Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = hermeticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1678 KiB  
Article
Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways
by Dobromir Pressyanov and Dimitar Dimitrov
Atmosphere 2025, 16(8), 943; https://doi.org/10.3390/atmos16080943 (registering DOI) - 6 Aug 2025
Abstract
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon [...] Read more.
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon fabric (ACC-5092-10), enabled sensitive, spatially resolved radon measurements. Two case studies were conducted: Case 1 involves a room with elevated radon levels suspected to originate from the floor. Case 2 involves a house with persistently high indoor radon concentrations despite active basement ventilation. In the first case, radon emission from the floor was found to be highly inhomogeneous, with concentrations varying by more than a factor of four. In the second, unexpectedly high radon levels were detected at electrical switches and outlets on walls in the living space, suggesting radon transport through wall voids and entry via non-hermetic electrical fittings. These novel detectors facilitate fine-scale mapping of indoor radon concentrations, revealing ingress routes that were previously undetectable. Their use can significantly enhance radon diagnostics and support the development of more effective mitigation strategies. Full article
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

18 pages, 903 KiB  
Article
Effect of Allyl-Isothiocyanate Release from Black Mustard (Brassica nigra) Seeds During Refrigerated Storage to Preserve Fresh Tench (Tinca tinca) Fillets
by María José Rodríguez Gómez, María Alejo Martínez, Raquel Manzano Durán, Daniel Martín-Vertedor and Patricia Calvo Magro
Fishes 2025, 10(8), 381; https://doi.org/10.3390/fishes10080381 - 5 Aug 2025
Abstract
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts [...] Read more.
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts of defatted mustard seed (300, 400 and 500 mg) were added to hermetic polypropylene trays. Microbiological, sensory, and gas chromatography with MS detection analysis were done. AITC release increased progressively until the third day of storage, significantly delaying the development of microorganisms in samples with higher mustard seed content. The tasting panel detected positive aromas at the beginning of the study, but these decreased and negative aromas appeared. The mustard seed treatment resulted in a higher positive aroma at the end of the storage, reducing rotting and ammonia odours. A total of 31 volatile compounds were detected and grouped into hydrocarbon, alcohol, benzenoid, isothiocyanate, ketone, acetate, aldehyde, and others. Butylated hydroxytoluene, an indicator of bacterial contamination, was the major aromatic compound found during storage. The release of AITC resulted in fewer organic compounds with negative aromas appearing during storage. PCA analysis allowed us to classify the assays during storage according to their volatile profiles, confirming the differences observed between treatments. Thus, adding mustard seed to fish packaging could be a viable alternative to extending the product’s shelf life and ensuring food safety. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

24 pages, 10538 KiB  
Article
Effects of Refrigerated Storage on the Physicochemical, Color and Rheological Properties of Selected Honey
by Joanna Piepiórka-Stepuk, Monika Sterczyńska, Marta Stachnik and Piotr Pawłowski
Agriculture 2025, 15(14), 1476; https://doi.org/10.3390/agriculture15141476 - 10 Jul 2025
Viewed by 395
Abstract
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was [...] Read more.
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was made—rapeseed, multiflower and buckwheat honey. The samples were stored for 24 weeks in dark, hermetically sealed glass containers in a refrigerated chamber (8 ± 1 °C, 73 ± 2% relative humidity). The comprehensive suite of analyses comprised sugar profiling (ion chromatography), moisture content determination (refractometry), pH and acidity measurement (titration), electrical conductivity, color assessment in the CIELab system (ΔE and BI indices), texture parameters (penetration testing), rheological properties (rheometry), and microscopic evaluation of crystal morphology; all data were subjected to statistical treatment (ANOVA, Tukey’s test, Pearson correlations). The changes in these parameters were examined at 1, 2, 3, 6, 12, and 24 weeks of storage. A slight but significant increase in moisture content was observed (most pronounced in rapeseed honey), while all parameters remained within the prescribed limits and showed no signs of fermentation. The honeys’ color became markedly lighter. Already in the first weeks of storage, an increase in the L* value and elevated ΔE indices were recorded. The crystallization process proceeded in two distinct phases—initial nucleation (occurring fastest in rapeseed honey) followed by the formation of crystal agglomerates—which resulted in rising hardness and cohesion up to weeks 6–12, after which these metrics gradually declined; simultaneously, a rheological shift was noted, with viscosity increasing and the flow behavior changing from Newtonian to pseudoplastic, especially in rapeseed honey. Studies show that refrigerated storage accelerates honey crystallization, as lower temperatures promote the formation of glucose crystals. This accelerated crystallization may have practical applications in the production of creamed honey, where controlled crystal formation is essential for achieving a smooth, spreadable texture. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 658
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 971 KiB  
Systematic Review
Assessing Fire Risks in Photovoltaic Panels: A Literature Review in the Context of Blackout Concerns
by Małgorzata Rataj and Iryna Berezovska
Energies 2025, 18(13), 3407; https://doi.org/10.3390/en18133407 - 28 Jun 2025
Viewed by 451
Abstract
In recent years, Europe has faced several major blackouts, exposing weaknesses in its energy infrastructure and raising serious concerns about the continent’s ability to manage such crises. As the shift toward sustainable energy accelerates, solar power has emerged as a critical component of [...] Read more.
In recent years, Europe has faced several major blackouts, exposing weaknesses in its energy infrastructure and raising serious concerns about the continent’s ability to manage such crises. As the shift toward sustainable energy accelerates, solar power has emerged as a critical component of this transition, not only for its environmental benefits but also because it is currently the most cost-effective method of electricity generation. Over the past two decades, the photovoltaic (PV) sector has experienced continuous growth to meet rising energy demands. Published scientific studies on the technology and implementation of photovoltaic panels mainly focus on the benefits and present case studies of success. The article aims to outline the current state of research on the danger of spontaneous ignition of photovoltaic panels. The analysis revealed the most common causes of PV self-ignition. Moreover, following consultations with experts in the field of photovoltaic panel installations, a scientific gap in this area was identified—to the authors’ knowledge, no one has written on this topic so far—the use of flammable materials in the form of hermetically sealed quick connectors. The research is based on a literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method to perform a bibliometric analysis of papers published between 2013 and 2024. The Web of Science Core Collection (WoSCC) and the ScienceDirect database are used for this purpose. A total of 62 papers are selected for analysis and categorized based on five fields: keywords in a title and abstract, total number of citations per paper, total number of publications per journal, total number of publications per affiliation, and funding name. Full article
Show Figures

Figure 1

24 pages, 3341 KiB  
Article
Experimental Characterization of Commercial Scroll Expander for Micro-Scale Solar Organic Rankine Cycle Application: Part 2
by Federico Fagioli, Maria Manieri, Gianmarco Agostini, Michele Salvestroni, Francesco Taddei, Filippo Cottone and Maurizio De Lucia
Energies 2025, 18(11), 2875; https://doi.org/10.3390/en18112875 - 30 May 2025
Viewed by 412
Abstract
Organic Rankine Cycle (ORC) power plants represent one of the most suitable technologies for the recovery and conversion of low-grade thermal energy. Coupling a micro-scale ORC system with parabolic trough collectors (PTCs) as a thermal energy source can effectively meet the electrical and [...] Read more.
Organic Rankine Cycle (ORC) power plants represent one of the most suitable technologies for the recovery and conversion of low-grade thermal energy. Coupling a micro-scale ORC system with parabolic trough collectors (PTCs) as a thermal energy source can effectively meet the electrical and thermal demands of a domestic user. This study presents the development process of the micro-ORC system, detailing both the results of the numerical model and the implementation of the test prototype. Particular attention is given to the instrumentation and sensors installed on the test bench, the monitoring and data acquisition software, and the error propagation analysis applied to the experimental data. In order to develop a micro-scale ORC plant, a commercial hermetic scroll compressor was tested as an expander with HFC-245fa working fluid. The test campaign required the construction of a dedicated experimental setup, equipped with comprehensive monitoring and control systems. While the first part of this research focused on evaluating the use of a scroll compressor as an expander, the second part aims to thoroughly describe the design of the test bench and the numerical model employed, the boundary conditions adopted, and the optimization strategies implemented to enhance system performance. This paper also describes in detail the measurement methodology and the associated error analysis to ensure comparability between experimental and numerical data. The numerical model was experimentally validated by incorporating the actual measured efficiency of the pump system, estimated at 12%. The comparison revealed a deviation between the experimental and simulated absorbed power of the pump—expressed as a function of the evaporation pressure—of less than 10% in the majority of the tested operating conditions. This confirms the reliability of the model and supports its use in future optimization studies. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

21 pages, 4466 KiB  
Article
Quality and Lifetime of Thin Parylene F-VT4 Coatings for Hermetic Encapsulation of Implantable Medical Devices
by Esmaeil Afshari, Rik Verplancke, Maarten Cauwe and Maaike Op de Beeck
Coatings 2025, 15(6), 648; https://doi.org/10.3390/coatings15060648 - 28 May 2025
Cited by 1 | Viewed by 2747
Abstract
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known [...] Read more.
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known for its mechanical flexibility, thermal stability, and chemical inertness, is a promising candidate for long-term hermetic encapsulation. Parylene F-VT4 was uniformly deposited via a dedicated chemical vapor deposition (CVD) process typically used for Parylene depositions. The investigation of the Parylene F-VT4 films included pinhole density characterization, electrochemical impedance spectroscopy (EIS), and testing of coating lifetime based on the resistance of Cu meanders protected by Parylene F-VT4 when immersed in phosphate-buffered saline (PBS) under accelerated aging conditions (PBS at 60 °C) over 550 days. The EIS results demonstrated that thicker coatings (1.2 µm) exhibited excellent barrier properties and resistance to electrolyte penetration, whereas thinner coatings (0.3 µm and 0.6 µm) showed more rapid degradation due to microvoids and pinholes. The temporal evaluation of EIS spectra highlighted the gradual decrease in impedance magnitude, indicating the ingress of ions and water into the coating. The lifetime in PBS at 60 °C was determined by resistance-based lifetime measurements on Cu meander structures coated with Parylene F-VT4 coatings. The lifetime at 37 °C was calculated, assuming an acceleration factor of 2 per 10 °C increase in temperature, yielding lifetimes of approximately 25 days, 6.4 months, 2.3 years, and 4.5 years for 0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm coatings, respectively. These findings highlight the critical relationship between thickness and durability, providing valuable insights into the long-term performance of thin Parylene F-VT4 films for implantable devices. Full article
(This article belongs to the Special Issue Thin Film Coatings for Medical Biosensing Applications)
Show Figures

Graphical abstract

18 pages, 6821 KiB  
Article
Strain Plethysmography Using a Hermetically Sealed MEMS Strain Sensor
by Xinyu Jiang, Brian Sang, Haoran Wen, Gregory Junek, Jin-Woo Park and Farrokh Ayazi
Biosensors 2025, 15(5), 325; https://doi.org/10.3390/bios15050325 - 20 May 2025
Viewed by 2534
Abstract
We present a hermetically sealed capacitive microelectromechanical system (MEMS) strain sensor designed for arterial pulse waveform extraction using the strain plethysmography (SPG) modality. The MEMS strain sensor features a small form factor of 3.3 mm × 3.3 mm × 1 mm, leverages a [...] Read more.
We present a hermetically sealed capacitive microelectromechanical system (MEMS) strain sensor designed for arterial pulse waveform extraction using the strain plethysmography (SPG) modality. The MEMS strain sensor features a small form factor of 3.3 mm × 3.3 mm × 1 mm, leverages a nano-gap fabrication process to improve the sensitivity, and uses a differential sensing mechanism to improve the linearity and remove the common mode drift. The MEMS strain sensor is interfaced with an application-specific integrated circuit (ASIC) to form a compact strain sensing system. This system exhibits a high strain sensitivity of 316 aF/µε, a gauge factor (GF) of 35, and a strain sensing resolution of 1.26 µε, while maintaining a linear range exceeding 700 µε. SPG signals have been reliably captured at both the fingertip and wrist using the MEMS strain sensor with high signal quality, preserving various photoplethysmography (PPG) features. Experimental results demonstrate that heart rate (HR) and heart rate variability (HRV) can be estimated from the SPG signal collected at the fingertip and wrist using the sensor with an accuracy of over 99%. Pulse arrival time (PAT) and pulse transit time (PTT) have been successfully extracted using the sensor together with a MEMS seismometer, showcasing its potential for ambulatory BP monitoring (ABPM) application. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

13 pages, 5885 KiB  
Article
Design and Fabrication of Silicon Pressure Sensors Based on Wet Etching Technology
by Fengchao Li, Shijin Yan, Cheng Lei, Dandan Wang, Xi Wei, Jiangang Yu, Yongwei Li, Pengfei Ji, Qiulin Tan and Ting Liang
Micromachines 2025, 16(5), 516; https://doi.org/10.3390/mi16050516 - 28 Apr 2025
Viewed by 2488
Abstract
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive [...] Read more.
This paper presents a novel silicon-based piezoresistive pressure sensor composed of a silicon layer with sensing elements and a glass cover for hermetic packaging. Unlike conventional designs, this study employs numerical simulation to analyze the influence of varying roughness levels of the sensitive membrane on the sensor’s output response. Simulation results demonstrate that pressure sensors with smoother sensitive membranes exhibit superior performance in terms of sensitivity (5.07 mV/V/MPa), linearity (0.67% FS), hysteresis (0.88% FS), and repeatability (0.75% FS). Furthermore, an optimized process for controlling membrane roughness was achieved by adjusting the concentration of the etchant solution. Experimental results reveal that a membrane roughness of 35.37 nm was attained under conditions of 80 °C and 25 wt% TMAH. Additionally, the fabrication process of this piezoresistive pressure sensor was significantly simplified and cost-effective due to the adoption of a backside wet etching technique. The fabricated sensor demonstrates excellent performance metrics, including a sensitivity of 5.07 mV/V/MPa, a full-scale (FS) output of 101.42 mV, a hysteresis of 0.88% FS, a repeatability of 0.75% FS, and a nonlinearity of 0.67% FS. These results indicate that the proposed sensor is a promising tool for precise pressure measurement applications, offering both high performance and cost efficiency. This study not only advances the understanding of the impact of membrane roughness on sensor performance but also provides a practical and scalable fabrication approach for piezoresistive pressure sensors. Full article
Show Figures

Figure 1

11 pages, 1432 KiB  
Article
Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage
by Wenbo Li and Dieudonne Baributsa
Sustainability 2025, 17(7), 2865; https://doi.org/10.3390/su17072865 - 24 Mar 2025
Viewed by 444
Abstract
The phasing out of most chemicals has created a demand for alternative methods to preserve grain quality and market value. Hermetic storage offers a chemical-free solution for pest control by creating an airtight environment that naturally leads to insect death. Adding oxygen scavengers [...] Read more.
The phasing out of most chemicals has created a demand for alternative methods to preserve grain quality and market value. Hermetic storage offers a chemical-free solution for pest control by creating an airtight environment that naturally leads to insect death. Adding oxygen scavengers can further enhance hermetic storage by accelerating oxygen depletion. However, no study has examined scaling hand warmers in hermetic storage bags used by large grain handlers and farmers. We evaluated the effects of 1, 2, or 3 hand warmers in 25-kg PICS bags and 2, 4, or 6 hand warmers in 50-kg PICS bags on oxygen consumption and grain quality. We hypothesized that doubling the number of hand warmers used in 25-kg to 50-kg PICS bags would maintain the same rate of oxygen reduction. Oxygen levels decreased as the number of hand warmers increased. Additionally, oxygen concentrations in 25-kg PICS bags with 1, 2, or 3 hand warmers closely mirrored those of 2, 4, or 6 hand warmers in 50-kg PICS bags, respectively. Using 2 or 3 hand warmers in 25-kg PICS bags and 4 or 6 hand warmers in 50-kg PICS bags reduced oxygen concentrations below the 5% threshold for pest suppression within 12 h and maintained it for at least 8 days. While a slight rise in relative humidity was observed with more hand warmers, this did not negatively affect seed moisture content or germination rates. Doubling hand warmers along with the bag size from 25 to 50 kg produced similar oxygen depletion rates. These findings are helpful for large grain handlers and farmers who use 50-kg hermetic bags to store seeds or specialty crops to maintain quality. Hermetic bags combined with hand warmers promote sustainability by reducing chemical usage and minimizing food and nutrient losses. Full article
Show Figures

Figure 1

9 pages, 474 KiB  
Article
Hermetic Bags Effectively Manage Emerging and Common Pests of Stored Cowpeas in Niger
by Habibou Yahaya Dan Bawa, Ibrahim Boukary Baoua, Mahamane Moctar Rabé and Dieudonne Baributsa
Insects 2025, 16(2), 196; https://doi.org/10.3390/insects16020196 - 11 Feb 2025
Viewed by 946
Abstract
The cowpea is a vital crop for low-resource farmers in the Sahel, but post-harvest losses due to insect pests remain a major challenge. Callosobruchus maculatus (Fabricius, 1775), is the primary pest responsible for most of the damage to stored cowpeas. Recently, Trogoderma granarium [...] Read more.
The cowpea is a vital crop for low-resource farmers in the Sahel, but post-harvest losses due to insect pests remain a major challenge. Callosobruchus maculatus (Fabricius, 1775), is the primary pest responsible for most of the damage to stored cowpeas. Recently, Trogoderma granarium (Everts, 1898) was found infesting cowpeas in large warehouses in Niger. This study evaluated hermetic storage bags to manage both common and emerging insect pests. Treatments included (i) the Purdue Improved Crop Storage (PICS) hermetic bag; (ii) a woven polypropylene (PP) bag with a polyethylene (PE) liner and Phostoxin; and (iii) a woven PP bag without Phostoxin (control). Naturally infested cowpea grains were obtained from the Office des Produits Vivriers du Niger (OPVN) warehouse in Maradi, Niger. Infestation levels were assessed using 12 samples of 500 g each, randomly collected from each treatment at the start and end of the trial. Major pests identified were C. maculatus, T. granarium, and Tribolium sp., with initial populations of 0.83, 0.44, and 0.83 adults per 500 g of cowpea, respectively. After six months of storage, pest densities in the control increased significantly: 232-fold for C. maculatus, 7.4-fold for T. granarium, and 2.7-fold for Tribolium sp.; resulting in a 38.5% weight loss. In contrast, both the Phostoxin and the PICS hermetic bags effectively suppressed pest populations, preventing weight loss. This study confirms the efficacy of hermetic storage, such as the PICS bag, in protecting cowpeas from both common and emerging pests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1886 KiB  
Article
Hand Warmers: A Cost-Effective Solution to Accelerate Oxygen Depletion During Hermetic Storage
by Wenbo Li, John Stephen Yaninek, Kingsly Ambrose and Dieudonne Baributsa
Foods 2025, 14(4), 548; https://doi.org/10.3390/foods14040548 - 7 Feb 2025
Cited by 1 | Viewed by 965
Abstract
Postharvest grain losses often result from insect infestations. Hermetic storage creates airtight conditions that limit insect survival. However, oxygen depletion can be slow during hermetic storage, leading to a loss of grain quality and market value. Oxygen scavengers offer a solution to accelerate [...] Read more.
Postharvest grain losses often result from insect infestations. Hermetic storage creates airtight conditions that limit insect survival. However, oxygen depletion can be slow during hermetic storage, leading to a loss of grain quality and market value. Oxygen scavengers offer a solution to accelerate oxygen depletion. This study evaluated hand warmers as a cost-effective alternative to commercial oxygen scavengers. Experiments in sealed empty 4-gallon glass jars with 10-h hand warmers depleted oxygen faster and more cost-effectively than those with 2000 cc Oxy-Sorb oxygen absorbers. One hand warmer depleted similar amounts of oxygen as two Oxy-Sorb oxygen absorbers and reached the 5% threshold for pest suppression in 48 h. A follow-up study found that oxygen levels in empty 4-gallon jars dropped faster than in grain-filled 25-kg hermetic bags, with jars containing two or three hand warmers reaching the 5% threshold in the first 6 h. Temperature remained constant regardless of the number of hand warmers. At the same time, the relative humidity rose in empty jars but stayed stable in grain-filled hermetic bags, with no effect on grain quality. Hand warmers can potentially serve as cost-effective alternatives to commercial oxygen scavengers in hermetic storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

10 pages, 399 KiB  
Article
Barriers to Hermetic Bag Adoption Among Smallholder Farmers in Malawi
by Theresa Nakoma Ngoma, John F. Leslie, Samson Pilanazo Katengeza, Aggrey Pemba Gama, Brighton M. Mvumi, Tafireyi Chamboko, Kingsley Mikwamba, Smith Gilliard Nkhata, Maurice Monjerezi, Jagger Harvey and Limbikani Matumba
Sustainability 2025, 17(3), 1231; https://doi.org/10.3390/su17031231 - 3 Feb 2025
Cited by 1 | Viewed by 1463
Abstract
Hermetic grain storage bags are an airtight technology that protects stored grain from environmental factors, pests, and pathogens, with proven feasibility for smallholder farmer use. We examined the determinants and barriers to the use of these bags by smallholder farmers in Malawi and [...] Read more.
Hermetic grain storage bags are an airtight technology that protects stored grain from environmental factors, pests, and pathogens, with proven feasibility for smallholder farmer use. We examined the determinants and barriers to the use of these bags by smallholder farmers in Malawi and found that 83% of farmers were aware of hermetic bags for grain storage, but only 11–20% had ever used them, with half of the farmers who used the bags receiving them through donations. Furthermore, only 7.2% of farmers used the bags more than once. There was no association between their receipt of donated bags and their continued use and purchase of additional bags. There were, however, strong correlations between use of hermetic bags and the age of the head of household, distance to farmer groups’ meeting points, household size, and participation in a CIP-sponsored project. Focus group discussions identified key barriers to adopting hermetic bags, including local unavailability, perceived high cost, limited knowledge of the technology, low yields, and misconceptions about the utility of the bags. Thus, while donations play a central role in introducing hermetic bags, donations alone are insufficient in ensuring their long-term adoption. Addressing the identified barriers through improved availability, reduced costs, local manufacturing, and policy interventions such as microfinancing options and better distribution networks are essential to increasing the uptake of hermetic bags by smallholder farmers in Malawi and elsewhere in sub-Saharan Africa. Full article
Show Figures

Figure 1

31 pages, 23482 KiB  
Review
Addressing Shortages with Storage: From Old Grain Pits to New Solutions for Underground Storage Systems
by Antonella Pasqualone
Agriculture 2025, 15(3), 289; https://doi.org/10.3390/agriculture15030289 - 29 Jan 2025
Cited by 1 | Viewed by 2917
Abstract
In every era, climate variability and frequent food shortages have made it necessary to store harvested grains for more than one season. Underground grain storage has been used since ancient times throughout the world. Italy (Cerignola) and Malta (Valletta and Floriana) have preserved [...] Read more.
In every era, climate variability and frequent food shortages have made it necessary to store harvested grains for more than one season. Underground grain storage has been used since ancient times throughout the world. Italy (Cerignola) and Malta (Valletta and Floriana) have preserved rare examples of more recent (from the 16th century onward) large concentrations of grain pits, capable of accumulating substantial reserves to cope with famine or siege. No longer in operation, they represent an important part of the cultural heritage of the agricultural economy. The purpose of this narrative review was, after a geographical framing of grain pits in the Eurasian and African macro-areas, to take the Italian and Maltese grain pits as historical case studies to draw attention to the reevaluation of underground grain storage in the context of climate change and food insecurity. Today, as in the past, grain reserves play a significant role in food security in developing countries and, due to climate change and geopolitical events that can cause disruptions in grain supplies, are also increasingly important for developed countries. A comparison of traditional and modern underground storage systems reveals the great flexibility of this technology, ranging from basic pits of different sizes to large underground granaries equipped with a support structure. The advantages of underground storage, such as environmental sustainability due to thermal insulation of the soil and airtight conditions that make high energy inputs for grain cooling and pesticide use unnecessary, are still useful today, perhaps more so than in the past. Prospects for development include technical solutions involving the application of innovative information technology-based monitoring systems and the use of modern materials to ensure the performance of waterproofing, seepage control, and static safety, all tools for further evolution of this ancient storage system. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

Back to TopTop