Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Set-Up
2.2. Data Collection
2.2.1. Oxygen Concentration
2.2.2. Temperature and Relative Humidity
2.2.3. Seed Moisture Content and Germination
2.3. Data Analysis
3. Results
3.1. Oxygen Concentration
3.2. Temperature and Relative Humidity
3.3. Seed Moisture Content and Seed Germination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, C.; Corinth, H.-G.; Reichmuth, C. Modified Atmospheres. In Alternatives to Pesticides in Stored-Product IPM; Springer: Berlin/Heidelberg, Germany, 2000; pp. 105–146. [Google Scholar]
- Baributsa, D.; Ignacio, M.C.C. Developments in the Use of Hermetic Bags for Grain Storage. In Advances in Postharvest Management of Cereals and Grains; Maier, D.E., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 171–198. [Google Scholar]
- Navarro, S.; Donahaye, J.E.; Fishman, S. The Future of Hermetic Storage of Dry Grains in Tropical and Subtropical Climates. In Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra, Australia, 17–23 April 1994; pp. 130–138. [Google Scholar]
- De Bruin, T.; Villers, P.; Wagh, A.; Navarro, S.; Manager, A.C.; Mumbai, E. Worldwide Use of Hermetic Storage for the Preservation of Agricultural Products. In Proceedings of the 9th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey, 15–19 October 2012; pp. 450–458. [Google Scholar]
- Walker, S.; Jaime, R.; Kagot, V.; Probst, C. Comparative Effects of Hermetic and Traditional Storage Devices on Maize Grain: Mycotoxin Development, Insect Infestation and Grain Quality. J. Stored Prod. Res. 2018, 77, 34–44. [Google Scholar] [CrossRef]
- Tefera, T.; Teshome, A.; Singano, C. Effectiveness of Improved Hermetic Storage Structures Against Maize Storage Insect Pests Sitophilus zeamais and Prostephanus truncatus. J. Agric. Sci. 2018, 10, 100. [Google Scholar] [CrossRef]
- Hoback, W.W.; Stanley, D.W. Insects in Hypoxia. J. Insect Physiol. 2001, 47, 533–542. [Google Scholar] [CrossRef]
- Kandel, P.; Scharf, M.E.; Mason, L.J.; Baributsa, D. Effect of Hypoxia on the Lethal Mortality Time of Adult Sitophilus oryzae L. Insects 2021, 12, 952. [Google Scholar] [CrossRef]
- Navarro, S. Commercial Applications of Oxygen Depleted Atmospheres for the Preservation of Food Commodities; Woodhead Publishing: Cambridge, UK, 2010; ISBN 9781845695514. [Google Scholar]
- Murdock, L.L.; Margam, V.; Baoua, I.; Balfe, S.; Shade, R.E. Death by Desiccation: Effects of Hermetic Storage on Cowpea Bruchids. J. Stored Prod. Res. 2012, 49, 166–170. [Google Scholar] [CrossRef]
- Calderon, M.; Navarro, S. Increased Toxicity of Low Oxygen. Entomol. Exp. Appl. 1979, 25, 7–10. [Google Scholar]
- Donga, T.K.; Baributsa, D. Effect of Temperature and Insect Infestation Levels on Oxygen Depletion in Hermetic Storage. Insects 2023, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, A.W.; Affognon, H.D.; Mutungi, C.M.; Manono, J.; Lamuka, P.O.; Murdock, L.L. Triple Bag Hermetic Storage Delivers a Lethal Punch to Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Stored Maize. J. Stored Prod. Res. 2014, 58, 12–19. [Google Scholar] [CrossRef]
- Lamsal, G.; Baributsa, D. Enhancing Airtight Storage with Germinating Cowpea Seeds: Impacts on Insect Mortality, Progeny and Grain Quality. Insects 2023, 14, 954. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ortiz, D.; Baributsa, D.; Hamaker, B.; Rocheford, T.; Ferruzzi, M.G. Assessment of Oxygen Sequestration on Effectiveness of Purdue Improved Crop Storage (PICS) Bags in Reducing Carotenoid Degradation During Post-Harvest Storage of Two Biofortified Orange Maize Genotypes. J. Cereal Sci. 2019, 87, 68–77. [Google Scholar] [CrossRef]
- Taleon, V.; Mugode, L.; Cabrera-Soto, L.; Palacios-Rojas, N. Carotenoid Retention in Biofortified Maize Using Different Post-Harvest Storage and Packaging Methods. Food Chem. 2017, 232, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Cichello, S.A. Oxygen Absorbers in Food Preservation: A Review. J. Food Sci. Technol. 2015, 52, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.; Peruch, G.; dos Santos Pires, A.C. Oxygen Scavengers: An Approach on Food Preservation. In Structure and Function of Food Engineering; InTechOpen: Rijeka, Croatia, 2012; pp. 21–42. ISBN 9789535106951. [Google Scholar]
- Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- Miyashita, E. Hot Compress Structure. U.S. Patent Number: 5,233,981, 10 August 1993. Available online: https://patents.google.com/patent/US5233981A/en (accessed on 29 February 2024).
- Li, W.; Yaninek, J.S.; Ambrose, K.; Baributsa, D. Hand Warmers: A Cost-Effective Solution to Accelerate Oxygen Depletion During Hermetic Storage. Foods 2025, 14, 548. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yaninek, J.S.; Baributsa, D. Hand Warmer-Induced Hypoxia Accelerates Pest Control in Hermetic Storage. Insects 2024, 15, 821. [Google Scholar] [CrossRef]
- Baributsa, D.; Baoua, I.; Abdoulaye, T.; Murdock, L.L.; Lowernberg-DeBoer, J. Purdue Improved Crop Storage (PICS) Bag: Size Matters; Purdue University: West Lafayette, IN, USA, 2013; pp. 1–4. [Google Scholar]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine Resistance in Stored-Product Insects Collected from Various Grain Storage Facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Katola, A.A.; Stark, A.H.; Ndolo, V.U.; Tembo, D.T.; Katundu, M.C. Provitamin A Retention and Sensory Acceptability of Landrace Orange Maize (MW5021) Food Products Among School-Aged Children Living in Rural Malawi. Food Prod. Process. Nutr. 2023, 5, 57. [Google Scholar] [CrossRef]
- Lalpuria, M.; Anantheswaran, R.; Floros, J. Packaging Technologies and Their Role in Food Safety. In Microbial Decontamination in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 701–745. [Google Scholar]
- Goredema-matongera, N.; Ndhlela, T.; Magorokosho, C.; Kamutando, C.N.; van Biljon, A.; Labuschagne, M. Multinutrient Biofortification of Maize (Zea mays L.) in Africa: Current Status, Opportunities and Limitations. Nutrients 2021, 13, 1039. [Google Scholar] [CrossRef]
- Mugode, L.; Ha, B.; Kaunda, A.; Sikombe, T.; Phiri, S.; Mutale, R.; Davis, C.; Tanumihardjo, S.; De Moura, F.F. Carotenoid Retention of Biofortified Provitamin a Maize (Zea mays L.) After Zambian Traditional Methods of Milling, Cooking and Storage. J. Agric. Food Chem. 2014, 62, 6317–6325. [Google Scholar] [CrossRef]
- Bechoff, A.; Chijioke, U.; Tomlins, K.I.; Govinden, P.; Ilona, P.; Westby, A.; Boy, E. Carotenoid Stability During Storage of Yellow Gari Made from Biofortified Cassava or with Palm Oil. J. Food Compos. Anal. 2015, 44, 36–44. [Google Scholar] [CrossRef]
- ASAE. Moisture Measurement—Unground Grain and Seeds. Available online: https://engineering.purdue.edu/~abe305/moisture/html/page12.htm (accessed on 4 July 2022).
- ISTA. International Rules for Seed Testing. Int. Seed Test. Assoc. 2015, 215, 1–6. [Google Scholar]
- Kimani, A.; Tefera, T.; Florence, O.; Dora, K. Effect of Sealing Method and Lighting Candle in Metal Silos on Survival of the Larger Grain Borer, Prostephanus Truncatus, in Stored Maize. J. Agric. Sci. 2018, 10, 90. [Google Scholar] [CrossRef]
- Navarro, S. The Use of Modified and Controlled Atmospheres for the Disinfestation of Stored Products. J. Pest Sci. 2012, 85, 301–322. [Google Scholar] [CrossRef]
- Taher, H.; Bartosik, R. Hermetic Storage of Dry Soybean (Glycine max): Creating an Effective Modified Atmosphere Using Soaked Grain as O2 Depletor. In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018; Volume 2, pp. 666–671. [Google Scholar]
- Njoroge, A.W.; Mankin, R.W.; Smith, B.; Baributsa, D. Effects of Hypoxia on Acoustic Activity of Two Stored-Product Pests, Adult Emergence, and Grain Quality. J. Econ. Entomol. 2019, 112, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Ng’ang’a, J.; Mutungi, C.; Imathiu, S.; Affognon, H. Effect of Triple-Layer Hermetic Bagging on Mould Infection and Aflatoxin Contamination of Maize During Multi-Month on-Farm Storage in Kenya. J. Stored Prod. Res. 2016, 69, 119–128. [Google Scholar] [CrossRef]
- Mutambuki, K.; Likhayo, P.; Mbugua, J.; Warigia, T. Evaluation of AgroZ Hermetic Storage Bag Against Insect Pests on Stored Maize. In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018; pp. 49–55. [Google Scholar]
- Miah, M.A.B.; Rahman, M.M.; Hoque, M.M.; Baque, M.A. Effect of Storage Relative Humidity on Germination and Vigour of Soybean Seed. Int. J. Eng. Technol. 2006, 3, 17–24. [Google Scholar]
- Ali, M.; Rahman, M.; Ahammad, K. Effect of Relative Humidity, Initial Seed Moisture Content and Storage Container on Soybean (Glycine max L. Meril.) Seed Quality. Bangladesh J. Agric. Res. 2015, 39, 461–469. [Google Scholar] [CrossRef]
- Nkang, A.; Umoh, E. Six Month Storability of Five Soybean Cultivars as Influenced by Stage of Harvest, Storage Temperature and Relative Humidity. Seed Sci. Technol. 1997, 25, 93–99. [Google Scholar]
- De Carli, M.; Bresolin, B.; Noreña, C.P.Z.; Lorini, I.; Brandelli, A. Efficacy of Modified Atmosphere Packaging to Control Sitophilus spp. in Organic Maize Grain. Braz. Arch. Biol. Technol. 2010, 53, 1469–1476. [Google Scholar] [CrossRef]
- Brandl, D.G.; Soderstrom, E.L.; Schreiber, F.E. Effects of Low-Oxygen Atmospheres Containing Different Concentrations of Carbon Dioxide on Mortality of the Navel Orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae). J. Econ. Entomol. 1983, 76, 828–830. [Google Scholar] [CrossRef]
Oxygen Concentration (%, Mean ± SEM) * | ||||||
---|---|---|---|---|---|---|
Time | ||||||
Treatment ** | 0 h | 6 h | 12 h | 24 h | 36 h | 48 h |
25-kg PICS bag—1 hand warmer | 20.9 ± 0.20 aA | 14.2 ± 0.65 aB | 9.1 ± 1.07 aC | 5.9 ± 0.94 aD | 5.5 ± 0.73 aE | 5.2 ± 0.52 aE |
25-kg PICS bag—2 hand warmers | 20.9 ± 0.15 aA | 9.7 ± 0.78 bB | 4.7 ± 0.53 bC | 2.1 ± 0.30 bD | 1.7 ± 0.19 cDE | 1.3 ± 0.12 cE |
25-kg PICS bag—3 hand warmers | 20.9 ± 0.06 aA | 6.9 ± 0.12 cB | 2.5 ± 0.09 cC | 0.9 ± 0.07 bD | 0.8 ± 0.04 cD | 0.7 ± 0.01 cD |
50-kg PICS bag—2 hand warmers | 20.4 ± 0.11 aA | 13.7 ± 0.11 aB | 8.5 ± 0.27 aC | 4.8 ± 0.30 aD | 3.6 ± 0.28 bD | 3.0 ± 0.24 bD |
50-kg PICS bag—4 hand warmers | 20.4 ± 0.04 aA | 10.0 ± 0.35 bB | 4.5 ± 0.25 bC | 2.0 ± 0.34 bD | 1.2 ± 0.15 cD | 0.9 ± 0.18 cD |
50-kg PICS bag—6 hand warmers | 20.4 ± 0.08 aA | 7.3 ± 0.32 cB | 2.4 ± 0.13 cC | 0.8 ± 0.09 bD | 0.7 ± 0.08 cD | 0.6 ± 0.08 cD |
Treatment * | Estimated Marginal Slopes | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Intercept | 18.58 | 0.4481 | 41.46 | <0.0001 |
25-kg PICS bag—1 hand warmer | 0 | 0 | . | |
25-kg PICS bag—2 hand warmers | −3.342 | 0.5419 | 6.166 | <0.0001 |
25-kg PICS bag—3 hand warmers | −4.734 | 0.5419 | 8.736 | <0.0001 |
Time (log_hour) | −8.234 | 0.2865 | 28.75 | <0.0001 |
Intercept | 17.06 | 0.3474 | 49.12 | <0.0001 |
50-kg PICS bag—2 hand warmers | 0 | 0 | . | |
50-kg PICS bag—4 hand warmers | −2.596 | 0.4201 | 6.18 | <0.0001 |
50-kg PICS bag—6 hand warmers | −4.144 | 0.4201 | 9.864 | <0.0001 |
Time (log_hour) | −8.068 | 0.2221 | 36.33 | <0.0001 |
Moisture Content (%) | Seed Germination (%) | |||
---|---|---|---|---|
Treatment * | Initial | 240 h | Initial | 240 h |
25-kg PIC bag—1 hand warmer | 9.35 ± 0.00 aA ** | 9.12 ± 0.09 cB | 100.00 ± 0.00 aA | 99.00 ± 2.49 aA |
25-kg PICS bag—2 hand warmers | 9.35 ± 0.00 aA | 9.27 ± 0.03 bcA | 97.00 ± 3.83 aA | 97.67 ± 3.17 aA |
25-kg PICS bag—3 hand warmers | 9.35 ± 0.00 aA | 9.41 ± 0.06 bA | 98.00 ± 4.00 aA | 97.33 ± 3.11 aA |
50-kg PICS bag—2 hand warmers | 9.63 ± 0.00 bA | 9.41 ± 0.04 bB | 100.00 ± 0.00 aA | 98.67 ± 2.61 aA |
50-kg PICS bag—4 hand warmers | 9.63 ± 0.00 bA | 9.71 ± 0.04 aA | 97.00 ± 3.83 aA | 97.33 ± 2.61 aA |
50-kg PICS bag—6 hand warmers | 9.63 ± 0.00 bA | 9.59 ± 0.04 aA | 97.00 ± 3.83 aA | 96.00 ± 2.95 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Baributsa, D. Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage. Sustainability 2025, 17, 2865. https://doi.org/10.3390/su17072865
Li W, Baributsa D. Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage. Sustainability. 2025; 17(7):2865. https://doi.org/10.3390/su17072865
Chicago/Turabian StyleLi, Wenbo, and Dieudonne Baributsa. 2025. "Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage" Sustainability 17, no. 7: 2865. https://doi.org/10.3390/su17072865
APA StyleLi, W., & Baributsa, D. (2025). Scaling Oxygen Scavengers in Hermetic Bags for Improved Grain Storage. Sustainability, 17(7), 2865. https://doi.org/10.3390/su17072865