You are currently viewing a new version of our website. To view the old version click .
Drones
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

31 December 2025

Airport Ground-Based Aerial Object Surveillance Technologies for Enhanced Safety: A Systematic Review

and
School of Graduate Studies, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
*
Author to whom correspondence should be addressed.

Abstract

Airport airspace safety is increasingly threatened by small, unmanned aircraft systems and wildlife that traditional radar cannot detect. While earlier reviews addressed general counter-UAS techniques, individual sensors, or the detection of single objects such as birds or drones, none has systematically reviewed airport-based, multi-sensor surveillance strategies through a safety-theoretical lens. A systematic review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement, synthesized recent research on fixed, ground-based aerial detection capabilities for small aerial hazards, specifically unmanned aircraft systems (sUAS) and avian targets, within operational airport environments. Searches targeted English-language, peer-reviewed articles from 2016 through 2025 in Web of Science and Scopus. Due to methodological heterogeneity across sensor technologies, a narrative synthesis was executed. The review of thirty-six studies, analyzed through Reason’s Swiss Cheese Model and Endsley’s Situational Awareness framework, found that only layered multi-sensor fusion architectures effectively address detection gaps for Low-Slow-Small (LSS) threats. Based on these findings, the review proposes seamless integration with Air Traffic Management (ATM) and UAS Traffic Management (UTM) systems through standardized data-exchange interfaces, complemented by theoretically grounded risk-based deployment strategies aligning surveillance technology tiers with operational risk profiles, from basic Remote ID receivers in low-risk rural environments to comprehensive multi-sensor fusion at high-density hubs, major airports, and urban vertiports.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.