Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = hepatitis E (HEV) virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2015 KiB  
Communication
Real-Time PCR-Based Detection of Hepatitis E Virus in Groundwater: Primer Performance and Method Validation
by Jin-Ho Kim, Siwon Lee and Eung-Roh Park
Int. J. Mol. Sci. 2025, 26(15), 7377; https://doi.org/10.3390/ijms26157377 - 30 Jul 2025
Viewed by 236
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for [...] Read more.
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for the detection of HEV, employing both TaqMan probe- and SYBR Green-based methods. A total of 12 primer sets for the TaqMan probe-based method and 41 primer sets for the SYBR Green-based method were evaluated in order to identify the optimal combinations. Primer sets #4 (TaqMan probe-based) and #21 (SYBR Green-based) demonstrated the highest sensitivity and specificity, successfully detecting HEV in artificially spiked samples at 1 fg/μL. The TaqMan probe-based method facilitated rapid detection with minimized non-specific amplification, whereas the SYBR Green-based method allowed for broader primer exploration by leveraging melting curve analysis. Despite the absence of HEV detection in 123 groundwater samples, this study underscores the value of real-time PCR for environmental monitoring and paves the way for enhanced diagnostic tools for public health applications. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

16 pages, 2099 KiB  
Article
Clinical Characteristics and Epidemiological Features of Hepatitis E Virus Infection Among People Living with HIV in Shanghai, China
by Conglin Zhao, Yuanyuan Ji, Shuai Tao, Mengxin Lu, Yi Zhang, Weixia Li, Shuangshuang Sun, Han Zhao, Weijia Lin, Yuxian Huang, Qiang Li, Chong Chen and Liang Chen
Viruses 2025, 17(8), 1038; https://doi.org/10.3390/v17081038 - 25 Jul 2025
Viewed by 447
Abstract
Hepatitis E virus (HEV) poses a significant public health concern, particularly among immunocompromised populations. This study aimed to investigate HEV seroprevalence, clinical characteristics, and associated risk factors in people living with HIV (PLWH) in Shanghai, China. A retrospective analysis was conducted on serum [...] Read more.
Hepatitis E virus (HEV) poses a significant public health concern, particularly among immunocompromised populations. This study aimed to investigate HEV seroprevalence, clinical characteristics, and associated risk factors in people living with HIV (PLWH) in Shanghai, China. A retrospective analysis was conducted on serum IgG and IgM antibodies specific to HEV in 670 PLWH and 464 HIV-negative health-check attendees. The overall anti-HEV seropositivity rate among PLWH was 30.15% (202/670, 95% CI 26.68–33.62), with an IgG positivity rate of 30.00% (201/670, 95% CI 26.53–33.47). IgM positivity was observed in 1.19% (8/670, 95% CI 0.59–2.39) of PLWH, and dual IgM/IgG positivity was observed in 1.04% (7/670, 95% CI 0.50–2.16) of PLWH. The seropositivity rate of anti-HEV IgG in the HIV-negative health-check attendees was 17.67% (82/464, 95% confidence interval: 14.20–21.14), with no IgM positivity, which was significantly lower than that in PLWH (χ2 = 22.84, p < 0.001). Univariate and multivariate analyses identified advanced World Health Organization (WHO) HIV stage (III/IV) as an independent risk factor for HEV co-infection (p < 0.05). Notably, no significant associations were observed with age, gender, CD4 count, or liver function parameters. These findings underscore the importance of implementing HEV screening protocols and developing targeted preventive strategies for PLWH. Full article
Show Figures

Figure 1

11 pages, 811 KiB  
Systematic Review
Rat Hepatitis E Virus (Rocahepevirus ratti): A Systematic Review of Its Presence in Water, Food-Related Matrices, and Potential Risks to Human Health
by Sérgio Santos-Silva, Helena M. R. Gonçalves, Wim H. M. Van der Poel, Maria S. J. Nascimento and João R. Mesquita
Foods 2025, 14(14), 2533; https://doi.org/10.3390/foods14142533 - 19 Jul 2025
Viewed by 304
Abstract
Rat hepatitis E virus (rat HEV) is an emerging zoonotic virus detected in rodents worldwide, with increasing evidence of presence in environmental sources such as surface water, wastewater and bivalves. This systematic review compiles and analyzes all the published research on rat HEV [...] Read more.
Rat hepatitis E virus (rat HEV) is an emerging zoonotic virus detected in rodents worldwide, with increasing evidence of presence in environmental sources such as surface water, wastewater and bivalves. This systematic review compiles and analyzes all the published research on rat HEV contamination in these matrices, as well as its implications for human health. A comprehensive literature search was conducted using databases such as PubMed, Scopus, Web of Science, and Mendeley, including studies published up until 27 May 2025. Studies were included if they evaluated rat HEV in water- or food-related matrices using molecular detection. The risk of bias was not assessed. The certainty of evidence was not formally evaluated. Limitations include reliance on PCR methods without infectivity confirmation. Following PRISMA inclusion and exclusion criteria, eight eligible studies were analyzed. The results show high detection rates of rat HEV RNA in influent wastewater samples from several high-income European countries, namely Sweden, France, Italy, Spain and Portugal. Lower detection rates were found in effluent wastewater and surface waters in Sweden. In bivalve mollusks sampled in Brazil, rat HEV RNA was detected in 2.2% of samples. These findings show the widespread environmental presence of rat HEV, particularly in urban wastewater systems. While human infections by rat HEV have been documented, the true extent of rat HEV zoonotic potential remains unclear. Given the risks associated with this environmental rat HEV contamination, enhanced surveillance, standardized detection methods, and targeted monitoring programs in food production and water management systems are essential to mitigate potential public health threats. Establishing such programs will be crucial for understanding the impact of rat HEV on human health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

26 pages, 2715 KiB  
Systematic Review
Hepatitis E Virus (HEV) Infection in the Context of the One Health Approach: A Systematic Review
by Sophie Deli Tene, Abou Abdallah Malick Diouara, Sarbanding Sané and Seynabou Coundoul
Pathogens 2025, 14(7), 704; https://doi.org/10.3390/pathogens14070704 - 16 Jul 2025
Viewed by 449
Abstract
Hepatitis E virus (HEV) is a pathogen that has caused various epidemics and sporadic localized cases. It is considered to be a public health problem worldwide. HEV is a small RNA virus with a significant genetic diversity, a broad host range, and a [...] Read more.
Hepatitis E virus (HEV) is a pathogen that has caused various epidemics and sporadic localized cases. It is considered to be a public health problem worldwide. HEV is a small RNA virus with a significant genetic diversity, a broad host range, and a heterogeneous geographical distribution. HEV is mainly transmitted via the faecal–oral route. However, some animals are considered to be natural or potential reservoirs of HEV, thus elucidating the zoonotic route of transmission via the environment through contact with these animals or consumption of their by-products. Other routes of human-to-human transmission are not negligible. The various human–animal–environment entities, taken under one health approach, show the circulation and involvement of the different species (mainly Paslahepevirus balayani and Rocahepevirus ratti) and genotypes in the spreading of HEV infection. Regarding P. balayani, eight genotypes have been described, of which five genotypes (HEV-1 to 4 and HEV-7) are known to infect humans, while six have been reported to infect animals (HEV-3 to HEV-8). Furthermore, the C1 genotype of the rat HEV strain (HEV-C1) is known to be more frequently involved in human infections than the HEV-C2 genotype, which is known to infect mainly ferrets and minks. Contamination can occur during run-off, flooding, and poor sanitation, resulting in all of these genotypes being disseminated in the environment, contaminating both humans and animals. This systematic review followed the PRISMA guidelines and was registered in PROSPERO 2025 CRD420251071192. This research highlights the importance of investigating the transmission routes and major circulating HEV genotypes in order to adopt a holistic approach for controlling its emergence and preventing future outbreaks. In addition, this article outlines the knowledge of HEV in Africa, underlining the absence of large-scale studies at the environmental, human, and animal levels, which could improve HEV surveillance on the continent. Full article
Show Figures

Figure 1

12 pages, 1659 KiB  
Article
Cellular and Humoral Immune Profiles After Hepatitis E Vaccination and Infection
by Joakim Øverbø, Jennifer L. Dembinski, Toril Ranneberg Nilsen, Vethanayaki Sriranganathan, Veselka Petrova Dimova-Svetoslavova, Asma Aziz, K Zaman, Cathinka Halle Julin, Firdausi Qadri, Kathrine Stene-Johansen, Taufiqur Rahman Bhuiyan, Warda Haque and Susanne Dudman
Viruses 2025, 17(7), 901; https://doi.org/10.3390/v17070901 - 26 Jun 2025
Viewed by 425
Abstract
Hepatitis E virus (HEV) causes significant morbidity and mortality globally, particularly affecting vulnerable populations such as pregnant women. HEV239 (Hecolin®), a recombinant vaccine containing the immunodominant protruding (E2) domain of the HEV capsid protein, has demonstrated effectiveness, yet detailed human cellular [...] Read more.
Hepatitis E virus (HEV) causes significant morbidity and mortality globally, particularly affecting vulnerable populations such as pregnant women. HEV239 (Hecolin®), a recombinant vaccine containing the immunodominant protruding (E2) domain of the HEV capsid protein, has demonstrated effectiveness, yet detailed human cellular immune responses remain understudied. This study characterized humoral and cellular immune responses following vaccination with HEV239 or natural HEV infection in healthy Bangladeshi women aged 16–39 years. Using dual IFNγ and IL-4 ELISpot assays, we found robust, predominantly Th1-mediated cellular responses at 30 days after the third vaccine dose, comparable to responses during acute infection. Longitudinal antibody assessments confirmed sustained antibody production, primarily against the E2 domain of genotypes 1 and 3, persisting up to two years post-vaccination. Despite limitations related to sample size and assay sensitivity, our findings underscore the immunogenic potential of HEV239 and support a broader use in HEV-endemic regions. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

26 pages, 395 KiB  
Review
Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations
by Meng Wang, Binwei Duan, Mengcheng Liu, Yuxuan Zhang, Feng Wu, Guangming Li and Yabo Ouyang
Vaccines 2025, 13(6), 621; https://doi.org/10.3390/vaccines13060621 - 9 Jun 2025
Viewed by 1975
Abstract
Background: Hepatitis E virus (HEV) infection poses a significant health risk across diverse demographic groups, particularly among pregnant women, immunocompromised individuals, patients with chronic liver disease, and the elderly. The global epidemiology of HEV reveals distinct patterns of prevalence, transmission, and disease severity [...] Read more.
Background: Hepatitis E virus (HEV) infection poses a significant health risk across diverse demographic groups, particularly among pregnant women, immunocompromised individuals, patients with chronic liver disease, and the elderly. The global epidemiology of HEV reveals distinct patterns of prevalence, transmission, and disease severity among these populations, necessitating targeted vaccination strategies. The licensing of the Hecolin (HEV 239) vaccine offers promise, but gaps in clinical trial data and varying immune responses in high-risk groups challenge its widespread applicability. Scope: This review synthesizes data on HEV’s epidemiology, discusses the susceptibility of vulnerable populations, evaluates the efficacy and safety of HEV 239, and highlights the urgent need for clinical research tailored to these groups. Key findings underscore the complexity of vaccine response influenced by immunological, physiological, and environmental factors. Additionally, potential advancements in vaccine technology, including the development of broad-spectrum vaccines and innovative delivery systems, are discussed as future directions. Strategies: Addressing regulatory, economic, and logistical barriers remains crucial for effective HEV vaccination programs. A multidisciplinary approach integrating public health policy, rigorous clinical evaluations, and collaborative frameworks is essential to ensure equitable access to HEV vaccination, ultimately improving health outcomes on a global scale. Full article
(This article belongs to the Special Issue Hepatitis Vaccines: Safety, Efficacy and Global Impact)
9 pages, 973 KiB  
Article
Detection and Characterization of Paslahepevirus balayani (Hepatitis E Virus) in Dairy Products from Hebei Province, China
by Xinyue Hu, Jinfeng Wang, Yinuo Wang, Wanzhe Yuan, Jianchang Wang and Xiangdong Xu
Pathogens 2025, 14(6), 564; https://doi.org/10.3390/pathogens14060564 - 5 Jun 2025
Viewed by 661
Abstract
Paslahepevirus balayani (hepatitis E virus), a zoonotic pathogen transmitted primarily via the fecal–oral route, has undergone shifting transmission dynamics in China, with foodborne and zoonotic routes becoming increasingly significant. To assess the potential risk of HEV transmission through dairy products, this study investigated [...] Read more.
Paslahepevirus balayani (hepatitis E virus), a zoonotic pathogen transmitted primarily via the fecal–oral route, has undergone shifting transmission dynamics in China, with foodborne and zoonotic routes becoming increasingly significant. To assess the potential risk of HEV transmission through dairy products, this study investigated HEV RNA presence in raw milk from cows, sheep, and goats in Hebei Province, China. From March 2024 to April 2025, we collected 102 cow milk, 18 sheep milk, and 59 goat milk samples, analyzing them using RT-qPCR, with positive samples confirmed by RT-Nested PCR and partial ORF2 sequencing. While no HEV RNA was detected in cow milk, 3/18 (16.67%) sheep milk and 1/59 (1.69%) goat milk samples tested positive. Phylogenetic analysis of two sheep-derived and one goat-derived HEV isolate showed 99.43–100% nucleotide identity to local swine HEV strains (HEV/HB-SJZ158/CHN/2021 and HEV/HB-CD28/CHN/2021), all clustering within genotype 4d, the dominant subtype in the region. This study provided the first evidence of HEV RNA in sheep and goat milk in Hebei Province, suggesting possible cross-species transmission from pigs to ruminants. These findings highlighted the need for further research on HEV transmission risks through dairy products and emphasize the importance of monitoring zoonotic HEV strains in food safety assessments. Full article
Show Figures

Figure 1

15 pages, 5760 KiB  
Article
Pathological Characteristics of Pregnant Tree Shrews Infected by Zoonotic Hepatitis E Virus Genotype and the Effect of Estrogen on Virus Replication
by Peiying Zhu, Guojun Wang, Veerasak Punyapornwithaya, Chalita Jainonthee, Jijing Tian, Yan Liu, Fanan Suksawat, Sunpetch Angkititrakul, Yuchen Nan, Zailei Li, Xinhui Duan and Wengui Li
Vet. Sci. 2025, 12(5), 483; https://doi.org/10.3390/vetsci12050483 - 16 May 2025
Viewed by 629
Abstract
Hepatitis E, caused by the hepatitis E virus (HEV), is a zoonotic disease that extends beyond hepatocellular necrosis to replicate in multiple organs. While most infections are self-limiting, HEV infection during pregnancy is associated with severe outcomes, including acute liver failure, preterm delivery, [...] Read more.
Hepatitis E, caused by the hepatitis E virus (HEV), is a zoonotic disease that extends beyond hepatocellular necrosis to replicate in multiple organs. While most infections are self-limiting, HEV infection during pregnancy is associated with severe outcomes, including acute liver failure, preterm delivery, and miscarriage, with the mechanisms underlying this high pathogenicity remaining poorly understood. This study established a pregnant tree shrew model with a late-stage HEV infection and a cellular model using zoonotic HEV genotypes GT3 and GT4 to investigate the effects of estrogen on HEV replication. Results showed that negative-strand RNA detection revealed replicative intermediates in feces and tissues during the acute phase, with peak viral loads occurring within one week and the highest titers in bile. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels rose at 3 days post-inoculation (DPI), peaking at 7 DPI. Elevated estrogen levels post-miscarriage correlated with increased viral loads, a trend mirrored in cell culture models showing linear relationships between estrogen and viral replication. Histopathology demonstrated viral hepatitis lesions in liver tissues and abnormalities in the uterus, ovaries, and brain, including hydropic degeneration, neuronal disruption, and granulosa cell necrosis. This study developed a pregnant tree shrew model for HEV infection, providing a robust tool for exploring pathogenic mechanisms during pregnancy and genotype-specific differences in zoonotic HEV pathogenicity. These findings offer new insights into the role of estrogen in HEV replication and its contribution to adverse pregnancy outcomes. Full article
Show Figures

Figure 1

14 pages, 596 KiB  
Review
Thermal Inactivation of Hepatitis E Virus: A Narrative Review
by Tatsuo Kanda and Hiroaki Okamoto
Viruses 2025, 17(5), 702; https://doi.org/10.3390/v17050702 - 14 May 2025
Viewed by 747
Abstract
Hepatitis E virus (HEV) infection is an emerging infectious disease. HEV-1 and HEV-2 infect humans through contaminated water and foods, mainly in developing countries. HEV-3 and HEV-4 also infect humans through contaminated food and are thought to be zoonotic infections occurring in both [...] Read more.
Hepatitis E virus (HEV) infection is an emerging infectious disease. HEV-1 and HEV-2 infect humans through contaminated water and foods, mainly in developing countries. HEV-3 and HEV-4 also infect humans through contaminated food and are thought to be zoonotic infections occurring in both developing and developed countries. A vaccine for hepatitis E is licensed in only limited countries. The inactivation of infectious HEV is very important to ensure the safety of drinking water and foods. HEV-3 and HEV-4 RNA have been detected in some pig liver products, and it is possible that these foods may represent an infectious source of HEV. In this article, previous publications on the heat inactivation and heat stability of HEV are collected, and we discuss the present assessment of the heat inactivation of HEV. The thermal stability of HEV infection in cell culture systems and pig bioassays has been demonstrated, while the efficacy of the method of thermal inactivation using plasma products has not yet been established. Here, we propose that the treatment of HEV-contaminated foods at 95 °C for 10 min is one of the safest options for the inactivation of HEV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 1097 KiB  
Review
Research Progress on Hepatitis E Virus Culture
by Jie Zhang, Ziteng Liang, Fan Liu, Youchun Wang, Weijin Huang and Jianhui Nie
Pathogens 2025, 14(5), 456; https://doi.org/10.3390/pathogens14050456 - 6 May 2025
Viewed by 926
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen and the main cause of acute viral hepatitis in China, resulting in a significant burden on public health. Developing a highly efficient in vitro culture system for HEV is crucial for understanding the determinants of [...] Read more.
Hepatitis E virus (HEV) is a zoonotic pathogen and the main cause of acute viral hepatitis in China, resulting in a significant burden on public health. Developing a highly efficient in vitro culture system for HEV is crucial for understanding the determinants of HEV infection in humans and other animals, the pathogenic mechanisms, as well as the screening and evaluation of antiviral drugs. In this paper, the research progress on HEV in vitro culture systems is reviewed to provide a convenient reference for further research on HEV, aiding comprehensive efforts toward the widespread prevention and control of related diseases. Full article
Show Figures

Figure 1

19 pages, 350 KiB  
Review
Hepatitis A and E Viruses Are Important Agents of Acute Severe Hepatitis in Asia: A Narrative Review
by Reina Sasaki-Tanaka, Tatsuo Kanda, Takeshi Yokoo, Hiroyuki Abe, Kazunao Hayashi, Akira Sakamaki, Hiroteru Kamimura and Shuji Terai
Pathogens 2025, 14(5), 454; https://doi.org/10.3390/pathogens14050454 - 6 May 2025
Cited by 1 | Viewed by 1440
Abstract
Acute-on-chronic liver failure (ACLF) and acute liver failure (ALF) are severe hepatitis that occur in patients with and without chronic liver diseases and/or cirrhosis, respectively, and both often result in death. Hepatitis A virus (HAV) and hepatitis E virus (HEV) infection can cause [...] Read more.
Acute-on-chronic liver failure (ACLF) and acute liver failure (ALF) are severe hepatitis that occur in patients with and without chronic liver diseases and/or cirrhosis, respectively, and both often result in death. Hepatitis A virus (HAV) and hepatitis E virus (HEV) infection can cause these severe conditions. We reviewed the role of HAV and HEV, which infect humans through the fecal–oral route, in ALF and ACLF in Asian countries. This narrative review was the derived from a traditional non-systematic review. Hepatitis A should be recognized as one of the sexually transmitted infections, especially among men who have sex with men. HAV genotype IIIA infection seems to present a more severe clinical manifestation. Acute HEV-1 infection is associated with ALF in pregnant women in India. HEV-4, rather than HEV-3, was found in severe hepatitis in Japan. HEV also plays a role as a cause of acute insult and/or chronic liver disease in immunocompromised patients with ACLF. Further studies are needed for the development of vaccines and antivirals against HAV and HEV infections. Despite the limitations of the recording of cases and the extent of specific vaccinations, multidisciplinary cooperation, involving hepatologists, virologists, experts in public health, etc., may improve the treatment of HAV and HEV infection. Full article
22 pages, 17763 KiB  
Article
Plasmid-Based Reverse Genetics System Enabling One-Step Generation of Genotype 3 Hepatitis E Virus
by Tominari Kobayashi, Takashi Nishiyama, Kentaro Yamada, Kazumoto Murata and Hiroaki Okamoto
Viruses 2025, 17(5), 669; https://doi.org/10.3390/v17050669 - 3 May 2025
Viewed by 666
Abstract
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that poses a significant public health risk, yet its study is hindered by the complexity of conventional RNA-based reverse genetics systems. These systems require multiple steps, including genome cloning, in vitro transcription, and [...] Read more.
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that poses a significant public health risk, yet its study is hindered by the complexity of conventional RNA-based reverse genetics systems. These systems require multiple steps, including genome cloning, in vitro transcription, and capping, making them labor-intensive and susceptible to RNA degradation. In this study, we developed a single-step, plasmid-based HEV expression system that enabled direct intracellular transcription of the full-length HEV genome under a cytomegalovirus immediate-early (CMV-IE) promoter. The viral genome was flanked by hammerhead (HH) and hepatitis delta virus (HDV) ribozymes to ensure precise self-cleavage and the generation of authentic 5′ and 3′ termini. This system successfully supported HEV genome replication, viral protein expression, and progeny virion production at levels comparable to those obtained using in vitro-transcribed, capped HEV RNA. Additionally, a genetic marker introduced into the plasmid construct was stably retained in progeny virions, demonstrating the feasibility of targeted genetic modifications. However, plasmid-derived HEV exhibited delayed replication kinetics, likely due to the absence of an immediate 5′ cap. Attempts to enhance capping efficiency through co-expression of the vaccinia virus capping enzyme failed to improve HEV replication, suggesting that alternative strategies, such as optimizing the promoter design for capping, may be required. This plasmid-based HEV reverse genetics system simplifies the study of HEV replication and pathogenesis and provides a versatile platform for the genetic engineering of the HEV genome. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

40 pages, 1309 KiB  
Review
Trends and Challenges in the Detection and Environmental Surveillance of the Hepatitis E Virus
by Mariana Alves Elois, Catielen Paula Pavi, Yasmin Ferreira Souza Hoffmann Jempierre, Giulia Von Tönnemann Pilati, Lucas Zanchetta, Henrique Borges da Silva Grisard, Nerea García, David Rodríguez-Lázaro and Gislaine Fongaro
Microorganisms 2025, 13(5), 998; https://doi.org/10.3390/microorganisms13050998 - 26 Apr 2025
Viewed by 1263
Abstract
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is [...] Read more.
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is acute in low-income countries, HEV has also been recognized as a zoonotic disease in high-income countries. The zoonotic transmission requires flexible approaches to effectively monitor the virus, vectors, and reservoirs. However, the environmental monitoring of HEV presents additional challenges due to limitations in current detection methods, making it difficult to accurately assess the global prevalence of the virus. These challenges hinder efforts to fully understand the scope of the disease and to implement effective control measures. This review will explore these and other critical concerns, addressing gaps in HEV research and highlighting the need for improved strategies in the monitoring, prevention, and management of Hepatitis E using a One Health approach. Full article
Show Figures

Figure 1

8 pages, 928 KiB  
Case Report
Chronic Hepatitis E Virus Infection Without Liver Injury in a Patient with Chronic Kidney Disease
by Oliver Viera-Segura, Ilsy X. Duarte-López, Isidro Loera-Robles, Norberto Singh-Ríos, Arturo Calderón-Flores, Edgar D. Copado-Villagrana and Nora A. Fierro
Pathogens 2025, 14(5), 420; https://doi.org/10.3390/pathogens14050420 - 26 Apr 2025
Viewed by 659
Abstract
Hepatitis E virus (HEV), the causative agent of hepatitis E, is the leading cause of acute viral hepatitis worldwide; under immunosuppression, infection can lead to chronic liver disease. Furthermore, extrahepatic manifestations, particularly renal manifestations, are frequently associated with infection. This is important considering [...] Read more.
Hepatitis E virus (HEV), the causative agent of hepatitis E, is the leading cause of acute viral hepatitis worldwide; under immunosuppression, infection can lead to chronic liver disease. Furthermore, extrahepatic manifestations, particularly renal manifestations, are frequently associated with infection. This is important considering the global burden of chronic kidney disease (CKD). However, the study of chronic hepatitis E has been limited to liver disease, and its definition with respect to renal disease is still incomplete. Recently, through a protocol aimed at identifying HEV seroprevalence in a cohort of patients on hemodialysis, we incidentally identified HEV RNA in a patient with a history of alcoholism, diabetes mellitus, and essential systemic hypertension. In this study, we aimed to follow up this case to characterize hepatitis E in the context of CKD. Notably, we identified the development of chronic HEV genotype 3 infection without seroconversion or evidence of liver damage. Moreover, apparent immunocompetence was identified in the patient. Considering that HEV is still neglected in numerous countries and that it is not included in the differential diagnosis of kidney disease, our findings support the need to consider HEV infection in patients with renal disease, even in the absence of liver deterioration. Full article
(This article belongs to the Special Issue Genomic Epidemiology of High-Consequence Viruses)
Show Figures

Figure 1

20 pages, 1345 KiB  
Review
Hepatitis E Virus in the Role of an Emerging Food-Borne Pathogen
by Alica Pavlova, Bozena Kocikova, Michaela Urda Dolinska and Anna Jackova
Microorganisms 2025, 13(4), 885; https://doi.org/10.3390/microorganisms13040885 - 12 Apr 2025
Viewed by 1099
Abstract
Viral hepatitis E represents an important global health problem caused by the hepatitis E virus (HEV). Cases of HEV infection are increasingly associated with food-borne transmissions after the consumption of raw or undercooked food products from infected animals in high-income regions. Although most [...] Read more.
Viral hepatitis E represents an important global health problem caused by the hepatitis E virus (HEV). Cases of HEV infection are increasingly associated with food-borne transmissions after the consumption of raw or undercooked food products from infected animals in high-income regions. Although most cases of infection are asymptomatic, severe courses of infection have been reported in specific groups of people, predominantly among pregnant women and immunocompromised patients. The viral nucleic acid of HEV is increasingly being reported in food-producing animals and different products of an animal origin. Even though the incubation period for HEV infection is long, several direct epidemiological links between human cases and the consumption of HEV-contaminated meat and meat products have been described. In this article, we review the current knowledge on human HEV infections, HEV in different food-producing animals and products of an animal origin, as well as the accumulation and resistance to HEV in farm and slaughterhouse environments. We also provide preventive measures to help eliminate HEV from animals, the human population, and the environment. Full article
(This article belongs to the Special Issue Exploring Foodborne Pathogens: From Molecular to Safety Perspectives)
Show Figures

Figure 1

Back to TopTop