.E.; Davis, K.; Jeffrey, L.; et al. Groundwater releases CO2 to diverse global coastal ecosystems. Sci. Adv. 2025, 11, eadr3240. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Pt. II 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Wang, Y.; Du, M.; Wu, Z. Greenhouse gases emissions and dissolved carbon export affected by submarine groundwater discharge in a maricultural bay, Hainan Island, China. Sci. Total Environ. 2023, 857, 159665. [Google Scholar] [CrossRef] [PubMed]
- Wanninkhof, R. Relationship between wind-speed and gas exchange over the ocean. J. Geophys. Res. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a nonideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M.; De Gregorio, S.; Prano, V. Deep CO2 release revealed by stable isotope and diffuse degassing surveys at Vulcano (Aeolian Islands) in 2015–2018. J. Volc. Geother. Res. 2020, 401, 106972. [Google Scholar] [CrossRef]
- Johnson, A.; Cronan, D.S. Hydrothermal Metalliferous Sediments and Waters Off the Lesser Antilles. Mar. Georesour. Geotechnol. 2001, 19, 65–83. [Google Scholar] [CrossRef]
- Zhirmunsky, A.; Tarasov, V. Unusual marine ecosystem in the flooded crater of Ushisher volcano. Mar. Ecol. Prog. Ser. 1990, 65, 95–102. [Google Scholar] [CrossRef]
- Licence, P.S.; Terrill, J.E.; Ferguson, L.J. Epithermal gold mineralisation, Ambitle Island, Papua New Guinea. In Proceedings, Pacific Rim Congress 87, Gold Coast, 1987; Brennan, E., Ed.; Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 1987; pp. 273–278. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gregorio, S.; Camarda, M.; Pisciotta, A.; Francofonte, V. Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy). Environments 2025, 12, 197. https://doi.org/10.3390/environments12060197
De Gregorio S, Camarda M, Pisciotta A, Francofonte V. Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy). Environments. 2025; 12(6):197. https://doi.org/10.3390/environments12060197
Chicago/Turabian StyleDe Gregorio, Sofia, Marco Camarda, Antonino Pisciotta, and Vincenzo Francofonte. 2025. "Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy)" Environments 12, no. 6: 197. https://doi.org/10.3390/environments12060197
APA StyleDe Gregorio, S., Camarda, M., Pisciotta, A., & Francofonte, V. (2025). Shallow Submarine CO2 Emissions in Coastal Volcanic Areas Implication for Global Carbon Budget Estimates: The Case of Vulcano Island (Italy). Environments, 12(6), 197. https://doi.org/10.3390/environments12060197