Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = high bit error rate (BER)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3804 KiB  
Article
Enabling Intelligent 6G Communications: A Scalable Deep Learning Framework for MIMO Detection
by Muhammad Yunis Daha, Ammu Sudhakaran, Bibin Babu and Muhammad Usman Hadi
Telecom 2025, 6(3), 58; https://doi.org/10.3390/telecom6030058 - 6 Aug 2025
Abstract
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in [...] Read more.
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in signal detection under high-dimensional and noisy environments. To address these limitations, this paper proposes MIMONet, a novel deep learning (DL)-based MIMO detection framework built upon a lightweight and optimized feedforward neural network (FFNN) architecture. MIMONet is specifically designed to achieve a balance between detection performance and complexity by optimizing the neural network architecture for MIMO signal detection tasks. Through extensive simulations across multiple MIMO configurations, the proposed MIMONet detector consistently demonstrates superior bit error rate (BER) performance. It achieves a notably lower error rate compared to conventional benchmark detectors, particularly under moderate to high signal-to-noise ratio (SNR) conditions. In addition to its enhanced detection accuracy, MIMONet maintains significantly reduced computational complexity, highlighting its practical feasibility for advanced wireless communication systems. These results validate the effectiveness of the MIMONet detector in optimizing detection accuracy without imposing excessive processing burdens. Moreover, the architectural flexibility and efficiency of MIMONet lay a solid foundation for future extensions toward large-scale ma-MIMO configurations, paving the way for practical implementations in beyond-5G (B5G) and 6G communication infrastructures. Full article
Show Figures

Figure 1

19 pages, 8922 KiB  
Article
A Two-Stage Time-Domain Equalization Method for Mitigating Nonlinear Distortion in Single-Carrier THz Communication Systems
by Yunchuan Liu, Hongcheng Yang, Ziqi Liu, Minghan Jia, Shang Li, Jiajie Li, Jingsuo He, Zhe Yang and Cunlin Zhang
Sensors 2025, 25(15), 4825; https://doi.org/10.3390/s25154825 - 6 Aug 2025
Abstract
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based [...] Read more.
Terahertz (THz) communication is regarded as a key technology for achieving high-speed data transmission and wireless communication due to its ultra-high frequency and large bandwidth characteristics. In this study, we focus on a single-carrier THz communication system and propose a two-stage deep learning-based time-domain equalization method, specifically designed to mitigate the nonlinear distortions in such systems, thereby enhancing communication reliability and performance. The method adopts a progressive learning strategy, whereby global characteristics are initially captured before progressing to local levels. This enables the effective identification and equalization of channel characteristics, particularly in the mitigation of nonlinear distortion and random interference, which can otherwise negatively impact communication quality. In an experimental setting at a frequency of 230 GHz and a channel distance of 2.1 m, this method demonstrated a substantial reduction in the system’s bit error rate (BER), exhibiting particularly noteworthy performance enhancements in comparison to before equalization. To validate the model’s generalization capability, data collection and testing were also conducted at a frequency of 310 GHz and a channel distance of 1.5 m. Experimental results show that the proposed time-domain equalizer, trained using the two-stage DL framework, achieved significant BER reductions of approximately 92.15% at 230 GHz (2.1 m) and 83.33% at 310 GHz (1.5 m), compared to the system’s performance prior to equalization. The method exhibits stable performance under varying conditions, supporting its use in future THz communication studies. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

27 pages, 2972 KiB  
Article
Integrated Sensing and Communication Using Random Padded OTFS with Reduced Interferences
by Pavel Karpovich and Tomasz P. Zielinski
Sensors 2025, 25(15), 4816; https://doi.org/10.3390/s25154816 - 5 Aug 2025
Abstract
The orthogonal time frequency space (OTFS) is a modulation designed to transmit data in high Doppler channels where the usage of the orthogonal frequency division multiplexing (OFDM) is challenging. The random padded OTFS (RP-OTFS) modulation, introduced recently, is an OTFS-like waveform optimized for [...] Read more.
The orthogonal time frequency space (OTFS) is a modulation designed to transmit data in high Doppler channels where the usage of the orthogonal frequency division multiplexing (OFDM) is challenging. The random padded OTFS (RP-OTFS) modulation, introduced recently, is an OTFS-like waveform optimized for more precise estimation of channel state information (CSI) and, in the case of integrated sensing and communication (ISAC), for radar detection as well. One of the main drawbacks of the RP-OTFS is the high level of interference between carriers (the inter-carrier interference—ICI) of Doppler-delay (DD) grid. In the article, we optimize the RP-OTFS waveform in terms of reducing the level of pilot-to-data interference and also offer a way to reduce the data carrier interference. The reduction in the pilot-to-data interference is achieved due to the introduction of the following: (1) redistributing interferences along the DD grid, and (2) special DD grid configuration. In turn, the reduction in data carrier interference is achieved by extrapolating the estimate of channel state information. The proposed approach allows us to reduce the influence of the interference component and, as a result, to improve the probability of correct demodulation in the ISAC RP-OTFS system. Various DD grid configurations for different use cases from a radar point of view are considered in the article. The questions of choosing appropriate values of the DD grid parameters depending on the operating environment are also discussed here. In simulations, the ICI-reduced RP-OTFS is compared with its predecessor, the regular RP-OTFS, and classical modulations: OFDM and zero-padded OTFS, and benefits of its usage are shown: lower bit error rate (BER) of the transmission and higher detection probability of the radar detection. Full article
Show Figures

Figure 1

24 pages, 1751 KiB  
Article
Robust JND-Guided Video Watermarking via Adaptive Block Selection and Temporal Redundancy
by Antonio Cedillo-Hernandez, Lydia Velazquez-Garcia, Manuel Cedillo-Hernandez, Ismael Dominguez-Jimenez and David Conchouso-Gonzalez
Mathematics 2025, 13(15), 2493; https://doi.org/10.3390/math13152493 - 3 Aug 2025
Viewed by 199
Abstract
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. [...] Read more.
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. Watermark bits are embedded selectively in blocks with high perceptual masking using a QIM strategy, and the corresponding DCT coefficients are estimated directly from the spatial domain to reduce complexity. To enhance resilience, each bit is redundantly inserted across multiple keyframes selected based on scene transitions. Extensive simulations over 21 benchmark videos (CIF, 4CIF, HD) validate that the method achieves superior performance in robustness and perceptual quality, with an average Bit Error Rate (BER) of 1.03%, PSNR of 50.1 dB, SSIM of 0.996, and VMAF of 97.3 under compression, noise, cropping, and temporal desynchronization. The system outperforms several recent state-of-the-art techniques in both quality and speed, requiring no access to the original video during extraction. These results confirm the method’s viability for practical applications such as copyright protection and secure video streaming. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

15 pages, 3678 KiB  
Article
Virtual Signal Processing-Based Integrated Multi-User Detection
by Dabao Wang and Zhao Li
Sensors 2025, 25(15), 4761; https://doi.org/10.3390/s25154761 - 1 Aug 2025
Viewed by 165
Abstract
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, [...] Read more.
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, we propose a method called Virtual Signal Processing-Based Integrated Multi-User Detection (VSP-IMUD). In VSP-IMUD, the received mixed multi-user signals are treated as an equivalent signal. The channel ambiguity corresponding to each user’s signal is then examined. For channels with non-zero ambiguity values, the signal components are detected using zero-forcing (ZF) reception. Next, the detected ambiguous signal components are reconstructed and subtracted from the received mixed signal using SIC. Once all the ambiguous signals are detected, the remaining signal components with zero ambiguity values are equated to a virtual integrated signal, to which a matched filter (MF) is applied. Finally, by selecting the signal with the highest channel gain and adopting its data as the reference symbol, the remaining signals’ dataset can be determined. Our theoretical analysis and simulation results demonstrate that VSP-IMUD effectively reduces the frequency of SIC applications and mitigates its error propagation effects, thereby improving the system’s bit-error rate (BER) performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 1217 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 - 31 Jul 2025
Viewed by 126
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
Show Figures

Figure 1

16 pages, 2137 KiB  
Article
Constellation-Optimized IM-OFDM: Joint Subcarrier Activation and Mapping via Deep Learning for Low-PAPR ISAC
by Li Li, Jiying Lin, Jianguo Li and Xiangyuan Bu
Electronics 2025, 14(15), 3007; https://doi.org/10.3390/electronics14153007 - 28 Jul 2025
Viewed by 191
Abstract
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is [...] Read more.
Orthogonal frequency division multiplexing (OFDM) has been regarded as an attractive waveform for integrated sensing and communication (ISAC). However, suffering from its high peak-to-average power ratio (PAPR), sensitivity to phase noise (PN), and spectral efficiency saturation, the performance of OFDM in ISAC is limited. Against this background, this paper proposes a constellation-optimized index-modulated OFDM (CO-IM-OFDM) framework that leverages neural networks to design a constellation suitable for subcarrier activation patterns. A correlation model between index modulation and constellation is established, enabling adaptive constellation mapping in IM-OFDM. Then, Adam optimizer is employed to train the constellation tailored for ISAC, enhancing spectral efficiency under PN and PAPR constraints. Furthermore, a weighting factor is defined to characterize the joint communication–sensing performance, thus optimizing the overall system performance. Simulation results demonstrate that the proposed method can achieve improvements in bit error rate (BER) by over 4 dB and in Cramér–Rao bound (CRB) by 2% to 8% compared to traditional IM-OFDM constellation mapping. It overcomes fixed constellation constraints of conventional IM-OFDM systems, offering theoretical innovation waveform design for low-power communication–sensing systems in highly dynamic environments. Full article
(This article belongs to the Special Issue Integrated Sensing and Communications for 6G)
Show Figures

Figure 1

21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 495
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

12 pages, 24012 KiB  
Article
Iterative Fractional Doppler Shift and Channel Joint Estimation Algorithm for OTFS Systems in LEO Satellite Communication
by Xiaochen Lu, Lijian Sun and Guangliang Ren
Electronics 2025, 14(15), 2964; https://doi.org/10.3390/electronics14152964 - 24 Jul 2025
Viewed by 257
Abstract
An iterative fractional Doppler shift and channel joint estimation algorithm is proposed for orthogonal time frequency space (OTFS) satellite communication systems. In the algorithm, we search the strongest path and estimate its fractional Doppler offset, and compensate the Doppler shift to the nearest [...] Read more.
An iterative fractional Doppler shift and channel joint estimation algorithm is proposed for orthogonal time frequency space (OTFS) satellite communication systems. In the algorithm, we search the strongest path and estimate its fractional Doppler offset, and compensate the Doppler shift to the nearest integer to estimate the coefficient of the path. Then signal of the path and its inter-Doppler interference are reconstructed and canceled from the received data with these two estimated parameters. The estimation and cancel process are iteratively conducted until the strongest path in the remained paths is less than the predetermined threshold. The channel information can be reconstructed by the estimated parameters of the paths. The normalized mean squared error (NMSE) of the proposed channel estimation algorithm is less than 1/5 of the available algorithms at a high signal-to-noise ratio (SNR) region, and its BER has about 4dB SNR gain compared with those of the available algorithms when the bit error rate (BER) is 103. Full article
(This article belongs to the Special Issue Emerging Trends in Satellite Communication Networks)
Show Figures

Figure 1

35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 317
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

21 pages, 2223 KiB  
Article
Optimized Deployment of Generalized OCDM in Deep-Sea Shadow-Zone Underwater Acoustic Channels
by Haodong Yu, Cheng Chi, Yongxing Fan, Zhanqing Pu, Wei Wang, Li Yin, Yu Li and Haining Huang
J. Mar. Sci. Eng. 2025, 13(7), 1312; https://doi.org/10.3390/jmse13071312 - 8 Jul 2025
Viewed by 337
Abstract
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its [...] Read more.
Communication in deep-sea shadow zones remains a significant challenge due to high propagation losses, complex multipath effects, long transmission delays, and strong environmental influences. In recent years, orthogonal chirp division multiplexing (OCDM) has demonstrated promising performance in underwater acoustic communication due to its robustness against multipath interference. However, its high peak-to-average power ratio (PAPR) limits its reliability and efficiency in deep-sea shadow-zone environments. This study applies a recently proposed generalized orthogonal chirp division multiplexing (GOCDM) modulation scheme to deep-sea shadow-zone communication. GOCDM follows the same principles as orthogonal signal division multiplexing (OSDM) while offering the advantage of a reduced PAPR. By segmenting the data signal into multiple vector blocks, GOCDM enables flexible resource allocation, optimizing the PAPR without compromising performance. Theoretical analysis and practical simulations confirm that GOCDM preserves the full frequency diversity benefits of traditional OCDM, while mitigating PARR-related limitations. Additionally, deep-sea experiments were carried out to evaluate the practical performance of GOCDM in shadow-zone environments. The experimental results demonstrate that GOCDM achieves superior performance under low signal-to-noise ratio (SNR) conditions, where the system attains a 0 bit error rate (BER) at 4.2 dB and 6.8 dB, making it a promising solution for enhancing underwater acoustic communication in challenging deep-sea environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1072 KiB  
Article
Performance Evaluation of IM/DD FSO Communication System Under Dust Storm Conditions
by Maged Abdullah Esmail
Technologies 2025, 13(7), 288; https://doi.org/10.3390/technologies13070288 - 7 Jul 2025
Viewed by 270
Abstract
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior [...] Read more.
Free-space optical (FSO) communication is a promising high-capacity solution for future wireless networks, particularly for backhaul and fronthaul links in 5G and emerging 6G systems. However, it remains highly vulnerable to environmental impairment, especially in arid regions prone to dust storms. While prior studies have addressed atmospheric effects such as fog and turbulence, the specific impact of dust on signal performance remains insufficiently explored. This work presents a probabilistic modeling framework for evaluating the performance of an intensity modulation/direct detection (IM/DD) FSO system under dust storm conditions. Using a controlled laboratory environment, we conducted measurements of the optical signal under dust-induced channel conditions using real-world dust samples collected from an actual dust storm. We identified the Beta distribution as the most accurate model for the measured signal fluctuations. Closed-form expressions were derived for average bit error rate (BER), outage probability, and channel capacity. The close agreement between the analytical, approximate, and simulated results validates the proposed model as a reliable tool for evaluating FSO system performance. The results show that the forward error correction (FEC) BER threshold of 103 is achieved at approximately 10.5 dB, and the outage probability drops below 103 at 10 dB average SNR. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

23 pages, 1475 KiB  
Article
Large-Language-Model-Enabled Text Semantic Communication Systems
by Zhenyi Wang, Li Zou, Shengyun Wei, Kai Li, Feifan Liao, Haibo Mi and Rongxuan Lai
Appl. Sci. 2025, 15(13), 7227; https://doi.org/10.3390/app15137227 - 26 Jun 2025
Viewed by 589
Abstract
Large language models (LLMs) have recently demonstrated state-of-the-art performance in various natural language processing (NLP) tasks, achieving near-human levels in multiple language understanding challenges and aligning closely with the core principles of semantic communication Inspired by LLMs’ advancements in semantic processing, we propose [...] Read more.
Large language models (LLMs) have recently demonstrated state-of-the-art performance in various natural language processing (NLP) tasks, achieving near-human levels in multiple language understanding challenges and aligning closely with the core principles of semantic communication Inspired by LLMs’ advancements in semantic processing, we propose LLM-SC, an innovative LLM-enabled semantic communication system framework which applies LLMs directly to the physical layer coding and decoding for the first time. By analyzing the relationship between the training process of LLMs and the optimization objectives of semantic communication, we propose training a semantic encoder through LLMs’ tokenizer training and establishing a semantic knowledge base via the LLMs’ unsupervised pre-training process. This knowledge base facilitates the creation of optimal decoder by providing the prior probability of the transmitted language sequence. Based on this, we derive the optimal decoding criteria for the receiver and introduce beam search algorithm to further reduce complexity. Furthermore, we assert that existing LLMs can be employed directly for LLM-SC without extra re-training or fine-tuning. Simulation results reveal that LLM-SC outperforms conventional DeepSC at signal-to-noise ratios (SNRs) exceeding 3 dB, as it enables error-free transmissions of semantic information under high SNRs while DeepSC fails to do so. In addition to semantic-level performance, LLM-SC demonstrates compatibility with technical-level performance, achieving approximately an 8 dB coding gain for a bit error ratio (BER) of 103 without any channel coding while maintaining the same joint source–channel coding rate as traditional communication systems. Full article
(This article belongs to the Special Issue Recent Advances in AI-Enabled Wireless Communications and Networks)
Show Figures

Figure 1

24 pages, 5413 KiB  
Article
Evaluating MIMO-VLC System Performance: Modulation Techniques and Ambient Light Interference Effects
by Emad S. Hassan, Abdoh Jabbari and Ayman A. Alharbi
Photonics 2025, 12(7), 649; https://doi.org/10.3390/photonics12070649 - 26 Jun 2025
Viewed by 387
Abstract
Visible light communication (VLC) is an emerging optical wireless technology capable of delivering high data rates for both indoor and outdoor environments. When combined with multiple-input, multiple-output (MIMO) systems, VLC demonstrates enhanced capacity, extended transmission range, and improved reliability. However, VLC systems are [...] Read more.
Visible light communication (VLC) is an emerging optical wireless technology capable of delivering high data rates for both indoor and outdoor environments. When combined with multiple-input, multiple-output (MIMO) systems, VLC demonstrates enhanced capacity, extended transmission range, and improved reliability. However, VLC systems are susceptible to ambient light interference, which can degrade performance. This paper investigates the performance of MIMO-VLC systems using three modulation techniques: non-return to zero (NRZ), return to zero (RZ), and quadrature phase shift keying (QPSK). The study evaluates the VLC systems in terms of bit error rate (BER), quality factor (Q-factor), and received power over varying link distances. The obtained results show that MIMO-based systems outperform single-input, single-output (SISO) systems in terms of transmission range, with MIMO achieving up to 1450 m using QPSK, compared to 1125 m for SISO. Under ambient light noise, MIMO-based systems experience a greater reduction in transmission distance (13.6%) compared to SISO (6.2%), but the overall performance gain of MIMO compensates for this degradation. Among the modulation schemes, NRZ and QPSK provide the best performance, showing greater resilience to ambient light interference. The findings confirm that MIMO–VLC systems, particularly with NRZ and QPSK, offer a robust solution for overcoming interference and maximizing transmission distance in real-world applications. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

16 pages, 23928 KiB  
Article
Impact Evaluation of DME Beacons on BeiDou B2a Signal Reception Performance
by Yicheng Li, Jinli Cui, Zhenyang Ma and Zhaobin Duan
Sensors 2025, 25(12), 3763; https://doi.org/10.3390/s25123763 - 16 Jun 2025
Viewed by 309
Abstract
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive [...] Read more.
The operational integrity of the BeiDou-3 Navigation Satellite System (BDS-3) has been significantly challenged by electromagnetic interference, particularly from Distance Measuring Equipment (DME) ground beacons to the newly implemented B2a signal, since its full operational deployment in 2020. This study developed a comprehensive interference evaluation model based on receiver signal processing principles to quantify the degradation of B2a signal reception performance under DME interference scenarios. Leveraging empirical data from the DME beacon network in the Chinese mainland, we systematically analyzed the interference effects through an effective carrier-to-noise ratio (C/N0), signal detection probability, carrier tracking accuracy, and demodulation bit error rate (BER). The results demonstrate that the effective C/N0 of the B2a signal degrades by up to 3.25 dB, the detection probability decreases by 33%, and the carrier tracking errors and BER increase by 2.57° and 5.1%, respectively, in worst-case interference scenarios. Furthermore, significant spatial correlation was observed between the interference hotspots and regions of high aircraft density. DME interference adversely affected the accuracy, availability, continuity, and integrity of the airborne BeiDou navigation system, thereby compromising civil aviation flight safety. These findings establish a scientific foundation for developing Minimum Operational Performance Standards for B2a signal receivers and for strategically optimizing DME beacon deployment throughout the Chinese mainland. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop