Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,357)

Search Parameters:
Keywords = heuristics methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1323 KB  
Article
A Hybrid Ant Colony Optimization and Dynamic Window Method for Real-Time Navigation of USVs
by Yuquan Xue, Liming Wang, Bi He, Shuo Yang, Yonghui Zhao, Xing Xu, Jiaxin Hou and Longmei Li
Sensors 2025, 25(19), 6181; https://doi.org/10.3390/s25196181 (registering DOI) - 6 Oct 2025
Abstract
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness [...] Read more.
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness in cluttered waters, while the dynamic window approach (DWA) without global guidance can become trapped in local obstacle configurations. This paper presents a sensor-oriented hybrid method that couples an improved ACO for global route planning with an enhanced DWA for local, real-time obstacle avoidance. In the global stage, the ACO state–transition rule integrates path length, obstacle clearance, and trajectory smoothness heuristics, while a cosine-annealed schedule adaptively balances exploration and exploitation. Pheromone updating combines local and global mechanisms under bounded limits, with a stagnation detector to restore diversity. In the local stage, the DWA cost function is redesigned under USV kinematics to integrate velocity adaptability, trajectory smoothness, and goal-deviation, using obstacle data that would typically originate from onboard sensors. Simulation studies, where obstacle maps emulate sensor-detected environments, show that the proposed method achieves shorter paths, faster convergence, smoother trajectories, larger safety margins, and higher success rates against dynamic obstacles compared with standalone ACO or DWA. These results demonstrate the method’s potential for sensor-based, real-time USV navigation and collision avoidance in complex maritime scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

28 pages, 650 KB  
Systematic Review
Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems
by Abayomi A. Adebiyi and Mathew Habyarimana
Energies 2025, 18(19), 5262; https://doi.org/10.3390/en18195262 - 3 Oct 2025
Abstract
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental [...] Read more.
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental benefits, they also introduce significant energy management challenges. One major concern is the variability in energy consumption patterns within households, which can lead to inefficiencies. Also, improper energy management can result in economic losses due to unbalanced energy control or inefficient systems. Home Energy Management Systems (HEMSs) have emerged as a promising solution to address these challenges. A well-designed HEMS enables users to achieve greater efficiency in managing their energy consumption, optimizing asset usage while ensuring cost savings and system reliability. This paper presents a comprehensive systematic review of optimization techniques applied to HEMS development between 2019 and 2024, focusing on key technical and computational factors influencing their advancement. The review categorizes optimization techniques into two main groups: conventional methods, emerging techniques, and machine learning methods. By analyzing recent developments, this study provides an integrated perspective on the evolving role of HEMSs in modern power systems, highlighting trends that enhance the efficiency and effectiveness of energy management in smart grids. Unifying taxonomy of HEMSs (2019–2024) and integrating mathematical, heuristic/metaheuristic, and ML/DRL approaches across horizons, controllability, and uncertainty, we assess algorithmic complexity versus tractability, benchmark comparative evidence (cost, PAR, runtime), and highlight deployment gaps (privacy, cybersecurity, AMI/HAN, and explainability), offering a novel synthesis for AI-enabled HEMS. Full article
(This article belongs to the Special Issue Advanced Application of Mathematical Methods in Energy Systems)
Show Figures

Figure 1

34 pages, 3263 KB  
Systematic Review
From Network Sensors to Intelligent Systems: A Decade-Long Review of Swarm Robotics Technologies
by Fouad Chaouki Refis, Nassim Ahmed Mahammedi, Chaker Abdelaziz Kerrache and Sahraoui Dhelim
Sensors 2025, 25(19), 6115; https://doi.org/10.3390/s25196115 - 3 Oct 2025
Abstract
Swarm Robotics (SR) is a relatively new field, inspired by the collective intelligence of social insects. It involves using local rules to control and coordinate large groups (swarms) of relatively simple physical robots. Important tasks that robot swarms can handle include demining, search, [...] Read more.
Swarm Robotics (SR) is a relatively new field, inspired by the collective intelligence of social insects. It involves using local rules to control and coordinate large groups (swarms) of relatively simple physical robots. Important tasks that robot swarms can handle include demining, search, rescue, and cleaning up toxic spills. Over the past decade, the research effort in the field of Swarm Robotics has intensified significantly in terms of hardware, software, and systems integrated developments, yet significant challenges remain, particularly regarding standardization, scalability, and cost-effective deployment. To contextualize the state of Swarm Robotics technologies, this paper provides a systematic literature review (SLR) of Swarm Robotic technologies published from 2014 to 2024, with an emphasis on how hardware and software subsystems have co-evolved. This work provides an overview of 40 studies in peer-reviewed journals along with a well-defined and replicable systematic review protocol. The protocol describes criteria for including and excluding studies and outlines a data extraction approach. We explored trends in sensor hardware, actuation methods, communication devices, and energy systems, as well as an examination of software platforms to produce swarm behavior, covering meta-heuristic algorithms and generic middleware platforms such as ROS. Our results demonstrate how dependent hardware and software are to achieve Swarm Intelligence, the lack of uniform standards for their design, and the pragmatic limits which hinder scalability and deployment. We conclude by noting ongoing challenges and proposing future directions for developing interoperable, energy-efficient Swarm Robotics (SR) systems incorporating machine learning (ML). Full article
(This article belongs to the Special Issue Cooperative Perception and Planning for Swarm Robot Systems)
Show Figures

Figure 1

53 pages, 3279 KB  
Review
Cognitive Bias Mitigation in Executive Decision-Making: A Data-Driven Approach Integrating Big Data Analytics, AI, and Explainable Systems
by Leonidas Theodorakopoulos, Alexandra Theodoropoulou and Constantinos Halkiopoulos
Electronics 2025, 14(19), 3930; https://doi.org/10.3390/electronics14193930 - 3 Oct 2025
Abstract
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business [...] Read more.
Cognitive biases continue to pose significant challenges in executive decision-making, often leading to strategic inefficiencies, misallocation of resources, and flawed risk assessments. While traditional decision-making relies on intuition and experience, these methods are increasingly proving inadequate in addressing the complexity of modern business environments. Despite the growing integration of big data analytics into executive workflows, existing research lacks a comprehensive examination of how AI-driven methodologies can systematically mitigate biases while maintaining transparency and trust. This paper addresses these gaps by analyzing how big data analytics, artificial intelligence (AI), machine learning (ML), and explainable AI (XAI) contribute to reducing heuristic-driven errors in executive reasoning. Specifically, it explores the role of predictive modeling, real-time analytics, and decision intelligence systems in enhancing objectivity and decision accuracy. Furthermore, this study identifies key organizational and technical barriers—such as biases embedded in training data, model opacity, and resistance to AI adoption—that hinder the effectiveness of data-driven decision-making. By reviewing empirical findings from A/B testing, simulation experiments, and behavioral assessments, this research examines the applicability of AI-powered decision support systems in strategic management. The contributions of this paper include a detailed analysis of bias mitigation mechanisms, an evaluation of current limitations in AI-driven decision intelligence, and practical recommendations for fostering a more data-driven decision culture. By addressing these research gaps, this study advances the discourse on responsible AI adoption and provides actionable insights for organizations seeking to enhance executive decision-making through big data analytics. Full article
(This article belongs to the Special Issue Feature Papers in Artificial Intelligence)
27 pages, 1146 KB  
Article
Attacking Tropical Stickel Protocol by MILP and Heuristic Optimization Techniques
by Sulaiman Alhussaini and Sergeĭ Sergeev
J. Cybersecur. Priv. 2025, 5(4), 82; https://doi.org/10.3390/jcp5040082 - 3 Oct 2025
Abstract
Known attacks on the tropical implementation of Stickel protocol involve finding minimal covers for a certain covering problem, and this leads to an exponential growth in the worst case time required to recover the secret key as the used polynomial degree increases. The [...] Read more.
Known attacks on the tropical implementation of Stickel protocol involve finding minimal covers for a certain covering problem, and this leads to an exponential growth in the worst case time required to recover the secret key as the used polynomial degree increases. The computational inefficiency of this attack is also observed in practice, unless the number of explored covers is limited, on the expense of the success rate of the attack. Consequently, it can be argued that Alice and Bob can still repel these attacks on tropical Stickel protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol over some other semirings with idempotent addition (such as the max–min or digital semiring). In this paper, we propose alternative methods to attack the Stickel protocols that avoid solving the covering problem. These methods involve framing the attacks as a mixed integer linear programming (MILP) problem or applying certain heuristic global optimization techniques. We also include a number of numerical experiments to analyze the success rate and the time required to execute the suggested attacks in practice. Full article
(This article belongs to the Special Issue Applied Cryptography)
Show Figures

Figure 1

17 pages, 1747 KB  
Article
Weighted Transformer Classifier for User-Agent Progression Modeling, Bot Contamination Detection, and Traffic Trust Scoring
by Geza Lucz and Bertalan Forstner
Mathematics 2025, 13(19), 3153; https://doi.org/10.3390/math13193153 - 2 Oct 2025
Abstract
In this paper, we present a unique method to determine the level of bot contamination of web-based user agents. It is common practice for bots and robotic agents to masquerade as human-like to avoid content and performance limitations. This paper continues our previous [...] Read more.
In this paper, we present a unique method to determine the level of bot contamination of web-based user agents. It is common practice for bots and robotic agents to masquerade as human-like to avoid content and performance limitations. This paper continues our previous work, using over 600 million web log entries collected from over 4000 domains to derive and generalize how the prominence of specific web browser versions progresses over time, assuming genuine human agency. Here, we introduce a parametric model capable of reproducing this progression in a tunable way. This simulation allows us to tag human-generated traffic in our data accurately. Along with the highest confidence self-tagged bot traffic, we train a Transformer-based classifier that can determine the bot contamination—a botness metric of user-agents without prior labels. Unlike traditional syntactic or rule-based filters, our model learns temporal patterns of raw and heuristic-derived features, capturing nuanced shifts in request volume, response ratios, content targeting, and entropy-based indicators over time. This rolling window-based pre-classification of traffic allows content providers to bin streams according to their bot infusion levels and direct them to several specifically tuned filtering pipelines, given the current load levels and available free resources. We also show that aggregated traffic data from multiple sources can enhance our model’s accuracy and can be further tailored to regional characteristics using localized metadata from standard web server logs. Our ability to adjust the heuristics to geographical or use case specifics makes our method robust and flexible. Our evaluation highlights that 65% of unclassified traffic is bot-based, underscoring the urgency of robust detection systems. We also propose practical methods for independent or third-party verification and further classification by abusiveness. Full article
Show Figures

Figure 1

25 pages, 6901 KB  
Article
Improving Active Support Capability: Optimization and Scheduling of Village-Level Microgrid with Hybrid Energy Storage System Containing Supercapacitors
by Yu-Rong Hu, Jian-Wei Ma, Ling Miao, Jian Zhao, Xiao-Zhao Wei and Jing-Yuan Yin
Eng 2025, 6(10), 253; https://doi.org/10.3390/eng6100253 - 1 Oct 2025
Abstract
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in [...] Read more.
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in alleviating the imbalance between supply and demand in VMG. However, current energy storage systems rely heavily on lithium batteries, and their frequent charging and discharging processes lead to rapid lifespan decay. To solve this problem, this study proposes a hybrid energy storage system combining supercapacitors and lithium batteries for VMG, and designs a hybrid energy storage scheduling strategy to coordinate the “source–load–storage” resources in the microgrid, effectively cope with power supply fluctuations and slow down the life degradation of lithium batteries. In order to give full play to the active support ability of supercapacitors in suppressing grid voltage and frequency fluctuations, the scheduling optimization goal is set to maximize the sum of the virtual inertia time constants of the supercapacitor. In addition, in order to efficiently solve the high-complexity model, the reason for choosing the snow goose algorithm is that compared with the traditional mathematical programming methods, which are difficult to deal with large-scale uncertain systems, particle swarm optimization, and other meta-heuristic algorithms have insufficient convergence stability in complex nonlinear problems, SGA can balance global exploration and local development capabilities by simulating the migration behavior of snow geese. By improving the convergence effect of SGA and constructing a multi-objective SGA, the effectiveness of the new algorithm, strategy and model is finally verified through three cases, and the loss is reduced by 58.09%, VMG carbon emissions are reduced by 45.56%, and the loss of lithium battery is reduced by 40.49% after active support optimization, and the virtual energy inertia obtained by VMG from supercapacitors during the scheduling cycle reaches a total of 0.1931 s. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

32 pages, 1846 KB  
Article
Joint Scheduling and Placement for Vehicular Intelligent Applications Under QoS Constraints: A PPO-Based Precedence-Preserving Approach
by Wei Shi and Bo Chen
Mathematics 2025, 13(19), 3130; https://doi.org/10.3390/math13193130 - 30 Sep 2025
Abstract
The increasing demand for low-latency, computationally intensive vehicular applications, such as autonomous navigation and real-time perception, has led to the adoption of cloud–edge–vehicle infrastructures. These applications are often modeled as Directed Acyclic Graphs (DAGs) with interdependent subtasks, where precedence constraints enforce causal ordering [...] Read more.
The increasing demand for low-latency, computationally intensive vehicular applications, such as autonomous navigation and real-time perception, has led to the adoption of cloud–edge–vehicle infrastructures. These applications are often modeled as Directed Acyclic Graphs (DAGs) with interdependent subtasks, where precedence constraints enforce causal ordering while allowing concurrency. We propose a task offloading framework that decomposes applications into precedence-constrained subtasks and formulates the joint scheduling and offloading problem as a Markov Decision Process (MDP) to capture the latency–energy trade-off. The system state incorporates vehicle positions, wireless link quality, server load, and task-buffer status. To address the high dimensionality and sequential nature of scheduling, we introduce DepSchedPPO, a dependency-aware sequence-to-sequence policy that processes subtasks in topological order and generates placement decisions using action masking to ensure partial-order feasibility. This policy is trained using Proximal Policy Optimization (PPO) with clipped surrogates, ensuring stable and sample-efficient learning under dynamic task dependencies. Extensive simulations show that our approach consistently reduces task latency, energy consumption and QOS compared to conventional heuristic and DRL-based methods. The proposed solution demonstrates strong applicability to real-time vehicular scenarios such as autonomous navigation, cooperative sensing, and edge-based perception. Full article
21 pages, 2993 KB  
Article
A Reinforcement Learning Framework for Scalable Partitioning and Optimization of Large-Scale Capacitated Vehicle Routing Problems
by Chaima Ayachi Amar, Khadra Bouanane and Oussama Aiadi
Electronics 2025, 14(19), 3879; https://doi.org/10.3390/electronics14193879 - 29 Sep 2025
Abstract
The Capacitated Vehicle Routing Problem (CVRP) is a central challenge in combinatorial optimization, with critical applications in logistics and transportation. Traditional methods struggle with large-scale instances, due to the computational demands, while learned construction models often suffer from degraded solution quality and constraint [...] Read more.
The Capacitated Vehicle Routing Problem (CVRP) is a central challenge in combinatorial optimization, with critical applications in logistics and transportation. Traditional methods struggle with large-scale instances, due to the computational demands, while learned construction models often suffer from degraded solution quality and constraint violations. This work proposes SPORL, a Scalable Partitioning and Optimization via Reinforcement Learning framework for large-scale CVRPs. SPORL decomposes the problem using a learned partitioning strategy, followed by parallel subproblem solving, and employs a greedy decoding scheme at inference to ensure scalability for instances with up to 1000 customers. A key innovation is a context-based attention mechanism that incorporates sub-route embeddings, enabling more informed and constraint-aware partitioning decisions. Extensive experiments on benchmark datasets with up to 1000 customers demonstrated that SPORL consistently outperformed state-of-the-art learning-based baselines (e.g., AM, POMO) and achieved competitive performance relative to strong heuristics such as LKH3, while reducing inference time from hours to seconds. Ablation studies confirmed the critical role of the proposed context embedding and decoding strategy in achieving high solution quality. Full article
(This article belongs to the Section Artificial Intelligence)
20 pages, 776 KB  
Article
Who Speaks to Whom? An LLM-Based Social Network Analysis of Tragic Plays
by Aura Cristina Udrea, Stefan Ruseti, Laurentiu-Marian Neagu, Ovio Olaru, Andrei Terian and Mihai Dascalu
Electronics 2025, 14(19), 3847; https://doi.org/10.3390/electronics14193847 - 28 Sep 2025
Abstract
The study of dramatic plays has long relied on qualitative methods to analyze character interactions, making little assumption about the structural patterns of communication involved. Our approach bridges NLP and literary studies, enabling scalable, data-driven analysis of interaction patterns and power structures in [...] Read more.
The study of dramatic plays has long relied on qualitative methods to analyze character interactions, making little assumption about the structural patterns of communication involved. Our approach bridges NLP and literary studies, enabling scalable, data-driven analysis of interaction patterns and power structures in drama. We propose a novel method to supplement addressee identification in tragedies using Large Language Models (LLMs). Unlike conventional Social Network Analysis (SNA) approaches, which often diminish dialogue dynamics by relying on co-occurrence or adjacency heuristics, our LLM-based method accurately records directed speech acts, joint addresses, and listener interactions. In a preliminary evaluation of an annotated multilingual dataset of 14 scenes from nine plays in four languages, our top-performing LLM (i.e., Llama3.3-70B) achieved an F1-score of 88.75% (P = 94.81%, R = 84.72%), an exact match of 77.31%, and an 86.97% partial match with human annotations, where partial match indicates any overlap between predicted and annotated receiver lists. Through automatic extraction of speaker–addressee relations, our method provides preliminary evidence for the potential scalability of SNA for literary analyses, as well as insights into power relations, influence, and isolation of characters in tragedies, which we further visualize by rendering social network graphs. Full article
Show Figures

Figure 1

20 pages, 7202 KB  
Article
A Novel Sorting Route Planning Method for Irregular Sheet Parts in the Shipbuilding Process
by Hongyan Xing, Cheng Luo, Jichao Song and Yansong Zhang
J. Mar. Sci. Eng. 2025, 13(10), 1871; https://doi.org/10.3390/jmse13101871 - 27 Sep 2025
Abstract
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of [...] Read more.
Due to the complexity of shipyards’ operating scenes and the inconsistency of ship parts’ type and size, current sorting operations for ship parts mainly rely on laborers, resulting in weak control over the production process and key nodes. With the gradual advancement of intelligent manufacturing technology in the shipbuilding process, the trend of machines replacing humans is obvious. In order to promote the automation of the sorting process, intelligent scene recognition and route planning algorithms are needed. In this work, we introduce a localization method based on a laser line profile sensor and ship parts layout analysis algorithm, aiming at obtaining the information needed for sorting route planning. In addition, a heuristic-based route planning algorithm is proposed to solve the built mathematical model of the ship part sorting process. The proposed method can optimize the sorting order of parts, realize stable stacking, shorten sorting distance (taking about 490 m for 43 parts), and thereby improve operation efficiency. These results show that the proposed approach can make intelligent and comprehensible sorting route planning for the ship parts layout. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 1919 KB  
Article
Dijkstra and A* Algorithms for Algorithmic Optimization of Maritime Routes and Logistics of Offshore Wind Farms
by Vice Milin, Tatjana Stanivuk, Ivica Skoko and Toma Bulić
J. Mar. Sci. Eng. 2025, 13(10), 1863; https://doi.org/10.3390/jmse13101863 - 26 Sep 2025
Abstract
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian [...] Read more.
Shipping in complex marine environments requires a balance between navigational safety, minimising travel time and optimising logistics management, which is particularly challenging in areas with geometric obstructions and Offshore Wind Farms (OWFs). This study focuses on the maritime route networks in the Croatian ports of Pula and Rijeka, including the main access routes to OWFs and zones characterised by multiple navigational challenges. The aim of the research is to develop an empirically based and practically applicable framework for the optimisation of sea routes that combines analytical precision with operational efficiency. The parallel application of Dijkstra and A* algorithms enables a comparative analysis between deterministic and heuristic approaches in terms of reducing navigation risk, optimising route costs and ensuring fast logistical access to OWFs. The applied methods include the analysis of real and simulated route networks, the evaluation of statistical route parameters and the visualisation of the results for the evaluation of logistical and operational efficiency. Adaptive heuristic modifications of the A* algorithm, combined with the parallel implementation of Dijkstra’s algorithm, enable dynamic route planning that takes into account real-world conditions, including variations in wind speed and direction. The results obtained provide a comprehensive framework for safe, efficient and logistically optimised navigation in complex marine environments, with direct applications in the maintenance, inspection and operational management of OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 15460 KB  
Article
Visual Hull-Based Approach for Coronary Vessel Three-Dimensional Reconstruction
by Dominik Bernard Lau and Tomasz Dziubich
Appl. Sci. 2025, 15(19), 10450; https://doi.org/10.3390/app151910450 - 26 Sep 2025
Abstract
This paper addresses the problem of automatically reconstructing three-dimensional coronary vessel trees from a series of X-ray angiography images, a task which remains difficult, particularly with respect to solutions requiring no additional user input. This study analyses the performance of a visual hull-based [...] Read more.
This paper addresses the problem of automatically reconstructing three-dimensional coronary vessel trees from a series of X-ray angiography images, a task which remains difficult, particularly with respect to solutions requiring no additional user input. This study analyses the performance of a visual hull-based algorithm, producing the actual positions of heart arteries in the coordinate system, which is an approach not sufficiently explored in XRA images analysis. The proposed algorithm first creates a bounding cube using a novel heuristic and then iteratively projects the cube onto preprocessed 2D images, removing points too far from the depicted arteries. The method performance is first evaluated on a synthetic dataset through a series of experiments, and for a set of common clinical angles, 3D Dice of 75.25% and 78.61% reprojection Dice is obtained, which rivals the state-of-the-art machine learning methods. The findings suggest that the method offers a promising and interpretable alternative to black box methods on the synthethic dataset in question. Full article
(This article belongs to the Special Issue Novel Advances in Biomedical Signal and Image Processing)
Show Figures

Figure 1

17 pages, 3062 KB  
Article
Enhancing AVR System Stability Using Non-Monopolize Optimization for PID and PIDA Controllers
by Ahmed M. Mosaad, Mahmoud A. Attia, Nourhan M. Elbehairy, Mohammed Alruwaili, Amr Yousef and Nabil M. Hamed
Processes 2025, 13(10), 3072; https://doi.org/10.3390/pr13103072 - 25 Sep 2025
Abstract
This work suggests a new use for the Non-Monopolize Optimization (NO) method to improve the dynamic stability and robustness of PID and PIDA controllers in Automatic Voltage Regulator (AVR) systems when there are load disruptions. The NO algorithm is a new search method [...] Read more.
This work suggests a new use for the Non-Monopolize Optimization (NO) method to improve the dynamic stability and robustness of PID and PIDA controllers in Automatic Voltage Regulator (AVR) systems when there are load disruptions. The NO algorithm is a new search method that does not use metaphors and only looks for one answer. It utilizes adaptive dimension modifications to strike a balance between exploration and exploitation. Its addition to AVR control makes parameter tweaking more efficient, without relying on random metaphors or population-based heuristics. MATLAB/Simulink R2025a runs full simulations to check how well the system works in both the time domain (step response, root locus) and the frequency domain (Bode plot). We compare the results to those of well-known optimizers like WOA, TLBO, ARO, GOA, and GA. The suggested NO-based PID and PIDA controllers always show less overshoot, faster rise and settling periods, and higher phase and gain margins, which proves that they are more stable and responsive. A robustness test with a load change of ±50% shows that NO-tuned controllers are even more reliable. The results show that using NO to tune different controllers could be a good choice for real-time AVR controller tuning in modern power systems because it is lightweight and works well. Full article
(This article belongs to the Special Issue AI-Based Modelling and Control of Power Systems)
Show Figures

Figure 1

12 pages, 1424 KB  
Article
Evolution in Laryngeal Cancer Mortality at the National and Subnational Level in Romania with 2030 Forecast
by Andreea-Mihaela Banța, Nicolae-Constantin Balica, Simona Pîrvu, Karina-Cristina Marin, Kristine Guran, Ingrid-Denisa Barcan, Cristian-Ion Moț, Bogdan Hîrtie, Victor Banța and Delia Ioana Horhat
Medicina 2025, 61(10), 1743; https://doi.org/10.3390/medicina61101743 - 25 Sep 2025
Abstract
Background and Objectives: Laryngeal cancer imposes a disproportionate burden on speech, airway protection and long-term quality of life. Contemporary population-based data for Central and Eastern Europe remain scarce, and the post-pandemic trajectory is uncertain. Materials and Methods: We performed a nationwide, [...] Read more.
Background and Objectives: Laryngeal cancer imposes a disproportionate burden on speech, airway protection and long-term quality of life. Contemporary population-based data for Central and Eastern Europe remain scarce, and the post-pandemic trajectory is uncertain. Materials and Methods: We performed a nationwide, retrospective ecological time-series study using Romanian mortality registers and hospital-discharge files for 2017–2023. Crude and age-standardised mortality rates (ASMRs) were calculated, county-level indirect standardisation and spatial autocorrelation assessed and joinpoint regression quantified temporal trends. Forecasts to 2040 combined Holt–Winters/ARIMA models with Elliott-wave heuristics anchored to Fibonacci retracements. Results: In 2023, 798 laryngeal cancer deaths yielded a crude mortality of 3.65/100,000 (95% CI 3.41–3.91). Male mortality (7.07/100,000) exceeded female mortality 18-fold. Rural residents experienced a higher rate than urban counterparts (4.26 vs. 3.04/100,000), a difference unchanged after indirect age standardisation. National ASMR fell by 3.7% annually (p < 0.01), yet five counties formed a high-risk corridor (standardised mortality ratios 1.59–1.82); Moran’s I = 0.27 (p < 0.01) indicated significant spatial clustering. Pandemic-era surgical throughput collapsed by 48%, generating a backlog projected to persist beyond 2030. Ensemble forecasting anticipates a doubling of discharges and mortality between 2034 and 2037 unless smoking prevalence falls by ≥30% and radon exposure is curtailed. Conclusions: Although overall laryngeal cancer mortality in Romania is declining, the pace lags behind Western Europe and is threatened by geographic inequities and pandemic-related care delays. Aggressive tobacco control, radon-remediation policies and expansion of surgical and radiotherapeutic capacity are required to avert a forecasted surge in the next decade. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

Back to TopTop