Heteroepitaxial Growth of InBi(001)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. MBE Growth
3.2. PSE Growth
3.3. Film Morphology
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Xu, S.Y.; Ni, N.; Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 2019, 49, 207–252. [Google Scholar] [CrossRef]
- Fang, C.; Weng, H.; Dai, X.; Fang, Z. Topological nodal line semimetals. Chin. Phys. B 2016, 25, 117106. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef]
- Lv, B.Q.; Weng, H.M.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031013. [Google Scholar] [CrossRef]
- Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 2014, 343, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topol. Band Theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Po, H.C.; Vishwanath, A.; Watanabe, H. Complete theory of symmetry-based indicators of band topology. Nat. Commun. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Landsteiner, K.; Liu, Y.; Sun, Y.W. Holographic topological semimetals. Sci. China-Phys. Mech. Astron. 2020, 63, 250001. [Google Scholar] [CrossRef]
- Cerjan, A.; Huang, S.; Wang, M.; Chen, K.P.; Chong, Y.; Rechtsman, M.C. Experimental realization of a Weyl exceptional ring. Nat. Photonics 2019, 13, 623–628. [Google Scholar] [CrossRef]
- Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 2017, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, Y.; Tao, D.; Guan, K. Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning. IEEE Trans. Cybern. 2020, 50, 2002–2013. [Google Scholar] [CrossRef] [PubMed]
- Koronen, C.; Ahman, M.; Nilsson, L.J. Data centres in future European energy systems-energy efficiency, integration and policy. Energy Effic. 2020, 13, 129–144. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef]
- Xiong, J.; Kushwaha, S.K.; Liang, T.; Krizan, J.W.; Hirschberger, M.; Wang, W.; Cava, R.J.; Ong, N.P. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 2015, 350, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.L.; Tadich, A.; Wu, W.; Gomes, L.C.; Rodrigues, J.N.B.; Liu, C.; Hellerstedt, J.; Ryu, H.; Tang, S.; Mo, S.K.; et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 2018, 564, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, W.G.; Fischetti, M.V. Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 2017, 8, 14184. [Google Scholar] [CrossRef] [PubMed]
- Vergniory, M.G.; Elcoro, L.; Felser, C.; Regnault, N.; Bernevig, B.A.; Wang, Z. A complete catalogue of high-quality topological materials. Nature 2019, 566, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wu, M.; Liu, Y.; Yang, S.A. Electric control of topological phase transitions in Dirac semimetal thin films. Sci. Rep. 2015, 5, 14639. [Google Scholar] [CrossRef]
- Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 2013, 88, 125427. [Google Scholar] [CrossRef]
- Liang, T.; Gibson, Q.; Ali, M.N.; Liu, M.; Cava, R.J.; Ong, N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 2015, 14, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.Q.; Xu, N.; Weng, H.M.; Ma, J.Z.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; Matt, C.E.; Bisti, F.; et al. Observation of Weyl nodes in TaAs. Nat. Phys. 2015, 11, 724–727. [Google Scholar] [CrossRef]
- Sadowski, J.; Domagala, J.Z.; Zajkowska, W.; Kret, S.; Seredynski, B.; Gryglas-Borysiewicz, M.; Ogorzalek, Z.; Bozek, R.; Pacuski, W. Structural Properties of TaAs Weyl Semimetal Thin Films Grown by Molecular Beam Epitaxy on GaAs(001) Substrates. Cryst. Growth Des. 2022, 22, 6039–6045. [Google Scholar] [CrossRef]
- Nelson, J.N.; Rice, A.D.; Kurleto, R.; Shackelford, A.; Sierzega, Z.; Hao, P.; Berggren, B.S.; Jiang, C.S.; Norman, A.G.; Holtz, M.E.; et al. Thin-film TaAs: Developing a platform for semimetal devices. Matter 2023, 6, 2886–2899. [Google Scholar] [CrossRef]
- Pacuski, W. Uniting Weyl semimetals and semiconductors in a family of arsenides. Matter 2023, 6, 2626–2627. [Google Scholar] [CrossRef]
- Yanez, W.; Ou, Y.; Xiao, R.; Ghosh, S.; Dwivedi, J.; Steinebronn, E.; Richardella, A.; Mkhoyan, K.A.; Samarth, N. Giant Dampinglike-Torque Efficiency in Naturally Oxidized Polycrystalline TaAs Thin Films. Phys. Rev. Appl. 2022, 18, 054004. [Google Scholar] [CrossRef]
- Ramankutty, S.V.; Henke, J.; Schiphorst, A.; Nutakki, R.; Bron, S.; Araizi-Kanoutas, G.; Mishra, S.K.; Li, L.; Huang, Y.; Kim, T.K.; et al. Electronic structure of the candidate 2D Dirac semimetal SrMnSb2: A combined experimental and theoretical study. Scipost Phys. 2018, 4, 010. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T.; Zhou, L.; Straszheim, W.E.; Islam, F.; Jensen, B.A.; Tian, W.; Heitmann, T.; Rosenberg, R.A.; Wilde, J.M.; et al. Crystal growth, microstructure, and physical properties of SrMnSb2. Phys. Rev. B 2019, 99, 054435. [Google Scholar] [CrossRef]
- Liu, B.; Fu, Y.; Cheng, J.; Zhu, W.; He, J.; Liu, C.; Li, L.; Luo, Y. Physical Properties of Antiferromagnetic Dirac Semimetal SrMnSb2. J. Supercond. Nov. Magn. 2022, 35, 3263–3269. [Google Scholar] [CrossRef]
- Mousley, P.J.; Burrows, C.W.; Ashwin, M.J.; Sanchez, A.M.; Lazarov, V.K.; Bell, G.R. Growth and characterisation of MnSb(0001)/InGaAs(111)A epitaxial films. J. Cryst. Growth 2018, 498, 391–398. [Google Scholar] [CrossRef]
- Aldous, J.D.; Burrows, C.W.; Sanchez, A.M.; Beanland, R.; Maskery, I.; Bradley, M.K.; Dias, M.d.S.; Staunton, J.B.; Bell, G.R. Cubic MnSb: Epitaxial growth of a predicted room temperature half-metal. Phys. Rev. B 2012, 85, 060403. [Google Scholar] [CrossRef]
- Sie, E.J.; Nyby, C.M.; Pemmaraju, C.D.; Park, S.J.; Shen, X.; Yang, J.; Hoffmann, M.C.; Ofori-Okai, B.K.; Li, R.; Reid, A.H.; et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 2019, 565, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 2021, 129, 070901. [Google Scholar] [CrossRef]
- Weber, C.P.; Berggren, B.S.; Masten, M.G.; Ogloza, T.C.; Deckoff-Jones, S.; Madéo, J.; Man, M.K.L.; Dani, K.M.; Zhao, L.; Chen, G.; et al. Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals. J. Appl. Phys. 2017, 122, 223102. [Google Scholar] [CrossRef]
- Lee, M.C.; Sirica, N.; Teitelbaum, S.W.; Maznev, A.; Pezeril, T.; Tutchton, R.; Krapivin, V.; de la Pena, G.A.; Huang, Y.; Zhao, L.X.; et al. Direct Observation of Coherent Longitudinal and Shear Acoustic Phonons in TaAs Using Ultrafast X-ray Diffraction. Phys. Rev. Lett. 2022, 128, 155301. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.P.; Masten, M.G.; Ogloza, T.C.; Berggren, B.S.; Man, M.K.L.; Dani, K.M.; Liu, J.; Mao, Z.; Klug, D.D.; Adeleke, A.A.; et al. Using coherent phonons for ultrafast control of the Dirac node of SrMnSb2. Phys. Rev. B 2018, 98, 155115. [Google Scholar] [CrossRef]
- Ekahana, S.A.; Wu, S.C.; Jiang, J.; Okawa, K.; Prabhakaran, D.; Hwang, C.C.; Mo, S.K.; Sasagawa, T.; Felser, C.; Yan, B.; et al. Observation of nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 2017, 19, 065007. [Google Scholar] [CrossRef]
- Manasijevic, I.; Balanovic, L.; Grguric, T.H.; Minic, D.; Gorgievski, M. Study of microstructure and thermal properties of the low-melting Bi-In eutectic alloys. J. Therm. Anal. Calorim. 2019, 136, 643–649. [Google Scholar] [CrossRef]
- Keen, B.; Makin, R.; Stampe, P.A.; Kennedy, R.J.; Sallis, S.; Piper, L.J.; McCombe, B.; Durbin, S.M. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy. J. Electron. Mater. 2014, 43, 914–920. [Google Scholar] [CrossRef]
- Dang, P.; Rouvimov, S.; Xing, H.G.; Jena, D. Magnetotransport and superconductivity in InBi films grown on Si(111) by molecular beam epitaxy. J. Appl. Phys. 2019, 126, 103901. [Google Scholar] [CrossRef]
- Hsu, C.H.; Huang, Z.Q.; Lin, C.Y.; Macam, G.M.; Huang, Y.Z.; Lin, D.S.; Chiang, T.C.; Lin, H.; Chuang, F.C.; Huang, L. Growth of a predicted two-dimensional topological insulator based on InBi-Si(111)-7 × 7. Phys. Rev. B 2018, 98, 121404. [Google Scholar] [CrossRef]
- Tanaka, M.; Harbison, J.; Park, M.; Park, Y.; Shin, T.; Rothberg, G. Epitaxial Orientation and Magnetic-Properties of Mnas Thin-Films Grown On (001) Gaas—Template Effects. Appl. Phys. Lett. 1994, 65, 1964–1966. [Google Scholar] [CrossRef]
- Mousley, P.J.; Burrows, C.W.; Ashwin, M.J.; Takahasi, M.; Sasaki, T.; Bell, G.R. In situ X-ray diffraction of GaAs/MnSb/Ga(In)As heterostructures. Phys. Status Solidi (B) 2017, 254, 1600503. [Google Scholar] [CrossRef]
- Kroupa, A.; Dinsdale, A.T.; Watson, A.; Vrestal, J.; Vízdal, J.; Zemanova, A. The development of the COST 531 lead-free solders thermodynamic database. JOM 2007, 59, 20–25. [Google Scholar] [CrossRef]
- Khatiri, A.; Ripalda, J.; Krzyzewski, T.; Bell, G.; McConville, C.; Jones, T. Atomic hydrogen cleaning of GaAs(001): A scanning tunnelling microscopy study. Surf. Sci. 2004, 548, L1–L6. [Google Scholar] [CrossRef]
- Bell, G.; McConville, C.; Jones, T. Plasmon excitations and the effects of surface preparation in n-type InAs(001) studied by electron energy loss spectroscopy. Appl. Surf. Sci. 1996, 104–105, 17–23. [Google Scholar] [CrossRef]
- Bomphrey, J.; Ashwin, M.; Jones, T.; Bell, G. The c(4 × 4)–a(1 × 3) surface reconstruction transition on InSb(001): Static versus dynamic conditions. Results Phys. 2015, 5, 154–155. [Google Scholar] [CrossRef]
- Joyce, B.A.; Neave, J.H.; Dobson, P.J.; Larsen, P.K. Analysis of reflection high-energy electron-diffraction data from reconstructed semiconductor surfaces. Phys. Rev. B 1984, 29, 814–819. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Kabalkina, S.S.; Kolobyanina, T.N.; Vereshchagin, L.F. Investigation of the Crystal Structure of the Antimony and Bismuth High Pressure Phases. Sov. J. Exp. Theor. Phys. 1970, 31, 259. [Google Scholar]
- Wang, R.; Grant, N. The crystal structure of In5Bi3. Z. Für Krist.-Cryst. Mater. 1969, 129, 244–251. [Google Scholar] [CrossRef]
- Cruceanu, E.; Miu, L.; Ivanciu, O. Single-crystal growth of In2Bi and In55Bi3 compounds. J. Cryst. Growth 1975, 28, 13–15. [Google Scholar] [CrossRef]
- Mudry, S.; Sklyarchuk, V.; Yakymovych, A.; Shtablavyi, I. The structure and viscosity features in In–Bi near-eutectic melts. Phys. Chem. Liq. 2007, 45, 675–681. [Google Scholar] [CrossRef]
- Maraşli, N.; Akbulut, S.; Ocak, Y.; Keşlioğlu, K.; Böyük, U.; Kaya, H.; Çadirli, E. Measurement of solid–liquid interfacial energy in the In–Bi eutectic alloy at low melting temperature. J. Phys. Condens. Matter 2007, 19, 506102. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Honma, T.; Bell, G.; Ishii, A.; Arakawa, Y. Atomistic Insights for InAs Quantum Dot Formation on GaAs(001) using STM within a MBE Growth Chamber. Small 2006, 2, 386–389. [Google Scholar] [CrossRef]
MBE (thick films) | |||
---|---|---|---|
Sample | Substrate temp (°C) | Bi:In BEP ratio | Bi:In composition ratio |
1-A | 86 | 0.78 | ∼1.10 a |
1-B | 99 | 0.38 | 0.77 |
1-C | 96 | 0.94 | 1.23 |
PSE (ultra-thin films) | |||
Sample | Substrate temp (°C) | Bi:In Int. BEP ratio | Bi:In composition ratio |
2-A | 100 | 2.71 | 0.92 |
2-B | 81 | 1.30 | 1.09 |
Growth Stage | In (%) | Bi (%) | Sb (%) | Bi/In XPS | Bi/In BEP | (Å) |
---|---|---|---|---|---|---|
Pre-growth substrate | 55.6 | 0.0 | 44.4 | – | – | 4.58 |
1st deposition (10s Bi + 30s In) | 57.0 | 6.7 | 36.3 | 0.32 | 0.83 | 3.35 |
2nd deposition (20s Bi) | 53.6 | 13.6 | 32.8 | 0.65 | 2.50 | 4.51 |
3rd deposition (30s Bi + 30s In) | 51.0 | 22.0 | 27.0 | 0.92 | 2.63 | 4.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehaag, T.J.; Bell, G.R. Heteroepitaxial Growth of InBi(001). Molecules 2024, 29, 2825. https://doi.org/10.3390/molecules29122825
Rehaag TJ, Bell GR. Heteroepitaxial Growth of InBi(001). Molecules. 2024; 29(12):2825. https://doi.org/10.3390/molecules29122825
Chicago/Turabian StyleRehaag, Thomas J., and Gavin R. Bell. 2024. "Heteroepitaxial Growth of InBi(001)" Molecules 29, no. 12: 2825. https://doi.org/10.3390/molecules29122825
APA StyleRehaag, T. J., & Bell, G. R. (2024). Heteroepitaxial Growth of InBi(001). Molecules, 29(12), 2825. https://doi.org/10.3390/molecules29122825