Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = hetero-epitaxial films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4327 KB  
Article
A Pathway to High-Quality Heteroepitaxial Ga2O3 Films via Metalorganic Chemical Vapor Deposition
by Yifan Li, Yachao Zhang, Kelin Wang, Guoliang Peng, Shengrui Xu, Qian Feng, Jinbang Ma, Yixin Yao, Yue Hao and Jincheng Zhang
Micromachines 2025, 16(12), 1363; https://doi.org/10.3390/mi16121363 - 29 Nov 2025
Viewed by 511
Abstract
This work systematically investigates the heteroepitaxial growth of β-Ga2O3 thin films under varied substrate and temperature conditions via metalorganic chemical vapor deposition (MOCVD). Comprehensive characterization reveals that both the substrate type and growth temperature significantly influence the crystalline quality, surface [...] Read more.
This work systematically investigates the heteroepitaxial growth of β-Ga2O3 thin films under varied substrate and temperature conditions via metalorganic chemical vapor deposition (MOCVD). Comprehensive characterization reveals that both the substrate type and growth temperature significantly influence the crystalline quality, surface morphology, chemical composition, and defect structure. Films grown at higher temperatures generally exhibit superior crystallinity and closer-to-stoichiometry composition, and thus suggest a reduction in oxygen deficiency. Certain substrates are shown to facilitate high-quality epitaxial growth with smooth surfaces and excellent crystallographic alignment. These findings offer key insights into optimizing growth parameters for high-performance β-Ga2O3-based devices. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

24 pages, 12807 KB  
Article
Oriented-Attachment-Driven Heteroepitaxial Growth During Early Coalescence of Single-Crystal Diamond on Iridium: A Combined Multiscale Simulation and Experimental Validation
by Yang Wang, Junhao Chen, Zhe Li, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(9), 803; https://doi.org/10.3390/cryst15090803 - 12 Sep 2025
Cited by 2 | Viewed by 1231
Abstract
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and [...] Read more.
The scalable synthesis of high-quality single-crystal diamond films remains pivotal for next-generation extreme-performance devices. Iridium substrates offer exceptional promise for heteroepitaxy, yet early-stage growth mechanisms limiting crystal quality are poorly understood. An integrated multiscale investigation combining first-principles DFT calculations, molecular dynamics simulations, and experimental validation is presented to resolve the oriented attachment process governing diamond growth on Ir(100). Robust interfacial bonding at the interface and optimal carbon coverage are revealed to provide thermodynamic driving forces for primary nucleation. A critical angular tolerance enabling defect-free coalescence through crystallographic realignment is identified by molecular dynamics. Concurrent nucleation growth pathways are experimentally confirmed through SEM, AFM, and Raman spectroscopy, where nascent crystallites undergo spontaneous orientational registry to form continuous epitaxial domains. Grain boundary annihilation is observed upon lattice rotation aligning adjacent grains below the critical angle. Crucially, intrinsic atomic steps are generated on the resultant coalesced layer, eliminating conventional etching requirements for homoepitaxial thickening. This work advances fundamental understanding of single-crystal diamond growth mechanisms, facilitating enhanced quality control for semiconductor device manufacturing and quantum applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

25 pages, 16286 KB  
Article
Mechanism and Structural Defects of Zinc Film Deposited on a Copper Substrate: A Study via Molecular Dynamics Simulations
by Xin He, Xiangge Qin and Lan Zhan
Coatings 2025, 15(2), 174; https://doi.org/10.3390/coatings15020174 - 4 Feb 2025
Cited by 1 | Viewed by 1508 | Correction
Abstract
Epitaxial growth can be used to guide the controllable growth of one metal on the surface of another substrate by matching the interface lattice, thus improving the dendrite tendency of metal growth. The atomic arrangement of the Cu (111) crystal plane of the [...] Read more.
Epitaxial growth can be used to guide the controllable growth of one metal on the surface of another substrate by matching the interface lattice, thus improving the dendrite tendency of metal growth. The atomic arrangement of the Cu (111) crystal plane of the FCC structure is similar to that of the Zn (0002) crystal plane of the HCP structure, which is theoretically expected to promote the heterogeneous epitaxial nucleation growth of metal zinc under low strain. In this paper, the molecular dynamics method is used to simulate the atomic process of zinc film growth on the Cu (111) surface. It is found that the behavior of zinc-adsorbed atoms on the substrate surface conforms to the epitaxial growth mode. The close-packed structure grown along the (0002) direction of the layered clusters is tiled on the Cu (111) surface, forming a highly ordered low-lattice-mismatch interface. When a large area of layered zinc clusters cover the substrate, the growth mode will change from heteroepitaxial growth to homoepitaxial growth of Zn atoms on the zinc film, forming a lamellar distribution composed of FCC and HCP structure grains. Polycrystalline zinc film with a planar structure with a (0002) surface preferred a crystal plane. The increase in incident energy is helpful in improving the quality of zinc films, while the deposition rate, corresponding to the deposition temperature and electrolyte ion concentration, has no significant effect on the surface morphology and crystal structure of single metal films. In summary, the atomic arrangement of the Cu (111) surface has a strong guiding effect on the atomic ordered arrangement in the zinc film crystal, which is suitable for the epitaxial deposition of the substrate to induce the ordered growth of the Zn (0002) crystal plane. Full article
Show Figures

Figure 1

17 pages, 10712 KB  
Article
Optical Properties of Yttrium Ferrite Films Prepared by Pulse Laser Deposition
by Dinara Sobola, Saleh H. Fawaeer, Pavla Kočková, Richard Schubert, Rashid Dallaev and Tomáš Trčka
Coatings 2024, 14(11), 1464; https://doi.org/10.3390/coatings14111464 - 18 Nov 2024
Viewed by 1789
Abstract
This study investigates the optical properties of yttrium ferrite thin films fabricated via pulse laser deposition. Yttrium orthoferrite, a ferrimagnetic material known for its potential applications in spintronics and photonics, was deposited on single-crystal substrates under controlled conditions to analyze its optical characteristics. [...] Read more.
This study investigates the optical properties of yttrium ferrite thin films fabricated via pulse laser deposition. Yttrium orthoferrite, a ferrimagnetic material known for its potential applications in spintronics and photonics, was deposited on single-crystal substrates under controlled conditions to analyze its optical characteristics. The influence of deposition time on the film quality and optical properties was examined. Atomic force microscopy in contact mode revealed surface roughness variations up to 35 nm, indicating the films’ ability to cover substrate defects. Reflectance measurements determined the optical band gap, which decreased from 3.17 eV for thinner films (44 nm) to 2.91 eV for thicker films (93 nm). Forbidden electronic transitions were also observed, attributed to heteroepitaxial growth and phonon interactions. These results demonstrate the effect of film thickness on morphology and optical properties, making YFeO3 films promising for a range of optoelectronic applications. Full article
Show Figures

Figure 1

25 pages, 3593 KB  
Article
Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001)
by Devki N. Talwar and Jason T. Haraldsen
Nanomaterials 2024, 14(17), 1439; https://doi.org/10.3390/nano14171439 - 3 Sep 2024
Cited by 4 | Viewed by 2346
Abstract
Exploring the phonon characteristics of novel group-IV binary XC (X = Si, Ge, Sn) carbides and their polymorphs has recently gained considerable scientific/technological interest as promising alternatives to Si for high-temperature, high-power, optoelectronic, gas-sensing, and photovoltaic applications. Historically, the effects of phonons on [...] Read more.
Exploring the phonon characteristics of novel group-IV binary XC (X = Si, Ge, Sn) carbides and their polymorphs has recently gained considerable scientific/technological interest as promising alternatives to Si for high-temperature, high-power, optoelectronic, gas-sensing, and photovoltaic applications. Historically, the effects of phonons on materials were considered to be a hindrance. However, modern research has confirmed that the coupling of phonons in solids initiates excitations, causing several impacts on their thermal, dielectric, and electronic properties. These studies have motivated many scientists to design low-dimensional heterostructures and investigate their lattice dynamical properties. Proper simulation/characterization of phonons in XC materials and ultrathin epilayers has been challenging. Achieving the high crystalline quality of heteroepitaxial multilayer films on different substrates with flat surfaces, intra-wafer, and wafer-to-wafer uniformity is not only inspiring but crucial for their use as functional components to boost the performance of different nano-optoelectronic devices. Despite many efforts in growing strained zinc-blende (zb) GeC/Si (001) epifilms, no IR measurements exist to monitor the effects of surface roughness on spectral interference fringes. Here, we emphasize the importance of infrared reflectivity Rω  and transmission Tω spectroscopy at near normal θi = 0 and oblique θi ≠ 0 incidence (Berreman effect) for comprehending the phonon characteristics of both undoped and doped GeC/Si (001) epilayers. Methodical simulations of Rω and Tω revealing atypical fringe contrasts in ultrathin GeC/Si are linked to the conducting transition layer and/or surface roughness. This research provided strong perspectives that the Berreman effect can complement Raman scattering spectroscopy for allowing the identification of longitudinal optical ωLO phonons, transverse optical ωTO phonons, and LO-phonon–plasmon coupled ωLPP+  modes, respectively. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials: 2nd Edition)
Show Figures

Figure 1

10 pages, 4579 KB  
Article
Synthesis of Samarium Nitride Thin Films on Magnesium Oxide (001) Substrates Using Molecular Beam Epitaxy
by Kevin D. Vallejo, Zachery E. Cresswell, Volodymyr Buturlim, Brian S. Newell, Krzysztof Gofryk and Brelon J. May
Crystals 2024, 14(9), 765; https://doi.org/10.3390/cryst14090765 - 28 Aug 2024
Cited by 5 | Viewed by 2281
Abstract
Rare-earth nitrides are an exciting family of materials with a wide variety of properties desirable for new physics and applications in spintronics and superconducting devices. Among them, samarium nitride is an interesting compound reported to have ferromagnetic behavior coupled with the potential existence [...] Read more.
Rare-earth nitrides are an exciting family of materials with a wide variety of properties desirable for new physics and applications in spintronics and superconducting devices. Among them, samarium nitride is an interesting compound reported to have ferromagnetic behavior coupled with the potential existence of p-wave superconductivity. Synthesis of high-quality thin films is essential in order to manifest these behaviors and understand the impact that vacancies, structural distortions, and doping can have on these properties. In this study, we report the synthesis of samarium nitride monocrystalline thin films on magnesium oxide (001) substrates with a chromium nitride capping layer using molecular beam epitaxy (MBE). We observed a high-quality monocrystalline SmN film with matching orientation to the substrate, then optimized the growth temperature. Despite the initial 2 nm of growth showing formation of a potential samarium oxide layer, the subsequent layers showed high-quality SmN, with semiconducting behavior revealed by an increase in resistivity with decreasing temperature. These promising results highlight the importance of studying diverse heteroepitaxial schemes and open the door for integration of rare-earth nitrides and transition metal nitrides for future spintronic devices. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

9 pages, 3530 KB  
Article
Investigation of the Dislocation Behavior of 6- and 8-Inch AlGaN/GaN HEMT Structures with a Thin AlGaN Buffer Layer Grown on Si Substrates
by Yujie Yan, Jun Huang, Lei Pan, Biao Meng, Qiangmin Wei and Bing Yang
Inorganics 2024, 12(8), 207; https://doi.org/10.3390/inorganics12080207 - 30 Jul 2024
Viewed by 2690
Abstract
Developing cost-effective methods to synthesize large-size GaN films remains a challenge owing to the high dislocation density during heteroepitaxy. Herein, AlGaN/GaN HEMTs were grown on 6- and 8-inch Si(111) substrates using metal–organic chemical vapor deposition, and their basic properties and dislocation evolution characteristics [...] Read more.
Developing cost-effective methods to synthesize large-size GaN films remains a challenge owing to the high dislocation density during heteroepitaxy. Herein, AlGaN/GaN HEMTs were grown on 6- and 8-inch Si(111) substrates using metal–organic chemical vapor deposition, and their basic properties and dislocation evolution characteristics were investigated thoroughly. With the insertion of a 100 nm thin AlGaN buffer layer, bow–warp analysis of the epitaxial wafers revealed excellent stress control for both the 6- and 8-inch wafers. HR-XRD and AFM analyses validated the high crystal quality and step-flow growth mode of GaN. Further, Hall measurements demonstrated the superior transport performance of AlGaN/GaN heterostructures. It is worth noting that dislocations tended to annihilate in the AlN nucleation layer, the thin AlGaN buffer layer, and the GaN buffer layer in the initial thickness range of 200–300 nm, which was indicated by ADF-STEM. To be specific, the heterointerfaces exhibited a significant effect on the annihilation of c-type (b = <0001>) dislocations, which led to the formation of dislocation loops. The thin inserted layers within the AlGaN buffer layer played a key role in promoting the annihilation of c-type dislocations, while they exerted less influence on a-type (b = 1/3<112¯0>) and (a+c)-type (b = 1/3<112¯3>) dislocations. Within an initial thickness of 200–300 nm in the GaN buffer layer, a-type and (a+c)-type dislocations underwent strong interactions, leading to considerable dislocation annihilation. In addition, the EELS results suggested that the V-shaped pits in the AlN nucleation layer were filled with the AlGaN thin layer with a low Al content. Full article
Show Figures

Figure 1

14 pages, 31777 KB  
Article
Heteroepitaxial Growth of InBi(001)
by Thomas J. Rehaag and Gavin R. Bell
Molecules 2024, 29(12), 2825; https://doi.org/10.3390/molecules29122825 - 13 Jun 2024
Cited by 3 | Viewed by 1673
Abstract
InBi is a topological nodal line semimetal with strong spin–orbit coupling. It is epitaxially compatible with III–V semiconductors and, hence, an attractive material for topological spintronics. However, growth by molecular beam epitaxy (MBE) is challenging owing to the low melting point of InBi [...] Read more.
InBi is a topological nodal line semimetal with strong spin–orbit coupling. It is epitaxially compatible with III–V semiconductors and, hence, an attractive material for topological spintronics. However, growth by molecular beam epitaxy (MBE) is challenging owing to the low melting point of InBi and the tendency to form droplets. We investigate approaches for epitaxial growth of InBi films on InSb(001) substrates using MBE and periodic supply epitaxy (PSE). It was not possible to achieve planar, stoichiometric InBi heteroepitaxy using MBE growth over the parameter space explored. However, pseudomorphic growth of ultra-thin InBi(001) layers could be achieved by PSE on InSb(001). A remarkable change to the in-plane epitaxial orientation is observed. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

11 pages, 4830 KB  
Article
Study of AlN Epitaxial Growth on Si (111) Substrate Using Pulsed Metal–Organic Chemical Vapour Deposition
by Muhammad Iznul Hisyam, Ahmad Shuhaimi, Rizuan Norhaniza, Marwan Mansor, Adam Williams and Mohd Rofei Mat Hussin
Crystals 2024, 14(4), 371; https://doi.org/10.3390/cryst14040371 - 16 Apr 2024
Cited by 6 | Viewed by 3338
Abstract
A dense and smooth aluminium nitride thin film grown on a silicon (111) substrates using pulsed metal–organic chemical vapor deposition is presented. The influence of the pulsed cycle numbers on the surface morphology and crystalline quality of the aluminium nitride films are discussed [...] Read more.
A dense and smooth aluminium nitride thin film grown on a silicon (111) substrates using pulsed metal–organic chemical vapor deposition is presented. The influence of the pulsed cycle numbers on the surface morphology and crystalline quality of the aluminium nitride films are discussed in detail. It was found that 70 cycle numbers produced the most optimized aluminium nitride films. Field emission scanning electron microscopy and atomic force microscopy images show a dense and smooth morphology with a root-mean-square-roughness of 2.13 nm. The narrowest FWHM of the X-ray rocking curve for the AlN 0002 and 10–12 reflections are 2756 arcsec and 3450 arcsec, respectively. Furthermore, reciprocal space mapping reveals an in-plane tensile strain of 0.28%, which was induced by the heteroepitaxial growth on the silicon (111) substrate. This work provides an alternative approach to grow aluminium nitride for possible application in optoelectronic and power devices. Full article
(This article belongs to the Special Issue Epitaxial Growth and Application of Metallic Oxide Thin Films)
Show Figures

Figure 1

13 pages, 6187 KB  
Article
Large-Area MoS2 Films Grown on Sapphire and GaN Substrates by Pulsed Laser Deposition
by Marianna Španková, Štefan Chromik, Edmund Dobročka, Lenka Pribusová Slušná, Marcel Talacko, Maroš Gregor, Béla Pécz, Antal Koos, Giuseppe Greco, Salvatore Ethan Panasci, Patrick Fiorenza, Fabrizio Roccaforte, Yvon Cordier, Eric Frayssinet and Filippo Giannazzo
Nanomaterials 2023, 13(21), 2837; https://doi.org/10.3390/nano13212837 - 26 Oct 2023
Cited by 7 | Viewed by 3358
Abstract
In this paper, we present the preparation of few-layer MoS2 films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using [...] Read more.
In this paper, we present the preparation of few-layer MoS2 films on single-crystal sapphire, as well as on heteroepitaxial GaN templates on sapphire substrates, using the pulsed laser deposition (PLD) technique. Detailed structural and chemical characterization of the films were performed using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction measurements, and high-resolution transmission electron microscopy. According to X-ray diffraction studies, the films exhibit epitaxial growth, indicating a good in-plane alignment. Furthermore, the films demonstrate uniform thickness on large areas, as confirmed by Raman spectroscopy. The lateral electrical current transport of the MoS2 grown on sapphire was investigated by temperature (T)-dependent sheet resistance and Hall effect measurements, showing a high n-type doping of the semiconducting films (ns from ~1 × 1013 to ~3.4 × 1013 cm−2 from T = 300 K to 500 K), with a donor ionization energy of Ei = 93 ± 8 meV and a mobility decreasing with T. Finally, the vertical current injection across the MoS2/GaN heterojunction was investigated by means of conductive atomic force microscopy, showing the rectifying behavior of the I-V characteristics with a Schottky barrier height of ϕB ≈ 0.36 eV. The obtained results pave the way for the scalable application of PLD-grown MoS2 on GaN in electronics/optoelectronics. Full article
Show Figures

Figure 1

13 pages, 2164 KB  
Article
Breakdown Characteristics of Ga2O3-on-SiC Metal-Oxide-Semiconductor Field-Effect Transistors
by Maolin Zhang, Lei Wang, Kemeng Yang, Jiafei Yao, Weihua Tang and Yufeng Guo
Crystals 2023, 13(6), 917; https://doi.org/10.3390/cryst13060917 - 6 Jun 2023
Cited by 5 | Viewed by 3299
Abstract
Ultra-wide bandgap semiconductor gallium oxide (Ga2O3) features a breakdown strength of 8 MV/cm and bulk mobility of up to 300 cm2V−1s−1, which is considered a promising candidate for next-generation power devices. However, its [...] Read more.
Ultra-wide bandgap semiconductor gallium oxide (Ga2O3) features a breakdown strength of 8 MV/cm and bulk mobility of up to 300 cm2V−1s−1, which is considered a promising candidate for next-generation power devices. However, its low thermal conductivity is reckoned to be a severe issue in the thermal management of high-power devices. The epitaxial integration of gallium oxide thin films on silicon carbide (SiC) substrates is a possible solution for tackling the cooling problems, yet premature breakdown at the Ga2O3/SiC interface would be introduced due to the relatively low breakdown strength of SiC (3.2 MV/cm). In this paper, the on-state properties as well as the breakdown characteristics of the Ga2O3-on-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) were investigated by using the technology computer-aided design (TCAD) approach. Compared with the full-Ga2O3 MOSFET, the lattice temperature of the Ga2O3-on-SiC MOSFET was decreased by nearly 100 °C thanks to the high thermal conductivity of SiC. However, a breakdown voltage degradation of >40% was found in an unoptimized Ga2O3-on-SiC MOSFET. Furthermore, by optimizing the device structure, the breakdown voltage degradation of the Ga2O3-on-SiC MOSFET is significantly relieved. As a result, this work demonstrates the existence of premature breakdown in the Ga2O3-on-SiC MOSFET and provides feasible approaches to further enhance the performance of hetero-integrated Ga2O3 power devices. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Electronics and Optoelectronics)
Show Figures

Figure 1

18 pages, 5211 KB  
Article
Molecular Dynamics Simulation of Thin Silicon Carbide Films Formation by the Electrolytic Method
by Alexander Galashev and Ksenia Abramova
Materials 2023, 16(8), 3115; https://doi.org/10.3390/ma16083115 - 15 Apr 2023
Cited by 3 | Viewed by 2840
Abstract
Silicon carbide is successfully implemented in semiconductor technology; it is also used in systems operating under aggressive environmental conditions, including high temperatures and radiation exposure. In the present work, molecular dynamics modeling of the electrolytic deposition of silicon carbide films on copper, nickel, [...] Read more.
Silicon carbide is successfully implemented in semiconductor technology; it is also used in systems operating under aggressive environmental conditions, including high temperatures and radiation exposure. In the present work, molecular dynamics modeling of the electrolytic deposition of silicon carbide films on copper, nickel, and graphite substrates in a fluoride melt is carried out. Various mechanisms of SiC film growth on graphite and metal substrates were observed. Two types of potentials (Tersoff and Morse) are used to describe the interaction between the film and the graphite substrate. In the case of the Morse potential, a 1.5 times higher adhesion energy of the SiC film to graphite and a higher crystallinity of the film was observed than is the case of the Tersoff potential. The growth rate of clusters on metal substrates has been determined. The detailed structure of the films was studied by the method of statistical geometry based on the construction of Voronoi polyhedra. The film growth based on the use of the Morse potential is compared with a heteroepitaxial electrodeposition model. The results of this work are important for the development of a technology for obtaining thin films of silicon carbide with stable chemical properties, high thermal conductivity, low thermal expansion coefficient, and good wear resistance. Full article
(This article belongs to the Special Issue Electrochemical Phase Formation of Materials and Its Modeling)
Show Figures

Figure 1

10 pages, 5490 KB  
Article
The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer
by Wenhui Zhang, Hezhi Zhang, Song Zhang, Zishi Wang, Litao Liu, Qi Zhang, Xibing Hu and Hongwei Liang
Materials 2023, 16(7), 2775; https://doi.org/10.3390/ma16072775 - 30 Mar 2023
Cited by 5 | Viewed by 3182
Abstract
A high aluminum (Al) content β-(AlxGa1−x)2O3 film was synthesized on c-plane sapphire substrate using the gallium (Ga) diffusion method. The obtained β-(AlxGa1−x)2O3 film had an average thickness [...] Read more.
A high aluminum (Al) content β-(AlxGa1−x)2O3 film was synthesized on c-plane sapphire substrate using the gallium (Ga) diffusion method. The obtained β-(AlxGa1−x)2O3 film had an average thickness of 750 nm and a surface roughness of 2.10 nm. Secondary ion mass spectrometry results indicated the homogenous distribution of Al components in the film. The Al compositions in the β-(AlxGa1−x)2O3 film, as estimated by X-ray diffraction, were close to those estimated by X-ray photoelectron spectroscopy, at ~62% and ~61.5%, respectively. The bandgap of the β-(AlxGa1−x)2O3 film, extracted from the O 1s core-level spectra, was approximately 6.0 ± 0.1 eV. After synthesizing the β-(AlxGa1−x)2O3 film, a thick β-Ga2O3 film was further deposited on sapphire substrate using carbothermal reduction and halide vapor phase epitaxy. The β-Ga2O3 thick film, grown on a sapphire substrate with a β-(AlxGa1−x)2O3 buffer layer, exhibited improved crystal orientation along the (-201) plane. Moreover, the scanning electron microscopy revealed that the surface quality of the β-Ga2O3 thick film on sapphire substrate with a β-(AlxGa1−x)2O3 intermediate buffer layer was significantly improved, with an obvious transition from grain island-like morphology to 2D continuous growth, and a reduction in surface roughness to less than 10 nm. Full article
(This article belongs to the Special Issue Wide and Ultra-Wide Bandgap Semiconductor Materials for Power Devices)
Show Figures

Figure 1

11 pages, 3184 KB  
Article
The Vertically Heteroepitaxial Structure for Lead-Free Piezoelectric K0.5Na0.5NbO3 Films
by Zhe Wang, Lingyan Wang, Wei Ren, Chao Li, Yi Quan, Kun Zheng and Jian Zhuang
Crystals 2023, 13(3), 525; https://doi.org/10.3390/cryst13030525 - 19 Mar 2023
Cited by 2 | Viewed by 2417
Abstract
The effect of epitaxial strain on the electrical properties of ferroelectric films has been widely investigated. However, this kind of strain is generally attributed to the substrate clamping constraints and is easily relaxed when the thickness of films is over 100 nm. In [...] Read more.
The effect of epitaxial strain on the electrical properties of ferroelectric films has been widely investigated. However, this kind of strain is generally attributed to the substrate clamping constraints and is easily relaxed when the thickness of films is over 100 nm. In this work, a vertically epitaxial strain was introduced into lead-free piezoelectric K0.5Na0.5NbO3 films to improve the electrical properties of ferroelectric films. Two-phase, vertically epitaxial composite KNN-ZnO thin films were grown on the (001) STO substrate using a pulsed laser deposition (PLD) method. The highly (001) preferentially oriented KNN phase and (112¯ 0)-oriented ZnO phase were orderly arranged. Two types of morphologies of “square-like” and “stripe-looking” grains were observed in the surface image. An asymmetric “square” out-of-plane phase hysteresis loop and a “butterfly” displacement loop were exhibited in the KNN phase, whereas the ZnO phase showed a closed phase hysteresis loop and a slim displacement-voltage loop. Two different kinds of polarization behaviors for domains were also observed under applied electric fields, in which the domain of the KNN phase is easily switched to the opposite state, whereas the ZnO phase keeps a stable domain state when applying a DC bias of ±50 V. the vertically epitaxial growth of the KNN-ZnO composited films in this work provides a new way to fabricate complex nanoscale materials. Full article
(This article belongs to the Special Issue Lead-free Ferro-/Piezoelectric Ceramics and Thin Films)
Show Figures

Figure 1

9 pages, 1874 KB  
Article
Defect-Induced Efficient Heteroepitaxial Growth of Single-Wall Carbon Nanotubes @ Hexagonal Boron Nitride Films
by Changping Yu, Lili Zhang, Gang Zhou, Feng Zhang, Zichu Zhang, Anping Wu, Pengxiang Hou, Huiming Cheng and Chang Liu
Materials 2023, 16(5), 1864; https://doi.org/10.3390/ma16051864 - 24 Feb 2023
Cited by 2 | Viewed by 2546
Abstract
Carbon nanotube-based derivatives have attracted considerable research interest due to their unique structure and fascinating physicochemical properties. However, the controlled growth mechanism of these derivatives remains unclear, and the synthesis efficiency is low. Herein, we proposed a defect-induced strategy for the efficient heteroepitaxial [...] Read more.
Carbon nanotube-based derivatives have attracted considerable research interest due to their unique structure and fascinating physicochemical properties. However, the controlled growth mechanism of these derivatives remains unclear, and the synthesis efficiency is low. Herein, we proposed a defect-induced strategy for the efficient heteroepitaxial growth of single-wall carbon nanotubes (SWCNTs)@hexagonal boron nitride (h-BN) films. Air plasma treatment was first performed to generate defects on the wall of SWCNTs. Then, atmospheric pressure chemical vapor deposition was conducted to grow h-BN on the surface of SWCNTs. Controlled experiments combined with first-principles calculations revealed that the induced defects on the wall of SWCNTs function as nucleation sites for the efficient heteroepitaxial growth of h-BN. Full article
Show Figures

Figure 1

Back to TopTop