Geomorphological Characterization of the Colombian Orinoquia
Abstract
1. Introduction
2. Materials and Methods
2.1. Regional Framework
2.2. Study Area
2.3. Delineation of Physiographic Units
2.4. Methodological Framework
3. Results
3.1. Foothills Geomorphology
3.2. Geomorphology of La Macarena
3.3. Floodplain Geomorphology
3.4. Geomorphology of the High Plains
4. Discussion
4.1. Foothills
4.2. La Macarena
4.3. Floodplain
4.4. High Plains
4.5. Regional Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinhardt, U.; Herzog, F.; Lausch, A.; Müller, E.; Lehmann, S. Hemeroby Index for Landscape Monitoring and Evaluation. In Environmental Indices—Systems Analysis Approach; Pykh, Y., Hyatt, D., Lenz, R., Eds.; EOLSS Publ.: St. Petersburg, Russia; Oxford, UK, 1999; pp. 237–254. [Google Scholar]
- Almeida, P.; Luchiari, A. Uso Das Imagens SAR R99B Para Mapeamento Geomorfológico Do Canal Do Ariaú No Município de Iranduba-AM. Rev. Geogr. 2017, 34, 209–229. [Google Scholar] [CrossRef]
- Kroonenberg, S. Aporte de La Teledeteccion a La Geomorfologia. In Proceedings of the Primer Simposio Colombiano Sobre Sensores Remotos; Centro Interamericano de Fotointerpretación: Bogotá, Colombia, 1983; pp. 337–345. [Google Scholar]
- Silva, J.; Alves, P. A Utilização Dos Modelos SRTM Na Interpretação Geomorfológica: Técnicas e Tecnologias Aplicadas Ao Mapeamento Geomorfológico Do Território Brasileiro. In Proceedings of the Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brazil, 21–26 April 2007; Instituto Nacional de Pesquisas Espaciais INPE: São Paulo, Brazil, 2007; pp. 4261–4266. [Google Scholar]
- Almeida, W. Uso Das Imagens SAR R99B Para Mapeamento Geomorfológico Do Furo Do Ariaú No Município de Iranduba-AM. Ph.D. Thesis, Universidade de Sáo Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Gallotti, T. Dados Multisensores Para Mapeamento Geomorfológico de Regiões Da Amazônia. In Proceedings of the VIII Simpósio Brasileiro de Sensoriamento Remoto, Salvador, Brazil, 14–19 April 1996; Instituto Nacional de Pesquisas Espaciais INPE: São Paulo, Brazil, 1996; pp. 629–630. [Google Scholar]
- Paradella, W.; Santos, A.; Veneziani, P.; Cunha, E. Radares Imageadores Nas Geociências: Status e Perspectivas. In Proceedings of the Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, Brazil, 16–21 April 2005; Instituto Nacional de Pesquisas Espaciais INPE: São Paulo, Brazil, 2005; pp. 1847–1854. [Google Scholar]
- Topouzelis, K.; Psyllos, A. Oil Spill Feature Selection and Classification Using Decision Tree Forest on SAR Image Data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Zani, H.; Rossetti, D.; Cremon, E. Mapeamento Geomorfológico de Áreas Alagáveis Tropicais Com Imagens ALOS PALSAR. In Proceedings of the XVI Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Foz do Iguaçu, Brazil, 13–18 April 2013; Instituto Nacional de Pesquisas Espaciais INPE: São Paulo, Brazil, 2013; pp. 8453–8460. [Google Scholar]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Flores-Anderson, A.; Herndon, K.; Cherrington, E.; Thapa, R.; Kucera, L.; Quyen, N.; Odour, P.; Wahome, A.; Temeson, K.; Mamane, B.; et al. Introduction and Rationale. In The SAR Handbook; Flores-Anderson, A., Herndon, K., Thapa, R., Cherrington, E., Eds.; SERVIR Global Science: Huntsville, AL, USA, 2019; pp. 13–20. [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Meyer, F. Spaceborne Synthetic Aperture Radar: Principles, Data Access, and Basic Processing Techniques. In The SAR Handbook; Flores-Anderson, A., Herndon, K., Thapa, R., Cherrington, E., Eds.; SERVIR Global Science: Huntsville, AL, USA, 2019; pp. 21–44. [Google Scholar]
- Walsh, S.; Butler, D.; Malanson, G. An Overview of Scale, Pattern, Process Relationships in Geomorphology: A Remote Sensing and GIS Perspective. Geomorphology 1998, 21, 183–205. [Google Scholar] [CrossRef]
- Lwin, A.; Khaing, M. Yangon River Geomorphology Identification and Its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques. In Proceedings of the XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Enschede, The Netherlands, 2012; pp. 175–179. [Google Scholar]
- Bocco, G.; Mendoza, M.; Velázquez, A. Remote Sensing and GIS-Based Regional Geomorphological Mapping—A Tool for Land Use Planning in Developing Countries. Geomorphology 2001, 39, 211–219. [Google Scholar] [CrossRef]
- Grohmann, C.; Riccomini, C.; Steiner, S. Aplicações Dos Modelos de Elevação SRTM Em Geomorfologia. Rev. Geogr. Acadêmica 2008, 2, 73–83. [Google Scholar]
- Singhroy, V.; Assouad, P.; Barnett, P.; Molch, K. Terrain Interpretation from SAR Techniques. In Proceedings of the EEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 106–108. [Google Scholar]
- Smith, M.; Pain, C. Applications of Remote Sensing in Geomorphology. Prog. Phys. Geogr. 2009, 33, 568–582. [Google Scholar] [CrossRef]
- Akar, Ö.; Güngör, O. Classification of Multispectral Images Using Random Forest Algorithm. J. Geod. Geoinf. 2012, 1, 105–112. [Google Scholar] [CrossRef]
- Shetty, S. Analysis of Machine Learning Classifiers for LULC Classification on Google Earth Engine. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Waske, B.; Braun, M. Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguț, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- SGC. Propuesta Metodológica Sistemática para la Generación de Mapas Geomorfológicos Analíticos Aplicados a la Zonificación de Amenaza Por Movimientos en Masa Escala 1:100.000. Anexo A: Glosario de Términos Geomorfológicos; SGC: Bogotá, Colombia, 2015. [Google Scholar]
- Franklin, S. Geomorphometric Processing of Digital Elevation Models. Comput. Geosci. 1987, 13, 603–609. [Google Scholar] [CrossRef]
- Franklin, S.; Peddle, D. Texture Analysis of Digital Image Data Using Spatial Cooccurrence. Comput. Geosci. 1987, 13, 293–311. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.; Verbesselt, J.; Hoekman, D.; Haarpaintner, J.; Kellndorfer, J.; Rosenqvist, A.; Lehmann, E.; Woodcock, C.; et al. Combining Satellite Data for Better Tropical Forest Monitoring. Nat. Clim. Change 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Niño, L.; Jaramillo, A.; Villamizar, V.; Rangel-Ch, J.O. Geomorphology, Land-Use, and Hemeroby of Foothills in Colombian Orinoquia: Classification and Correlation at a Regional Scale. Pap. Appl. Geogr. 2023, 9, 295–314. [Google Scholar] [CrossRef]
- Rubiano, Y.; Beaulieu, N. Uso de Las Imágenes Radarsat En La Cartografía de Unidades de Paisaje En La Orinoquia Colombiana. Estudio de Caso En El Municipio de Puerto López, Meta Proyecto Colombia 27. In Proceedings of the GLOBESAR 2 “Aplicaciones de Radarsat en América Latina”; GLOBESAR: Buenos Aires, Argentina, 1999; pp. 17–20. [Google Scholar]
- Santana, L.; Beaulieu, N.; Rubiano, Y. Planificación En Los Llanos Colombianos Con Base En Unidades de Paisaje: El Caso de Puerto López, Meta. GeoTrópico 2004, 2, 21–33. [Google Scholar]
- Villamizar, V. Evolución de Los Materiales Sedimentarios Del Cuaternario de La Llanura Aluvial Araucana, Colombia. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2022. [Google Scholar]
- Goosen, D. Geomorfología de Los Llanos Orientales. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 1964, 12, 129–139. [Google Scholar] [CrossRef]
- IDEAM. Sistemas Morfogénicos del Territorio Colombiano; Flórez, A., Ed.; Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM: Bogotá, Colombia, 2010; ISBN 978-958-8067-26-1. [Google Scholar]
- Hubach, E. Significado Geológico de la Llanura Oriental de Colombia; Instituto Geológico Nacional: Bogotá, Colombia, 1954. [Google Scholar]
- Jaramillo, A.; Rangel-Ch, J.O. Los Sistemas Fluviales de La Orinoquía Colombiana. In Colombia Diversidad Biótica Vol. XIV: La Región de la Orinoquia de Colombia; Rangel-Ch, J.O., Ed.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2014; pp. 71–99. ISBN 978-958-775-147-5. [Google Scholar]
- Jaramillo, A.; Rangel-Ch, J.O. Las Unidades Del Paisaje y Los Bloques Del Territorio En La Orinoquia. In Colombia Diversidad Biótica XIV: La Región de la Orinoquia de Colombia; Rangel-Ch, J.O., Ed.; Universidad Nacional de Colombia: Bogotá, Colombia, 2014; pp. 101–152. ISBN 978-958-775-147-5. [Google Scholar]
- Oppenheim, V. Rasgos Geológicos de Los Llanos de Colombia Oriental. Inst. Mus. Univ. Nac. Plata 1942, 21, 229–245. [Google Scholar]
- Schargel, R. Geomorfología y Suelos de Los Llanos Venezolanos. In Tierras Llaneras de Venezuela; Hétier, J., López-Falcón, R., Eds.; Centro Interamericano de Desarrollo e Investigación Ambiental y Territorial CIDIAT: Mérida, Venezuela, 2015; pp. 63–125. [Google Scholar]
- Molano, J. Biogeografía de La Orinoquia Colombiana. In Colombia Orinoco; Fondo FEN: Bogotá, Colombia, 1998; pp. 69–101. [Google Scholar]
- FAO. La Vegetación Natural y La Ganadería; Organización de las Naciones Unidas para la Agricultura y la Alimentación FAO: Rome, Italy, 1965. [Google Scholar]
- Goosen, D. División Fisiográfica de Los Llanos Orientales. Rev. Nac. Agric. 1963, 55, 39–41. [Google Scholar]
- Rangel-Ch, J.O.; Sánchez-C, H.; Lowy-C, P.; Aguilar-P, M.; Castillo, A. Región de La Orinoquia. In Colombia Diversidad Biótica; Rangel-Ch, J.O., Ed.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 1995; Volume I, pp. 239–254. [Google Scholar]
- Rippstein, G.; Amézquita, E.; Escobar, G.; Grollier, C. Condiciones Naturales de La Sabana. In Agroecología y Diversidad de las Sabanas en Los Llanos Orientales de Colombia; Rippstein, G., Escobar, G., Motta, F., Eds.; Centro Internacional de Agricultura Tropical CIAT: Cali, Colombia, 2001; pp. 1–21. [Google Scholar]
- Botero, P. Proyecto Orinoquia-Amazonia Colombiana; Instituto Geográfico Agustín Codazzi IGAC: Bogotá, Colombia, 1990. [Google Scholar]
- IDEAM. Zonificación Hidrográfica de Colombia a Escala 1:100.000. Available online: https://www.siac.gov.co/ (accessed on 12 October 2024).
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Raed, M.; Gari, J.; Berlles, J.; Sedeño, A.; Porta, P.; Delise, L.; Vicini, E.; Sánchez, L.; Iriondo, J.; Yebrin, J. Métodos de Clasificación Supervisada y No Supervisada de Imágenes SAR ERS 1/2. In Proceedings of the lnternational Seminar on the Use and Applications of ERS in Latin America, Vina dei Mar, Chile, 25–29 November 1996; European Space Agency: Paris, France, 1996; pp. 287–292. [Google Scholar]
- Probst, P.; Wright, M.; Boulesteix, A. Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.; Herold, M.; Stehman, S.; Woodcock, C.; Wulder, M. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Colditz, R. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef]
- Jin, H.; Stehman, S.; Mountrakis, G. Assessing the Impact of Training Sample Selection on Accuracy of an Urban Classification: A Case Study in Denver, Colorado. Int. J. Remote Sens. 2014, 26, 217–222. [Google Scholar] [CrossRef]
- Tsai, Y.; Stow, D.; Chen, J.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef]
- Riveros, A. La Orinoquia Colombiana. Boletín Soc. Geográfica Colomb. 1983, 36, 1–9. [Google Scholar]
- Flórez, A. Colombia: Evolución de Sus Relieves y Modelados; Universidad Nacional de Colombia, Unibiblos: Bogotá, Colombia, 2003; ISBN 958-701-312-3. [Google Scholar]
- Jaramillo, A.; Villamizar, V.; Lugo, O.; Vélez, A. Geología y Geomorfología En El Territorio de Las Selvas Transicionales de Cumaribo, Vichada (Colombia). In Colombia Diversidad Biótica Vol. XIX: Selvas Transicionales de Cumaribo (Vichada—Colombia); Rangel-Ch, J.O., Andrade, G., Jarro, C., Santos, G., Eds.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 1–76. [Google Scholar]
- Goosen, D. Physiography and Soils of the Llanos Orientales, Colombia; International Institute for Aerial Survey and Earth Sciences (ITC): Amsterdam, The Netherlands, 1971. [Google Scholar]
- Robertson, K. Morfotectónica y Dataciones Del Fallamiento Activo Del Piedemonte Llanero, Colombia, Sudamérica. Cuad. Geogr. 2007, 109–120. [Google Scholar]
- Castillo, L.; Vargas, G. Geomorfología Sísmica y Elementos En Ambientes Fluvio Lacustres En Un Sector de Los Llanos Orientales (Colombia). Boletín Ciencias Tierra 2018, 45–52. [Google Scholar] [CrossRef]
- Vélez, A.; Jaramillo, A.; Villamizar, V. Unidades Geomorfológicas Al Noreste Del Río Cravo Norte, Colombia. In Colombia Diversidad Biótica Vol. XX: Territorio Sabanas y Humedales de Arauca (Colombia); Rangel-Ch, J.O., Andrade, G., Jarro, C., Santos, G., Eds.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 1–27. [Google Scholar]
- Camacho, R.; Salazar, S.; González, L.; Pacheco, H.; Suárez, C. Caracterización Geomorfológica de Las Dunas Longitudinales Del Istmo de Médanos, Estado Falcón, Venezuela. Investig. Geogr. 2011, 7–19. [Google Scholar] [CrossRef]
- Jaramillo, A.; Rojas, D.; Díaz, J. Geología y Geomorfología de La Serranía de Manacacías (Meta) Orinoquia Colombiana. In Colombia Diversidad Biótica Vol. XVII: La Región de la Serranía de Manacacías (Meta) Orinoquía Colombiana; Rangel-Ch, J.O., Andrade, G., Jarro, C., Santos, G., Eds.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 1–52. [Google Scholar]
- Plourde, L.; Congalton, R. Sampling Method and Sample Placement: How Do They Affect the Accuracy of Remotely Sensed Maps? Photogramm. Eng. Remote Sens. 2003, 69, 289–297. [Google Scholar]
- Rosenfield, G.; Fitzpatrick-Lins, K. A Coefficient of Agreement as Ameasure of Thematic Classification Accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Souza, P.; Paradella, W. Recognition of the Main Geobotanical Features along the Bragança Mangrove Coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 Data. Wetl. Ecol. Manag. 2002, 10, 123–132. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of Crop Identification Based on Optical and SAR Image Time Series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Powell, R.; Matzke, N.; de Souza, C.; Clark, M.; Numata, I.; Hess, L.; Roberts, D. Sources of Error in Accuracy Assessment of Thematic Land-Cover Maps in the Brazilian Amazon. Remote Sens. Environ. 2004, 90, 221–234. [Google Scholar] [CrossRef]
- Stehman, S.; Czaplewski, R. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Vega, L.; Hirata, Y.; Ventura, L.; Serrudo, N. Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sens. 2018, 10, 782. [Google Scholar] [CrossRef]
- Lóczy, D. Anthropogenic Geomorphology in Environmental Management. In Anthropogenic Geomorphology; Szabó, J., Dávid, L., Lóczy, D., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 25–37. [Google Scholar] [CrossRef]
- Downs, P.; Booth, D. Geomorphology in Environmental Management. In The SAGE Handbook of Geomorphology; Gregory, K., Goudie, A., Eds.; SAGE: London, UK, 2011; pp. 78–104. [Google Scholar]
- Carr, A.; Armitage, S.; Berrío, J.; Bilbao, B.; Boom, A. An Optical Luminescence Chronology for Late Pleistocene Aeolian Activity in the Colombian and Venezuelan Llanos. Quat. Res. 2016, 85, 299–312. [Google Scholar] [CrossRef]
- Matias, R.A.M.; Rezende, A.V.; Sevilha, A.C.; Scariot, A.O.; Matricardi, E.A.T.; Terribile, L.C. Geomorphological and Bioclimatic Relationships in the Occurrence of Species of Agro-Extractivist Interest in the Cerrado Biome. Sustainability 2024, 16, 3653. [Google Scholar] [CrossRef]
- Rodrigues, T.; Takahashi, F.; Dias, A.; Lima, T.; Alcântara, E. Machine Learning-Based Cerrado Land Cover Classification Using PlanetScope Imagery. Remote Sens. 2025, 17, 480. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niño, L.; Jaramillo-Justinico, A.; Villamizar, V.; Rangel, O.; Minorta-Cely, V.; Sánchez-Mata, D. Geomorphological Characterization of the Colombian Orinoquia. Land 2025, 14, 2438. https://doi.org/10.3390/land14122438
Niño L, Jaramillo-Justinico A, Villamizar V, Rangel O, Minorta-Cely V, Sánchez-Mata D. Geomorphological Characterization of the Colombian Orinoquia. Land. 2025; 14(12):2438. https://doi.org/10.3390/land14122438
Chicago/Turabian StyleNiño, Larry, Alexis Jaramillo-Justinico, Víctor Villamizar, Orlando Rangel, Vladimir Minorta-Cely, and Daniel Sánchez-Mata. 2025. "Geomorphological Characterization of the Colombian Orinoquia" Land 14, no. 12: 2438. https://doi.org/10.3390/land14122438
APA StyleNiño, L., Jaramillo-Justinico, A., Villamizar, V., Rangel, O., Minorta-Cely, V., & Sánchez-Mata, D. (2025). Geomorphological Characterization of the Colombian Orinoquia. Land, 14(12), 2438. https://doi.org/10.3390/land14122438

