Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = heterogeneous radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 22609 KB  
Article
From Sparse to Refined Samples: Iterative Enhancement-Based PDLCM for Multi-Annual 10 m Rice Mapping in the Middle-Lower Yangtze
by Lingbo Yang, Jiancong Dong, Cong Xu, Jingfeng Huang, Yichen Wang, Huiqin Ma, Zhongxin Chen, Limin Wang and Jingcheng Zhang
Remote Sens. 2026, 18(2), 209; https://doi.org/10.3390/rs18020209 - 8 Jan 2026
Abstract
Accurate mapping of rice cultivation is vital for ensuring food security, reducing greenhouse gas emissions, and achieving sustainable development goals. However, large-scale deep learning–based crop mapping remains limited due to the demand for vast, uniformly distributed, high-quality samples. To address this challenge, we [...] Read more.
Accurate mapping of rice cultivation is vital for ensuring food security, reducing greenhouse gas emissions, and achieving sustainable development goals. However, large-scale deep learning–based crop mapping remains limited due to the demand for vast, uniformly distributed, high-quality samples. To address this challenge, we propose a Progressive Deep Learning Crop Mapping (PDLCM) framework for national-scale, high-resolution rice mapping. Beginning with a small set of localized rice and non-rice samples, PDLCM progressively refines model performance through iterative enhancement of positive and negative samples, effectively mitigating sample scarcity and spatial heterogeneity. By combining time-series Sentinel-2 optical data with Sentinel-1 synthetic aperture radar imagery, the framework captures distinctive phenological characteristics of rice while resolving spatiotemporal inconsistencies in large datasets. Applying PDLCM, we produced 10 m rice maps from 2022 to 2024 across the middle and lower Yangtze River Basin, covering more than one million square kilometers. The results achieved an overall accuracy of 96.8% and an F1 score of 0.88, demonstrating strong spatial and temporal generalization. All datasets and source codes are publicly accessible, supporting SDG 2 and providing a transferable paradigm for operational large-scale crop mapping. Full article
36 pages, 5941 KB  
Review
Physics-Driven SAR Target Detection: A Review and Perspective
by Xinyi Li, Lei Liu, Gang Wan, Fengjie Zheng, Shihao Guo, Guangde Sun, Ziyan Wang and Xiaoxuan Liu
Remote Sens. 2026, 18(2), 200; https://doi.org/10.3390/rs18020200 - 7 Jan 2026
Abstract
Synthetic Aperture Radar (SAR) is highly valuable for target detection due to its all-weather, day-night operational capability and certain ground penetration potential. However, traditional SAR target detection methods often directly adapt algorithms designed for optical imagery, simplistically treating SAR data as grayscale images. [...] Read more.
Synthetic Aperture Radar (SAR) is highly valuable for target detection due to its all-weather, day-night operational capability and certain ground penetration potential. However, traditional SAR target detection methods often directly adapt algorithms designed for optical imagery, simplistically treating SAR data as grayscale images. This approach overlooks SAR’s unique physical nature, failing to account for key factors such as backscatter variations from different polarizations, target representation changes across resolutions, and detection threshold shifts due to clutter background heterogeneity. Consequently, these limitations lead to insufficient cross-polarization adaptability, feature masking, and degraded recognition accuracy due to clutter interference. To address these challenges, this paper systematically reviews recent research advances in SAR target detection, focusing on physical constraints including polarization characteristics, scattering mechanisms, signal-domain properties, and resolution effects. Finally, it outlines promising research directions to guide future developments in physics-aware SAR target detection. Full article
Show Figures

Figure 1

23 pages, 7265 KB  
Article
An Improved RODNet for Object Detection Based on Radar and Camera Fusion
by Manman Fan, Xianpeng Wang, Mingcheng Fu, Yanqiu Yang, Yuehao Guo and Xiang Lan
Sensors 2026, 26(2), 373; https://doi.org/10.3390/s26020373 - 6 Jan 2026
Viewed by 115
Abstract
Deep learning-based radar detection often suffers from poor cross-device generalization due to hardware heterogeneity. To address this, we propose a unified framework that combines rigorous calibration with adaptive temporal modeling. The method integrates three coordinated steps: (1) ensuring precise spatial alignment via improved [...] Read more.
Deep learning-based radar detection often suffers from poor cross-device generalization due to hardware heterogeneity. To address this, we propose a unified framework that combines rigorous calibration with adaptive temporal modeling. The method integrates three coordinated steps: (1) ensuring precise spatial alignment via improved Perspective-n-Point (PnP) calibration with closed-loop verification; (2) unifying signal statistics through multi-range bin calibration and chirp-wise Z-score standardization; and (3) enhancing feature consistency using a lightweight global–temporal adapter (GTA) driven by global gating and three-point attention. By combining signal-level standardization with feature-level adaptation, our framework achieves 86.32% average precision (AP) on the ROD2021 dataset. It outperforms the E-RODNet baseline by 22.88 percentage points with a 0.96% parameter increase, showing strong generalization across diverse radar platforms. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

16 pages, 3165 KB  
Article
Combining GPR and VES Techniques for Detecting Shallow Urban Cavities in Quaternary Deposits: Case Studies from Sefrou and Bhalil, Morocco
by Oussama Jabrane, Ilias Obda, Driss El Azzab, Pedro Martínez-Pagán, Mohammed Jalal Tazi and Mimoun Chourak
Quaternary 2026, 9(1), 4; https://doi.org/10.3390/quat9010004 - 6 Jan 2026
Viewed by 72
Abstract
The detection of underground cavities and dissolution features is a critical component in assessing geohazards within karst terrains, particularly where natural processes interact with long-term human occupation. This study investigates two contrasting sites in the Sefrou region of northern Morocco: Binna, a rural [...] Read more.
The detection of underground cavities and dissolution features is a critical component in assessing geohazards within karst terrains, particularly where natural processes interact with long-term human occupation. This study investigates two contrasting sites in the Sefrou region of northern Morocco: Binna, a rural travertine-dolomite system shaped by Quaternary karstification, and the urban Old Medina of Bhalil, where traditional cave dwellings are carved into carbonate formations. A combined geophysical and geological approach was applied to characterize subsurface heterogeneities and assess the extent of near-surface void development. Vertical electrical soundings (VES) at Binna site delineated high-resistivity anomalies consistent with air-filled cavities, dissolution conduits, and brecciated limestone horizons, all indicative of an active karst system. In the Bhalil old Medina site, ground-penetrating radar (GPR) with low-frequency antennas revealed strong reflection contrasts and localized signal attenuation zones corresponding to shallow natural cavities and potential anthropogenic excavations beneath densely constructed areas. Geological observations, including lithostratigraphic logging and structural cross-sections, provided additional constraints on cavity geometry, depth, and spatial distribution. The integrated results highlight a high degree of subsurface karstification across both sites and underscore the associated geotechnical risks for infrastructure, cultural heritage, and land-use stability. This work demonstrates the value of combining electrical and radar methods with geological analysis for mapping hazardous subsurface voids in cavity-prone Quaternary landscapes, offering essential insights for risk mitigation and sustainable urban and rural planning. Full article
(This article belongs to the Special Issue Environmental Changes and Their Significance for Sustainability)
Show Figures

Figure 1

22 pages, 2359 KB  
Review
Airport Ground-Based Aerial Object Surveillance Technologies for Enhanced Safety: A Systematic Review
by Joel Samu and Chuyang Yang
Drones 2026, 10(1), 22; https://doi.org/10.3390/drones10010022 - 31 Dec 2025
Viewed by 218
Abstract
Airport airspace safety is increasingly threatened by small, unmanned aircraft systems and wildlife that traditional radar cannot detect. While earlier reviews addressed general counter-UAS techniques, individual sensors, or the detection of single objects such as birds or drones, none has systematically reviewed airport-based, [...] Read more.
Airport airspace safety is increasingly threatened by small, unmanned aircraft systems and wildlife that traditional radar cannot detect. While earlier reviews addressed general counter-UAS techniques, individual sensors, or the detection of single objects such as birds or drones, none has systematically reviewed airport-based, multi-sensor surveillance strategies through a safety-theoretical lens. A systematic review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement, synthesized recent research on fixed, ground-based aerial detection capabilities for small aerial hazards, specifically unmanned aircraft systems (sUAS) and avian targets, within operational airport environments. Searches targeted English-language, peer-reviewed articles from 2016 through 2025 in Web of Science and Scopus. Due to methodological heterogeneity across sensor technologies, a narrative synthesis was executed. The review of thirty-six studies, analyzed through Reason’s Swiss Cheese Model and Endsley’s Situational Awareness framework, found that only layered multi-sensor fusion architectures effectively address detection gaps for Low-Slow-Small (LSS) threats. Based on these findings, the review proposes seamless integration with Air Traffic Management (ATM) and UAS Traffic Management (UTM) systems through standardized data-exchange interfaces, complemented by theoretically grounded risk-based deployment strategies aligning surveillance technology tiers with operational risk profiles, from basic Remote ID receivers in low-risk rural environments to comprehensive multi-sensor fusion at high-density hubs, major airports, and urban vertiports. Full article
Show Figures

Figure 1

19 pages, 1830 KB  
Article
Robust Target Association Method with Weighted Bipartite Graph Optimal Matching in Multi-Sensor Fusion
by Hanbao Wu, Wei Chen and Weiming Chen
Sensors 2026, 26(1), 49; https://doi.org/10.3390/s26010049 - 20 Dec 2025
Viewed by 349
Abstract
Accurate group target association is essential for multi-sensor multi-target tracking, particularly in heterogeneous radar systems where systematic biases, asynchronous observations, and dense formations frequently cause ambiguous or incorrect associations. Existing approaches often rely on strict spatial assumptions or pre-trained models, limiting their robustness [...] Read more.
Accurate group target association is essential for multi-sensor multi-target tracking, particularly in heterogeneous radar systems where systematic biases, asynchronous observations, and dense formations frequently cause ambiguous or incorrect associations. Existing approaches often rely on strict spatial assumptions or pre-trained models, limiting their robustness when measurement distortions and sensor-specific deviations are present. To address these challenges, this work proposes a robust association framework that integrates deep feature embedding, density-adaptive clustering, and global graph-theoretic matching. The method first applies an autoencoder–HDBSCAN clustering scheme to extract stable latent representations and obtain adaptive group structures under nonlinear distortions and non-uniform target densities. A weighted bipartite graph is then constructed, and a global optimal matching strategy is employed to compensate for heterogeneous systematic errors while preserving inter-group structural consistency. A mutual-support verification mechanism further enhances robustness against random disturbances. Monte Carlo experiments show that the proposed method maintains over 90% association accuracy even in dense scenarios with a target spacing of 1.4 km. Under various systematic bias conditions, it outperforms representative baselines such as Deep Association and JPDA by more than 20%. These results demonstrate the method’s robustness, adaptability, and suitability for practical multi-radar applications. The framework is training-free and easily deployable, offering a reliable solution for group target association in real-world multi-sensor fusion systems. Full article
Show Figures

Figure 1

19 pages, 9554 KB  
Article
Characterization of Microbialites Using ERT and GPR: Insights from Neoproterozoic and Mesozoic Carbonate Systems
by Aritz Urruela, Albert Casas-Ponsatí, Francisco Pinheiro Lima-Filho, Mahjoub Himi and Lluís Rivero
Geosciences 2025, 15(12), 475; https://doi.org/10.3390/geosciences15120475 - 17 Dec 2025
Viewed by 204
Abstract
The detection of subsurface stromatolites remains challenging due to their complex morphology and heterogeneous composition. This study assesses the combined application of Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) for identifying microbialites in two contrasting geological and climatic settings: the Neoproterozoic [...] Read more.
The detection of subsurface stromatolites remains challenging due to their complex morphology and heterogeneous composition. This study assesses the combined application of Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) for identifying microbialites in two contrasting geological and climatic settings: the Neoproterozoic Salitre Formation in Brazil and the Mesozoic microbialite-bearing limestones in northern Spain. High-resolution ERT profiles processed with raster-based blob detection algorithms revealed subcircular high-resistivity anomalies consistent with the studied microbialite morphologies, with strong resistivity contrasts observed between microbialites and host matrices despite variations in absolute values linked to lithology and soil moisture. In parallel, GPR surveys analyzed with a peak detection algorithm delineated domal reflectors and clusters of high-amplitude reflections that directly captured the internal architecture of stromatolitic buildups. With decimetric vertical resolution, GPR offered unrivaled insights into internal morphology, complementing the broader-scale imaging capacity of ERT. The complementary strengths of both methods are clear: ERT excels at mapping distribution and stratigraphic context, while GPR provides unparalleled resolution of internal structures. Crucially, this work advances previous efforts by explicitly demonstrating that integrated ERT-GPR approaches, when combined with algorithm-based interpretation, can resolve microbialite morphology, distribution and internal architecture with a level of objectivity not previously achieved. Beyond methodological refinement, these findings open new avenues for reconstructing microbialite development and preservation in ancient carbonate systems and hold strong potential for application in other geological contexts where complex carbonate structures challenge traditional geophysical imaging. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 4616 KB  
Article
Geomorphological Characterization of the Colombian Orinoquia
by Larry Niño, Alexis Jaramillo-Justinico, Víctor Villamizar, Orlando Rangel, Vladimir Minorta-Cely and Daniel Sánchez-Mata
Land 2025, 14(12), 2438; https://doi.org/10.3390/land14122438 - 17 Dec 2025
Viewed by 511
Abstract
The Colombian Orinoquia was shaped within a tectonic and sedimentary framework linked to the uplift of the Andean cordilleras during the Oligocene–Miocene. This orogenic event generated two tectonic fronts and facilitated extensive fluvial sedimentation across a broad alluvial geosyncline. The present geomorphological configuration [...] Read more.
The Colombian Orinoquia was shaped within a tectonic and sedimentary framework linked to the uplift of the Andean cordilleras during the Oligocene–Miocene. This orogenic event generated two tectonic fronts and facilitated extensive fluvial sedimentation across a broad alluvial geosyncline. The present geomorphological configuration reflects the cumulative interaction of tectonic and erosional processes with Quaternary climatic dynamics, which together produced complex landscape assemblages characterized by plains with distinctive drainage patterns. To delineate and characterize geomorphological units, we employed multidimensional imagery and Machine Learning techniques within the Google Earth Engine platform. The classification model integrated dual polarizations of synthetic aperture radar (L-band) with key topographic variables including elevation, slope, aspect, convexity, and roughness. The analysis identified three major physiographic units: (i) the Foothills and the Floodplain, both dominated by fluvial environments; (ii) the High plains and Serranía de La Macarena (Macarena Mountain Range), where denudational processes predominate; and (iii) localized aeolian environments embedded within the Floodplain. These contrasting dynamics have generated a broad spectrum of landforms, ranging from terraces and alluvial fans in the Foothills to hills and other erosional features in La Macarena. The Floodplain, developed over a sedimentary depression, illustrates the combined action of fluvial and aeolian processes, whereas the High plains is characterized by rolling plains and peneplains formed through the uplift and erosion of Tertiary sediments. Such geomorphic heterogeneity underscores the interplay between tectonic activity, climatic forcing, and surface processes in shaping the Orinoquia landscape. The geomorphological classification using Random Forest demonstrated high effectiveness in discriminating units at a regional scale, with accuracy levels supported by confusion matrices and associated Kappa indices. Nevertheless, some degree of classificatory overlap was observed in fluvial environments, likely reflecting their transitional nature and complex sedimentary dynamics. Overall, this methodological approach enhances the objectivity of geomorphological analysis and establishes a replicable framework for assessing landform distribution in tropical sedimentary basins. Full article
Show Figures

Figure 1

26 pages, 2806 KB  
Article
Towards a Near-Real-Time Water Stress Monitoring System in Tropical Heterogeneous Landscapes Using Remote Sensing Data
by Abdul Holik, Wei Tian, Aris Psilovikos and Mohamed Elhag
Hydrology 2025, 12(12), 325; https://doi.org/10.3390/hydrology12120325 - 10 Dec 2025
Cited by 2 | Viewed by 736
Abstract
This study presents a near-real-time water stress monitoring framework for tropical heterogeneous landscapes by integrating optical and radar remote sensing data within the Google Earth Engine platform. Five complementary indices, vertical transmit/vertical receive–vertical transmit/horizontal receive (VV/VH) ratio, Dual Polarimetric Radar Vegetation Index (DpRVI), [...] Read more.
This study presents a near-real-time water stress monitoring framework for tropical heterogeneous landscapes by integrating optical and radar remote sensing data within the Google Earth Engine platform. Five complementary indices, vertical transmit/vertical receive–vertical transmit/horizontal receive (VV/VH) ratio, Dual Polarimetric Radar Vegetation Index (DpRVI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Ratio Drought Index (RDI), were analyzed across three contrasting agricultural systems: paddy, sugarcane, and rubber, revealing distinct phenological and water stress dynamics. Radar-derived structural indices captured patterns of biomass accumulation and canopy development, with VV/VH values ranging from 4.2 to 12.3 in paddy and 5.4 to 6.0 in rubber. In parallel, optical moisture indices detected crop physiological stress; for instance, NDMI dropped from 0.26 to 0.06 during drought in sugarcane. Cross-index analyses demonstrated strong complementarity; synchronized VV/VH and RDI peaks characterized paddy inundation, whereas lagged NDMI–VV/VH responses captured stress-induced defoliation in rubber trees. Temporal profiling established crop-specific diagnostic signatures, with DpRVI peaking at 0.75 in paddy, gradual RDI decline in sugarcane, and NDMI values of 0.2–0.3 in rubber. The framework provides spatially explicit, temporally continuous, and cost-effective monitoring to support irrigation, drought early warning, and agricultural planning. Multi-year validation and field-based calibration are recommended for operational implementation. Full article
Show Figures

Figure 1

23 pages, 12696 KB  
Article
KADL: Knowledge-Aided Deep Learning Method for Radar Backscatter Prediction in Large-Scale Scenarios
by Dong Zhu, Peng Zhao, Qiang Zhao, Qingliang Li, Jinpeng Zhang and Lixia Yang
Remote Sens. 2025, 17(24), 3933; https://doi.org/10.3390/rs17243933 - 5 Dec 2025
Viewed by 344
Abstract
Radar backscatter from large-scale scenarios plays a crucial role in remote sensing applications. However, due to the diversity and heterogeneity of the natural environment, traditional empirical methods which rely on simplified physics and a limited set of parameters, fail to adequately model land [...] Read more.
Radar backscatter from large-scale scenarios plays a crucial role in remote sensing applications. However, due to the diversity and heterogeneity of the natural environment, traditional empirical methods which rely on simplified physics and a limited set of parameters, fail to adequately model land backscatter, thus exhibiting significant limitations. While purely data-driven deep learning (DL) methods offer flexibility, they often struggle to ensure physical consistency and effectively generalize to unseen scenarios. To address these issues, we propose a novel knowledge-aided (KA) DL-based method (called KADL) in this paper for predicting the radar backscatter from large-scale scenarios. The proposed KADL is implemented in three parts. First, based on multi-source remote sensing data, the dielectric properties of land surface, i.e., soil moisture and leaf area index (LAI) are incorporated as priori physical knowledge into the Multi-Feature Clutter Dataset (MFCD) to obtain initialized input. Second, a knowledge perception module (KPM) is introduced into the cascaded deep neural network (DNN) solver to exploit the representative features within the inputs. Third, an efficient knowledge-weighted fusion (KWF) strategy is developed to further enhance the discriminative features and simultaneously suppress the non-informative features. For better comparison, we refitted the specific empirical models based on the measured data and introduced an advanced nonhomogeneous terrain clutter model (termed ANTCM) derived from our previous work. Extensive experiments conducted on the measured data demonstrate that KADL achieves a root mean square error (RMSE) of 4.74 dB and a mean absolute percentage error (MAPE) of 8.7% on independent test data. Furthermore, KADL exhibits superior robustness, with a standard deviation of RMSE as low as 0.18 dB across multiple trials. All these results validate the superior accuracy, robustness, and generalization ability of KADL for large-scale backscatter prediction. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

22 pages, 2078 KB  
Article
A Multi-Modal Fusion Algorithm for Space Target Recognition Based on Spatial Attention and Multi-Scale Temporal Network
by Xiaoyu Cong, Yubing Han, Cheng Chen and Shichen Shan
Aerospace 2025, 12(12), 1081; https://doi.org/10.3390/aerospace12121081 - 4 Dec 2025
Viewed by 354
Abstract
When fusing inverse synthetic aperture radar (ISAR) images and high-resolution range profile (HRRP), the significant heterogeneity existing between the feature spaces of the two is not adequately considered, resulting in a low accuracy rate of space target recognition. A multi-modal fusion algorithm based [...] Read more.
When fusing inverse synthetic aperture radar (ISAR) images and high-resolution range profile (HRRP), the significant heterogeneity existing between the feature spaces of the two is not adequately considered, resulting in a low accuracy rate of space target recognition. A multi-modal fusion algorithm based on spatial attention and multi-scale temporal network is proposed in this paper. We carefully consider the data characteristics of HRRP and ISAR and design feature extraction networks, respectively. For HRRP, the local invariant features are extracted using dynamic convolution (DyConv), and the convolution depth is reduced. An improved multi-scale temporal convolution network is designed based on the temporal characteristics of HRRP to extract temporal features for target recognition. For ISAR images, an omnidirectional attention feature extraction module is designed to extract the deep semantic features of the images, and a noise reduction module with a spatial attention mechanism is designed before extracting the image features to reduce the background noise in the fused image. The superiority of the designed ISAR recognition network and HRRP recognition network for space target was verified through comparative and ablation experiments. The recognition rate for the target of the proposed algorithm is 98.41%. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 25898 KB  
Article
A Hybrid Strategy Combining Maritime Physical Data to the OpenSARShip RCS Statistics for Fast and Effective Vessel Detection in SAR Imagery
by Ocione Dias do Nascimento Filho, João Antônio Lorenzzetti, Douglas Francisco Marcolino Gherardi, Diego Xavier Bezerra and Rafael Lemos Paes
Remote Sens. 2025, 17(23), 3891; https://doi.org/10.3390/rs17233891 - 30 Nov 2025
Viewed by 629
Abstract
Maritime surveillance has become increasingly relevant due to the growth of shipping, illegal fishing, and the need to monitor remote oceanic regions. Synthetic Aperture Radar (SAR) imagery supports this task under day-and-night and almost all-weather conditions. However, automatic ship detection in heterogeneous ocean [...] Read more.
Maritime surveillance has become increasingly relevant due to the growth of shipping, illegal fishing, and the need to monitor remote oceanic regions. Synthetic Aperture Radar (SAR) imagery supports this task under day-and-night and almost all-weather conditions. However, automatic ship detection in heterogeneous ocean environments still faces challenges, especially regarding computational cost. This study develops and compares approaches for detecting vessels in SAR imagery using radar backscatter statistics (σ0) to identify and characterize maritime targets. The OpenSARShip 2.0 dataset, which provides ship samples with AIS-based validation and reliable σ0 estimates by type and size, was combined with maritime physical parameters such as wave age (from ERA5 reanalysis). The objective is to combine fast processing, robustness to sea variability, and inference capability regarding target size for operational applications. Four algorithms were evaluated: Rapid Thresholding (RT), based on OpenSARShip σ0 values by ship length; Adjusted Rapid Thresholding (ART), with clutter-adapted thresholds; CFAR GΓD, based on Gamma pdf modeling of ocean clutter; and a Hybrid Strategy combining RT with CFAR GΓD. Results showed that CFAR GΓD achieved the highest recall (87.4%) but at high computational cost, while the Hybrid Strategy (HS) offered comparable performance (Recall: 86.6%; F1-score: 74.8%) with 18× faster execution time. RT and ART were faster but less sensitive. These findings highlight the HS as an efficient compromise, supporting scalable, near-real-time vessel detection systems. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

30 pages, 3829 KB  
Article
MFE-STN: A Versatile Front-End Module for SAR Deception Jamming False Target Recognition
by Liangru Li, Lijie Huang, Tingyu Meng, Cheng Xing, Tianyuan Yang, Wangzhe Li and Pingping Lu
Remote Sens. 2025, 17(23), 3848; https://doi.org/10.3390/rs17233848 - 27 Nov 2025
Viewed by 358
Abstract
Advanced deception countermeasures now enable adversaries to inject false targets into synthetic-aperture-radar (SAR) imagery, generating electromagnetic signatures virtually indistinguishable from genuine targets, thus destroying the separability essential for conventional recognition algorithms. To address this problem, we propose a versatile front-end Multi-Feature Extraction and [...] Read more.
Advanced deception countermeasures now enable adversaries to inject false targets into synthetic-aperture-radar (SAR) imagery, generating electromagnetic signatures virtually indistinguishable from genuine targets, thus destroying the separability essential for conventional recognition algorithms. To address this problem, we propose a versatile front-end Multi-Feature Extraction and Spatial Transformation Network (MFE-STN), specifically designed for the task of discriminating between true targets and deceptive false targets created by SAR jamming, which can be seamlessly integrated with existing CNN backbones without architecture modification. MFE-STN integrates three complementary operations: (i) wavelet decomposition to extract the overall geometric features and scattering distribution of the target, (ii) a manifold transformation module for non-linear alignment of heterogeneous feature spaces, and (iii) a lightweight deformable spatial transformer that compensates for local geometric distortions introduced by deceptive jamming. By analyzing seven typical parameter-mismatch effects, we construct a simulated dataset containing six representative classes—four known classes and two unseen classes. Experimental results demonstrate that inserting MFE-STN boosts the average F1-score of known targets by 12.19% and significantly improves identification accuracy for unseen targets. This confirms the module’s capability to capture discriminative signatures to distinguish genuine targets from deceptive ones while exhibiting strong cross-domain generalization capabilities. Full article
Show Figures

Figure 1

28 pages, 126976 KB  
Article
MRLF: Multi-Resolution Layered Fusion Network for Optical and SAR Images
by Jinwei Wang, Liang Ma, Bo Zhao, Zhenguang Gou, Yingzheng Yin and Guangcai Sun
Remote Sens. 2025, 17(22), 3740; https://doi.org/10.3390/rs17223740 - 17 Nov 2025
Cited by 1 | Viewed by 633
Abstract
To enhance the comprehensive representation capability and fusion accuracy of remote sensing information, this paper proposes a multi-resolution hierarchical fusion network (MRLF) tailored to the heterogeneous characteristics of optical and synthetic aperture radar (SAR) images. By constructing a hierarchical feature decoupling mechanism, the [...] Read more.
To enhance the comprehensive representation capability and fusion accuracy of remote sensing information, this paper proposes a multi-resolution hierarchical fusion network (MRLF) tailored to the heterogeneous characteristics of optical and synthetic aperture radar (SAR) images. By constructing a hierarchical feature decoupling mechanism, the method decomposes input images into low-resolution global structural features and high-resolution local detail features. A residual compression module is employed to preserve multi-scale information, laying a complementary feature foundation for subsequent fusion. To address cross-modal radiometric discrepancies, a pre-trained complementary feature extraction model (CFEM) is introduced. The brightness distribution differences between SAR and fusion results are quantified using the Gram matrix, and mean-variance alignment constraints are applied to eliminate radiometric discontinuities. In the feature fusion stage, a dual-attention collaborative mechanism is designed, integrating channel attention to dynamically adjust modal weights and spatial attention to focus on complementary regions. Additionally, a learnable radiometric enhancement factor is incorporated to enable efficient collaborative representation of SAR textures and optical semantics. To maintain spatial consistency, hierarchical deconvolution and skip connections are further used to reconstruct low-resolution features, gradually restoring them to the original resolution. Experimental results demonstrate that MRLF significantly outperforms mainstream methods such as DenseFuse and SwinFusion on the Dongying and Xi’an datasets. The fused images achieve an information entropy (EN) of 6.72 and a structural similarity of 1.25, while maintaining stable complementary feature retention under large-scale scenarios. By enhancing multi-scale complementary features and optimizing radiometric consistency, this method provides a highly robust multi-modal representation scheme for all-weather remote sensing monitoring and disaster emergency response. Full article
Show Figures

Figure 1

28 pages, 99069 KB  
Article
InSAR-Supported Spatiotemporal Evolution and Prediction of Reservoir Bank Landslide Deformation
by Chun Wang, Na Lin, Boyuan Li, Libing Tan, Yujie Xu, Kai Yang, Qingxin Ni, Kai Ding, Bin Wang, Nanjie Li and Ronghua Yang
Appl. Sci. 2025, 15(22), 12092; https://doi.org/10.3390/app152212092 - 14 Nov 2025
Viewed by 632
Abstract
Landslide disasters pose severe threats to mountainous regions, where accurate monitoring and scientific prediction are crucial for early warning and risk mitigation. This study addresses this challenge by focusing on the Outang Landslide, a representative large-scale bank slope in the Three Gorges Reservoir [...] Read more.
Landslide disasters pose severe threats to mountainous regions, where accurate monitoring and scientific prediction are crucial for early warning and risk mitigation. This study addresses this challenge by focusing on the Outang Landslide, a representative large-scale bank slope in the Three Gorges Reservoir area known for its significant deformation responses to rainfall and reservoir-level fluctuations. The landslide’s behavior, characterized by notable hysteresis and nonlinear trends, poses a significant challenge to accurate prediction. To address this, we derived high-precision time-series deformation data by applying atmosphere-corrected Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) to Sentinel-1A imagery, with validation from GNSS measurements. A systematic analysis was then conducted to uncover the correlation, hysteresis, and spatial heterogeneity between landslide deformation and key influencing variables (rainfall, water level, temperature). Furthermore, we proposed a Spatio-Temporal Enhanced Convolutional Neural Network (STE-CNN), which innovatively converts influencing variables into grayscale images to enhance spatial feature extraction, thereby improving prediction accuracy. The results indicate that: (1) From June 2022 to March 2024, the landslide showed an overall downward displacement trend, with maximum settlement and uplift rates of −49.34 mm/a and 21.77 mm/a, respectively; (2) Deformation exhibited significant correlation, hysteresis, and spatial variability with environmental factors, with dominant variables shifting across seasons—leading to intensified movement in flood seasons and relative stability in dry seasons; (3) The improved STE-CNN outperforms typical prediction models in forecasting landslide deformation.This study presents an integrated methodology that combines InSAR monitoring, multi-factor mechanistic analysis, and deep learning, offering a reliable solution for landslide early warning and risk management. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

Back to TopTop