Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations
Abstract
1. Introduction
2. Pregnant Women
2.1. Immunological Changes During Pregnancy and Associated HEV Risk
2.1.1. Immune Modulation (Th2 Bias, Cytokine Shifts) and Its Impact on HEV Replication
2.1.2. Mechanistic Links to Severe Outcomes (Fulminant Hepatitis, Obstetric Complications)
2.2. Preclinical Insights and Animal Model Data
2.2.1. Liposome-Encapsulated Antigen Studies and Antibody Responses
2.2.2. Maternal–Fetal Antibody Transfer and Accelerated Immunization Schedules
2.3. Clinical Data Gaps and Ethical Considerations
2.3.1. Limitations of Current Clinical Trial Data in Pregnant Populations
2.3.2. Ethical Challenges and Considerations for Vaccine Trials During Pregnancy
2.4. Proposed Strategies for Vaccination
2.4.1. Vaccination Prior to Conception Versus Early Pregnancy Administration
2.4.2. Design of Multi-Center, Randomized Controlled Trials with Strict Monitoring
3. Immunocompromised Patients
3.1. Clinical Significance of HEV Infection in Immunocompromised Hosts
3.1.1. Increased Risk of Chronicity and Rapid Progression to Liver Cirrhosis
3.1.2. Specific Risks in Organ Transplant Recipients and HIV-Infected Patients
3.2. Impact of Immunosuppressive Therapies on Vaccine Response
3.2.1. Effects of Drugs (e.g., Tacrolimus, MMF) on Immunogenicity
3.2.2. Mechanisms Underlying Impaired Antibody and T Cell Responses
3.3. Strategies for Optimizing Immunization-Sequential “Vaccine–Immunomodulator” Approaches and Regimen Adjustments
3.4. Future Clinical Trial Considerations
3.4.1. Tailored Vaccine Schedules and Booster Strategies
3.4.2. Incorporation of Individualized Immunosuppressive Adjustments in Trial Designs
4. Patients with Chronic Liver Disease
4.1. Risk of HEV Superinfection in Chronic Liver Disease
4.1.1. Mechanisms of Accelerated Liver Decompensation and Failure
4.1.2. Importance of Patient Stratification (e.g., Child–Pugh Scores)
4.2. Evaluation of Vaccine Safety and Initial Immunogenicity Data
Challenges Posed by Cirrhosis-Associated Immune Dysfunction (CAID)
4.3. Long-Term Vaccine Efficacy and Immunomonitoring
4.3.1. Duration of Protective Antibody Levels and Memory Cell Formation
4.3.2. Consideration for Booster Doses and Enhanced Monitoring Protocols
5. The Elderly
5.1. Impact of Immunosenescence on Vaccine Response
Altered T Cell Subsets and Reduced Humoral Immunity
5.2. Strategies to Enhance Immunogenicity in the Elderly
5.2.1. Use of Adjuvants (e.g., MF59, AS04) and Improved Delivery Systems
5.2.2. Tailored Vaccination Regimens and Potential Adjustments in Dosing
5.3. Assessment of Cross-Genotype Protective Efficacy
6. Current Research Gaps and Challenges
6.1. Inadequacy of Clinical Data for Special Populations
6.1.1. Scarcity of Phase III Trial Data in Pregnant Women, Immunocompromised, and CLD Patients
6.1.2. Limited Long-Term Efficacy and Durability Studies
6.2. Genotypic Variability and Cross-Protection Concerns
6.2.1. Differences Between HEV Genotypes in Vaccine Performance
6.2.2. Designing In Vitro Assays to Assess Cross-Neutralization
6.3. WHO Prequalification and Global Accessibility Issues
7. Future Directions in HEV Vaccination Research
7.1. Expanding Clinical Trial Networks and Special Population Coverage
7.1.1. Designing Multi-Center Trials for High-Risk Groups
7.1.2. Optimizing Timing Strategies (e.g., Vaccination Prior to Exposure)
7.2. Novel Vaccine Platforms and Technological Innovations
7.2.1. Development of Broad-Spectrum or Multi-Epitope Vaccines
7.2.2. Exploration of Advanced Delivery Systems (Liposomes, Nanoparticles, DNA Platforms)
7.3. Integration with Public Health and Policy Strategies
7.3.1. Economic Evaluations and Cost-Effectiveness Studies for Global Uptake
7.3.2. Development of International Collaborations and Funding Mechanisms (e.g., GAVI Models)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khuroo, M.S.; Khuroo, M.S.; Khuroo, N.S. Hepatitis E: Discovery, global impact, control and cure. World J. Gastroenterol. 2016, 22, 7030–7045. [Google Scholar] [CrossRef] [PubMed]
- Krain, L.J.; Nelson, K.E.; Labrique, A.B. Host immune status and response to hepatitis E virus infection. Clin. Microbiol. Rev. 2014, 27, 139–165. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.E.; Heaney, C.D.; Labrique, A.B.; Kmush, B.L.; Krain, L.J. Hepatitis E: Prevention and treatment. Curr. Opin. Infect. Dis. 2016, 29, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R. Hepatitis e: Epidemiology and natural history. J. Clin. Exp. Hepatol. 2013, 3, 125–133. [Google Scholar] [CrossRef]
- Songtanin, B.; Molehin, A.J.; Brittan, K.; Manatsathit, W.; Nugent, K. Hepatitis E Virus Infections: Epidemiology, Genetic Diversity, and Clinical Considerations. Viruses 2023, 15, 1389. [Google Scholar] [CrossRef]
- Kirkwood, C.D.; Dobscha, K.R.; Steele, A.D. Hepatitis E should be a global public health priority: Recommendations for improving surveillance and prevention. Expert. Rev. Vaccines 2020, 19, 1129–1140. [Google Scholar] [CrossRef]
- Peron, J.M.; Larrue, H.; Izopet, J.; Buti, M. The pressing need for a global HEV vaccine. J. Hepatol. 2023, 79, 876–880. [Google Scholar] [CrossRef]
- Alexandrova, R.; Tsachev, I.; Kirov, P.; Abudalleh, A.; Hristov, H.; Zhivkova, T.; Dyakova, L.; Baymakova, M. Hepatitis E Virus (HEV) Infection Among Immunocompromised Individuals: A Brief Narrative Review. Infect. Drug Resist. 2024, 17, 1021–1040. [Google Scholar] [CrossRef]
- Damiris, K.; Aghaie, M.M.; Niazi, M.; Pyrsopoulos, N. Hepatitis E in immunocompromised individuals. World J. Hepatol. 2022, 14, 482–494. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Z.Z.; Xia, N.S. Prophylactic vaccines for hepatitis type E. Zhonghua Gan Zang Bing Za Zhi 2023, 31, 477–482. [Google Scholar]
- Sayed, I.M.; Vercouter, A.S.; Abdelwahab, S.F.; Vercauteren, K.; Meuleman, P. Is hepatitis E virus an emerging problem in industrialized countries? Hepatology 2015, 62, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Z.; Li, H.; Tian, J.; Chen, M.; Liu, T. Preparation and Immune Effect of HEV ORF2 P206@PLGA Nanoparticles. Nanomaterials 2022, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Azam, B.; Marti, M.; Goel, A.; Aggarwal, R. Immunogenicity, Efficacy, and Effectiveness of Two-Dose and Shorter Schedules of Hepatitis E Vaccine: A Systematic Review. Vaccines 2024, 13, 28. [Google Scholar] [CrossRef]
- Overbo, J.; Aziz, A.; Zaman, K.; Clemens, J.; Halle, J.C.; Qadri, F.; Stene-Johansen, K.; Biswas, R.; Islam, S.; Rahman, B.T.; et al. Immunogenicity and safety of a two-dose regimen with hepatitis E virus vaccine in healthy adults in rural Bangladesh: A randomized, double-blind, controlled, phase 2/pilot trial. Vaccine 2023, 41, 1059–1066. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.B.; Li, R.C.; Li, Y.M.; Zheng, Y.J.; Li, Y.P.; Luo, D.; Pan, B.B.; Nong, Y.; Ge, S.X.; et al. Randomized-controlled phase II clinical trial of a bacterially expressed recombinant hepatitis E vaccine. Vaccine 2009, 27, 1869–1874. [Google Scholar] [CrossRef]
- Zhu, F.C.; Zhang, J.; Zhang, X.F.; Zhou, C.; Wang, Z.Z.; Huang, S.J.; Wang, H.; Yang, C.L.; Jiang, H.M.; Cai, J.P.; et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A large-scale, randomised, double-blind place-bo-controlled, phase 3 trial. Lancet 2010, 376, 895–902. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Su, Y.; Zhuang, C.; Tang, Z.; Huang, X.; Chen, Q.; Zhu, K.; Hu, X.; Ying, D.; et al. Long-term efficacy of a recombinant hepatitis E vaccine in adults: 10-year results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 403, 813–823. [Google Scholar] [CrossRef]
- Huang, X.; Lu, J.; Liao, M.; Huang, Y.; Wu, T.; Xia, N. Progress and Challenges to Hepatitis E Vaccine Development and Deployment. Vaccines 2024, 12, 719. [Google Scholar] [CrossRef]
- Hepatitis E vaccine: WHO position paper, May 2015. Wkly. Epidemiol. Rec. 2015, 90, 185–200.
- Goel, A.; Aggarwal, R. Hepatitis E: Epidemiology, Clinical Course, Prevention, and Treatment. Gastroenterol. Clin. N. Am. 2020, 49, 315–330. [Google Scholar] [CrossRef]
- Li, S.W.; Zhao, Q.; Wu, T.; Chen, S.; Zhang, J.; Xia, N.S. The development of a recombinant hepatitis E vaccine HEV 239. Hum. Vaccines Immunother. 2015, 11, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Meeting of the Strategic Advisory Group of Experts on Immunization, March 2024: Conclusions and Recommendations. Available online: https://www.who.int/publications/i/item/WER-9922-285-306 (accessed on 19 May 2025).
- Dudman, S.; Zerja, A.; Hasanoglu, I.; Ruta, S.; van Welzen, B.; Nicolini, L.A.; Yonga, P.; Overbo, J.; Rawat, S.; Habibovic, S.; et al. Global vaccination against hepatitis E virus: Position paper from the European Society of Clinical Microbiology and Infectious Diseases Viral Hepatitis Study Group. Clin. Microbiol. Infect. 2025, 31, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 1997, 18, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012, 62, 263–271. [Google Scholar] [CrossRef]
- Vargas-Villavicencio, J.A.; De Leon-Nava, M.A.; Morales-Montor, J. Immunoendocrine mechanisms associated with resistance or susceptibility to parasitic diseases during pregnancy. Neuroimmunomodulat 2009, 16, 114–121. [Google Scholar] [CrossRef]
- Kang, S.; Myoung, J. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms. J. Microbiol. Biotechnol. 2017, 27, 1727–1735. [Google Scholar] [CrossRef]
- Qian, Z.; Li, T.; Xia, Y.; Cong, C.; Chen, S.; Zhang, Y.; Gong, S.; Wang, W.; Liu, H.; Chen, D.; et al. Genotype 4 Hepatitis E virus replicates in the placenta, causes severe histopathological damage, and vertically transmits to fetuses. J. Infect. 2023, 87, 34–45. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, J.; Luo, D.; Cheng, L.; Wang, Y. Deregulation of immune response contributing to fulminant hepatitis in HEV infected pregnant women. J. Med. Virol. 2024, 96, e29639. [Google Scholar] [CrossRef]
- Ratho, R.K.; Thakur, V.; Arya, S.; Singh, M.P.; Suri, V.; Das, A. Placenta as a site of HEV replication and inflammatory cytokines modulating the immunopathogenesis of HEV in pregnant women. J. Med. Virol. 2022, 94, 3457–3463. [Google Scholar] [CrossRef]
- Labrique, A.B.; Sikder, S.S.; Krain, L.J.; West, K.J.; Christian, P.; Rashid, M.; Nelson, K.E. Hepatitis E, a vaccine-preventable cause of maternal deaths. Emerg. Infect. Dis. 2012, 18, 1401–1404. [Google Scholar] [CrossRef]
- Orosz, L.; Sarvari, K.P.; Dernovics, A.; Rosztoczy, A.; Megyeri, K. Pathogenesis and clinical features of severe hepatitis E virus infection. World J. Virol. 2024, 13, 91580. [Google Scholar] [CrossRef] [PubMed]
- Jotautis, V.; Sarantaki, A. Evaluating the Efficacy and Safety of Hepatitis E Vaccination in Reproductive-Age Women: A Systematic Review and Meta-Analysis. Vaccines 2025, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Larrue, H.; Abravanel, F.; Peron, J.M. Hepatitis E, what is the real issue? Liver Int. 2021, 41 (Suppl. S1), 68–72. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Perrin, H.; Abravanel, F.; Blasco-Baque, V.; Peron, J.M. Hepatitis E, the neglected one. Liver Int. 2016, 36 (Suppl. S1), 130–134. [Google Scholar] [CrossRef]
- Joshi, S.S.; Arankalle, V.A. Enhanced humoral response in pregnant mice immunized with liposome encapsulated recombinant neutralizing epitope protein of Hepatitis- E virus. Virol. J. 2015, 12, 70. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Z.; Dai, C.; He, Q.; Liang, Z.; Liu, T.; Huang, W.; Wang, Y.; Wang, L.; Wang, L. Efficacy of an accelerated vaccination schedule against hepatitis E virus infection in pregnant rabbits. J. Med. Virol. 2023, 95, e28193. [Google Scholar] [CrossRef]
- Joshi, S.S.; Arankalle, V.A. Differential Immune Responses in Mice Immunized with Recombinant Neutralizing Epitope Protein of Hepatitis E Virus Formulated with Liposome and Alum Adjuvants. Viral Immunol. 2016, 29, 350–360. [Google Scholar] [CrossRef]
- Kulkarni, S.P.; Thanapati, S.; Arankalle, V.A.; Tripathy, A.S. Specific memory B cell response and participation of CD4+ central and effector memory T cells in mice immunized with liposome encapsulated recombinant NE protein based Hepatitis E vaccine candidate. Vaccine 2016, 34, 5895–5902. [Google Scholar] [CrossRef]
- Gerdts, V.; van Drunen, L.D.H.S.; Potter, A. Protection of neonates and infants by maternal immunization. Expert Rev. Vaccines 2016, 15, 1347–1349. [Google Scholar] [CrossRef]
- Zaman, K.; Dudman, S.; Stene-Johansen, K.; Qadri, F.; Yunus, M.; Sandbu, S.; Gurley, E.S.; Overbo, J.; Julin, C.H.; Dembinski, J.L.; et al. HEV study protocol: Design of a cluster-randomised, blinded trial to assess the safety, immunogenicity and effectiveness of the hepatitis E vaccine HEV 239 (Hecolin) in women of childbearing age in rural Bangladesh. BMJ Open 2020, 10, e33702. [Google Scholar] [CrossRef]
- Van Spall, H. Exclusion of pregnant and lactating women from COVID-19 vaccine trials: A missed opportunity. Eur. Heart J. 2021, 42, 2724–2726. [Google Scholar] [CrossRef] [PubMed]
- Meaney-Delman, D.; Carroll, S.; Polen, K.; Jatlaoui, T.C.; Meyer, S.; Oliver, S.; Gee, J.; Shimabukuro, T.; Razzaghi, H.; Riley, L.; et al. Planning for the future of maternal immunization: Building on lessons learned from the COVID-19 pandemic. Vaccine 2024, 42 (Suppl. S3), 125644. [Google Scholar] [CrossRef] [PubMed]
- Minkoff, H.; Ecker, J. Balancing risks: Making decisions for maternal treatment without data on fetal safety. Am. J. Obstet. Gynecol. 2021, 224, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Minchin, J.; Harris, G.H.; Baumann, S.; Smith, E.R. Exclusion of pregnant people from emergency vaccine clinical trials: A systematic review of clinical trial protocols and reporting from 2009 to 2019. Vaccine 2023, 41, 5159–5181. [Google Scholar] [CrossRef]
- Manca, T.A.; Sadarangani, M.; Halperin, S.A.; Langley, J.M.; McClymont, E.; MacDonald, S.E.; Top, K.A. Vaccine regulation should require and enforce the inclusion of pregnant and breastfeeding women in prelicensure clinical trials. Hum. Vaccines Immunother. 2022, 18, 2104019. [Google Scholar] [CrossRef]
- Gamad, N.; Shafiq, N.; Mohindra, R.; Bhalla, A.; Malhotra, S. Some reflections on vaccine research ethics during COVID-19 pandemic. Postgrad. Med. J. 2022, 98, e84–e85. [Google Scholar] [CrossRef]
- Geoghegan, S.; O’Callaghan, K.P.; Offit, P.A. Vaccine Safety: Myths and Misinformation. Front. Microbiol. 2020, 11, 372. [Google Scholar] [CrossRef]
- Kamar, N.; Selves, J.; Mansuy, J.M.; Ouezzani, L.; Peron, J.M.; Guitard, J.; Cointault, O.; Esposito, L.; Abravanel, F.; Danjoux, M.; et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N. Engl. J. Med. 2008, 358, 811–817. [Google Scholar] [CrossRef]
- Kamar, N.; Izopet, J. Does chronic hepatitis E virus infection exist in immunocompetent patients? Hepatology 2014, 60, 427. [Google Scholar] [CrossRef]
- Abravanel, F.; Barrague, H.; Dorr, G.; Saune, K.; Peron, J.M.; Alric, L.; Kamar, N.; Izopet, J.; Champagne, E. Conventional and innate lymphocytes response at the acute phase of HEV infection in transplanted patients. J. Infect. 2016, 72, 723–730. [Google Scholar] [CrossRef]
- Kamar, N.; Izopet, J.; Pavio, N.; Aggarwal, R.; Labrique, A.; Wedemeyer, H.; Dalton, H.R. Hepatitis E virus infection. Nat. Rev. Dis. Primers 2017, 3, 17086. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, H.; Pischke, S.; Manns, M.P. Pathogenesis and treatment of hepatitis e virus infection. Gastroenterology 2012, 142, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Li, S.; Wu, T.; Zhang, J.; Xia, N.; Zhao, Q. Prophylaxis against hepatitis E: At risk populations and human vaccines. Expert Rev. Vaccines 2016, 15, 815–827. [Google Scholar] [CrossRef]
- Kamar, N.; Garrouste, C.; Haagsma, E.B.; Garrigue, V.; Pischke, S.; Chauvet, C.; Dumortier, J.; Cannesson, A.; Cassuto-Viguier, E.; Thervet, E.; et al. Factors associated with chronic hepatitis in patients with hepatitis E virus infection who have received solid organ transplants. Gastroenterology 2011, 140, 1481–1489. [Google Scholar] [CrossRef]
- Whitsett, M.; Feldman, D.M.; Jacobson, I. Hepatitis E Virus Infection in the United States: Current Understanding of the Prevalence and Significance in the Liver Transplant Patient Population and Proposed Diagnostic and Treatment Strategies. Liver Transpl. 2020, 26, 709–717. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Wang, C.; Zheng, J.; Jiang, W.; Liu, H.; Zhao, Y.; Li, Z.; Gao, Y.; Wang, Y. Incidence and risk factors of de novo hepatitis E virus infection after receiving liver transplantation. J. Med. Virol. 2024, 96, e29939. [Google Scholar] [CrossRef]
- Koning, L.; Pas, S.D.; de Man, R.A.; Balk, A.H.; de Knegt, R.J.; Ten, K.F.; Osterhaus, A.D.; van der Eijk, A.A. Clinical implications of chronic hepatitis E virus infection in heart transplant recipients. J. Heart Lung Transplant. 2013, 32, 78–85. [Google Scholar] [CrossRef]
- Sherman, K.E.; Terrault, N.; Barin, B.; Rouster, S.D.; Shata, M.T. Hepatitis E infection in HIV-infected liver and kidney transplant candidates. J. Viral Hepat. 2014, 21, e74–e77. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Trongtorsak, A.; Puthenpura, M.M.; Boonpheng, B.; Thongprayoon, C.; Wijarnpreecha, K.; Choudhury, A.; Kaewput, W.; Mao, S.A.; Mao, M.A.; et al. Hepatitis E in solid organ transplant recipients: A systematic review and meta-analysis. World J. Gastroenterol. 2021, 27, 1240–1254. [Google Scholar] [CrossRef]
- Aslan, A.T.; Balaban, H.Y. Hepatitis E virus: Epidemiology, diagnosis, clinical manifestations, and treatment. World J. Gastroenterol. 2020, 26, 5543–5560. [Google Scholar] [CrossRef]
- Colson, P.; Dhiver, C.; Gerolami, R. Hepatitis E virus as a newly identified cause of acute viral hepatitis during human immunodeficiency virus infection. Clin. Microbiol. Infect. 2008, 14, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Juarez, A.; Lopez-Lopez, P.; Frias, M.; Rivero, A. Hepatitis E Infection in HIV-Infected Patients. Front. Microbiol. 2019, 10, 1425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ren, L.; Xia, X.; Miao, Z.; Huang, F.; Li, Y.; Zhu, M.; Xie, Z.; Xu, Y.; Qian, Y.; et al. Hepatitis E virus infection in HIV-infected patients: A large cohort study in Yunnan province, China. J. Med. Virol. 2018, 90, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Ingiliz, P.; Mayr, C.; Obermeier, M.; Herbst, H.; Polywka, S.; Pischke, S. Persisting hepatitis E virus infection leading to liver cirrhosis despite recovery of the immune system in an HIV-infected patient. Clin. Res. Hepatol. Gastroenterol. 2016, 40, e23–e25. [Google Scholar] [CrossRef]
- Bae, S.; Alejo, J.L.; Chiang, T.; Werbel, W.A.; Tobian, A.; Moore, L.W.; Guha, A.; Huang, H.J.; Knight, R.J.; Gaber, A.O.; et al. mTOR inhibitors, mycophenolates, and other immunosuppression regimens on antibody response to SARS-CoV-2 mRNA vaccines in solid organ transplant recipients. Am. J. Transplant. 2022, 22, 3137–3142. [Google Scholar] [CrossRef]
- Mulder, M.B.; van der Eijk, A.A.; GeurtsvanKessel, C.H.; Erler, N.S.; de Winter, B.; Polak, W.G.; Metselaar, H.J.; den Hoed, C.M. High antibody response in relation to immunosuppressive blood levels in liver transplant recipients after SARS-CoV-2 vaccination: An observational, cohort study. Gut 2022, 71, 2605–2608. [Google Scholar] [CrossRef]
- Lee, W.C.; Hung, H.C.; Lee, J.C.; Huang, C.G.; Huang, P.W.; Gu, P.W.; Wang, Y.C.; Cheng, C.H.; Wu, T.H.; Lee, C.F.; et al. Adjustment of Immunosuppressants to Facilitate Anti-COVID-19 Antibody Production after mRNA Vaccination in Liver Transplant Recipients. Viruses 2023, 15, 678. [Google Scholar] [CrossRef]
- Larpparisuth, N.; Pongsakornkullachart, K.; Ratchawang, N.; Vongwiwatana, A.; Skulratanasak, P. Impact of immunosuppressive regimens on antibody response after COVID-19 vaccination among Thai kidney transplant recipients. Heliyon 2025, 11, e42291. [Google Scholar] [CrossRef]
- Mori, Y.; Uchida, N.; Harada, T.; Katayama, Y.; Wake, A.; Iwasaki, H.; Eto, T.; Morishige, S.; Fujisaki, T.; Ito, Y.; et al. Predictors of impaired antibody response after SARS-CoV-2 mRNA vaccination in hematopoietic cell transplant recipients: A Japanese multicenter observational study. Am. J. Hematol. 2023, 98, 102–111. [Google Scholar] [CrossRef]
- Fatly, Z.A.; Betjes, M.; Dik, W.A.; Fouchier, R.; Reinders, M.; de Weerd, A.E. Mycophenolate mofetil hampers antibody responses to a broad range of vaccinations in kidney transplant recipients: Results from a randomized controlled study. J. Infect. 2024, 88, 106133. [Google Scholar] [CrossRef]
- Prendecki, M.; Clarke, C.; Edwards, H.; McIntyre, S.; Mortimer, P.; Gleeson, S.; Martin, P.; Thomson, T.; Randell, P.; Shah, A.; et al. Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression. Ann. Rheum. Dis. 2021, 80, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Iryaningrum, M.R.; Cahyadi, A.; Damara, F.A.; Bandiara, R.; Marbun, M. Seroconversion rates in kidney transplant recipients following SARS-CoV-2 vaccination and its association with immunosuppressive agents: A systematic review and meta-analysis. Clin. Exp. Vaccine Res. 2023, 12, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wu, X.L.; Ou, S.H.; Lin, C.X.; Cheng, T.; Li, S.W.; Ng, M.H.; Zhang, J.; Xia, N.S. Difference of T cell and B cell activation in two homologous proteins with similar antigenicity but great distinct immunogenicity. Mol. Immunol. 2007, 44, 3261–3266. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, J.L. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020. Viral Immunol. 2020, 33, 251–252. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, A.; Hwang, Y.K.; Kang, C.Y.; Ha, S.J. Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection. Immune Netw. 2014, 14, 207–218. [Google Scholar] [CrossRef]
- Dubois, C.N.; Baldwin, S.L.; Orr, M.T.; Desbien, A.L.; Gage, E.; Hofmeyer, K.A.; Coler, R.N. Antigen presentation by B cells guides programing of memory CD4+ T-cell responses to a TLR4-agonist containing vaccine in mice. Eur. J. Immunol. 2016, 46, 2719–2729. [Google Scholar] [CrossRef]
- Moorman, J.P.; Zhang, C.L.; Ni, L.; Ma, C.J.; Zhang, Y.; Wu, X.Y.; Thayer, P.; Islam, T.M.; Borthwick, T.; Yao, Z.Q. Impaired hepatitis B vaccine responses during chronic hepatitis C infection: Involvement of the PD-1 pathway in regulating CD4+ T cell responses. Vaccine 2011, 29, 3169–3176. [Google Scholar] [CrossRef]
- Saha, C.K.; Mahbub, H.M.; Saddam, H.M.; Asraful, J.M.; Azad, A.K. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac. J. Trop. Med. 2017, 10, 529–538. [Google Scholar] [CrossRef]
- Horvatits, T.; Schulze, Z.W.J.; Lutgehetmann, M.; Lohse, A.W.; Pischke, S. The Clinical Perspective on Hepatitis E. Viruses 2019, 11, 617. [Google Scholar] [CrossRef]
- Sabbaghian, E.; Roodbari, F.; Amani, J.; Rafiei, A. In vitro evaluation of a polytope DNA construct as a novel DNA vaccine strategy against human cytomegalovirus-associated diseases. Acta Virol. 2017, 61, 97–104. [Google Scholar] [CrossRef]
- Salazar, A.M.; Erlich, R.B.; Mark, A.; Bhardwaj, N.; Herberman, R.B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: Case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2014, 2, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Manez, R.; Kusne, S.; Linden, P.; Gonzalez-Pinto, I.; Bonet, H.; Kramer, D.; Fung, J.J.; Starzl, T.E. Temporary withdrawal of immunosuppression for life-threatening infections after liver transplantation. Transplantation 1994, 57, 149–151. [Google Scholar] [PubMed]
- Shami, J.; Pathadka, S.; Chan, E.W.; Hui, J.; Sato, R.; Patil, S.; Li, X. Evaluating the cost-effectiveness of a sequential pneumococcal vaccination compared to single-dose vaccination strategy for adults in Hong Kong. Hum. Vaccines Immunother. 2020, 16, 1937–1944. [Google Scholar] [CrossRef]
- Cui, Y.; Ho, M.; Hu, Y.; Shi, Y. Vaccine adjuvants: Current status, research and development, licensing, and future opportunities. J. Mater. Chem. B 2024, 12, 4118–4137. [Google Scholar] [CrossRef] [PubMed]
- Hasbal, N.B.; Turgut, D.; Gok, O.E.; Ulu, S.; Gungor, O. Effect of Calcineurin Inhibitors and Mammalian Target of Rapamycin Inhibitors on the Course of COVID-19 in Kidney Transplant Recipients. Ann. Transplant. 2021, 26, e929279. [Google Scholar] [CrossRef]
- Rodrigues, C.; Plotkin, S.A. The influence of interval between doses on response to vaccines. Vaccine 2021, 39, 7123–7127. [Google Scholar] [CrossRef]
- Livieratos, A.; Schiro, L.E.; Gogos, C.; Akinosoglou, K. Durability of Adaptive Immunity in Immunocompetent and Immunocompromised Patients Across Different Respiratory Viruses: RSV, Influenza, and SARS-CoV-2. Vaccines 2024, 12, 1444. [Google Scholar] [CrossRef]
- Chen, P.; Bergman, P.; Blennow, O.; Hansson, L.; Mielke, S.; Nowak, P.; Gao, Y.; Soderdahl, G.; Osterborg, A.; Smith, C.; et al. Real-world assessment of immunogenicity in immunocompromised individuals following SARS-CoV-2 mRNA vaccination: A two-year follow-up of the prospective clinical trial COVAXID. eBioMedicine 2024, 109, 105385. [Google Scholar] [CrossRef]
- Borgogna, C.; Ferrante, D.; Rosso, G.; Guglielmetti, G.; Lo, C.I.; Raviola, S.; Caneparo, V.; Quaglia, M.; Cantaluppi, V.; Gariglio, M. A prospective humoral immune monitoring study of kidney transplant recipients receiving three doses of SARS-CoV-2 mRNA vaccine. J. Med. Virol. 2024, 96, e29710. [Google Scholar] [CrossRef]
- Schrezenmeier, E.; Rincon-Arevalo, H.; Jens, A.; Stefanski, A.L.; Hammett, C.; Osmanodja, B.; Koch, N.; Zukunft, B.; Beck, J.; Oellerich, M.; et al. Temporary antimetabolite treatment hold boosts SARS-CoV-2 vaccination-specific humoral and cellular immunity in kidney transplant recipients. JCI Insight 2022, 7, e157836. [Google Scholar] [CrossRef]
- Schrezenmeier, E.; Rincon-Arevalo, H.; Stefanski, A.L.; Potekhin, A.; Staub-Hohenbleicher, H.; Choi, M.; Bachmann, F.; Probeta, V.; Hammett, C.; Schrezenmeier, H.; et al. B and T Cell Responses after a Third Dose of SARS-CoV-2 Vaccine in Kidney Transplant Recipients. J. Am. Soc. Nephrol. 2021, 32, 3027–3033. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shaw, R.H.; Stuart, A.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef] [PubMed]
- Bohler, T.; Nolting, J.; Kamar, N.; Gurragchaa, P.; Reisener, K.; Glander, P.; Neumayer, H.H.; Budde, K.; Klupp, J. Validation of immunological biomarkers for the pharmacodynamic monitoring of immunosuppressive drugs in humans. Ther. Drug Monit. 2007, 29, 77–86. [Google Scholar] [CrossRef]
- Bestard, O.; Meneghini, M.; Crespo, E.; Bemelman, F.; Koch, M.; Volk, H.D.; Viklicky, O.; Giral, M.; Banas, B.; Ruiz, J.C.; et al. Preformed T cell alloimmunity and HLA eplet mismatch to guide immunosuppression minimization with tacrolimus monotherapy in kidney transplantation: Results of the CELLIMIN trial. Am. J. Transplant. 2021, 21, 2833–2845. [Google Scholar] [CrossRef] [PubMed]
- Morath, C.; Schmitt, A.; Schmitt, M.; Wang, L.; Kleist, C.; Opelz, G.; Susal, C.; Tran, T.H.; Scherer, S.; Schwenger, V.; et al. Individualised immunosuppression with intravenously administered donor-derived modified immune cells compared with standard of care in living donor kidney transplantation (TOL-2 Study): Protocol for a multicentre, open-label, phase II, randomised controlled trial. BMJ Open 2022, 12, e66128. [Google Scholar]
- Wohlfahrtova, M.; Viklicky, O. Recent trials in immunosuppression and their consequences for current therapy. Curr. Opin. Organ. Transplant. 2014, 19, 387–394. [Google Scholar] [CrossRef]
- Rivero-Juarez, A.; Aguilera, A.; Avellon, A.; Garcia-Deltoro, M.; Garcia, F.; Gortazar, C.; Granados, R.; Macias, J.; Merchante, N.; Oteo, J.A.; et al. Executive summary: Consensus document of the diagnosis, management and prevention of infection with the hepatitis E virus: Study Group for Viral Hepatitis (GEHEP) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm. Infecc. Microbiol. Clin. Engl. Ed. 2020, 38, 28–32. [Google Scholar] [CrossRef]
- Ballester, M.P.; Jalan, R.; Mehta, G. Vaccination in liver diseases and liver Transplantation: Recommendations, implications and opportunities in the post-covid era. JHEP Rep. 2023, 5, 100776. [Google Scholar] [CrossRef]
- Nasir, M.; Wu, G.Y. HEV and HBV Dual Infection: A Review. J. Clin. Transl. Hepatol. 2020, 8, 313–321. [Google Scholar] [CrossRef]
- Blasco-Perrin, H.; Peron, J.M. Hepatic and extra-hepatic manifestations of hepatitis E virus infection. Presse Med 2018, 47 Pt 1, 620–624. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, W.; Yu, X.; Hu, J.; Zhang, X.; Yang, M.; Sheng, J.; Shi, Y. Hepatitis E virus superinfection impairs long-term outcome in hospitalized patients with hepatitis B virus-related decompensated liver cirrhosis. Ann. Hepatol. 2023, 28, 100878. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.C.; Liu, C.J.; Chang, C.T.; Su, T.H.; Yang, W.T.; Tsai, C.H.; Chen, C.L.; Yang, H.C.; Liu, C.H.; Chen, P.J.; et al. HEV superinfection accelerates disease progression in patients with chronic HBV infection and increases mortality in those with cirrhosis. J. Hepatol. 2020, 72, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, S.Y.; Zhang, D.D.; Li, X.Y.; Zhang, Y.L.; Li, W.X.; Yan, J.J.; Wang, M.; Xun, J.N.; Lu, C.; et al. Clinical features of acute hepatitis E super-infections on chronic hepatitis B. World J. Gastroenterol. 2016, 22, 10388–10397. [Google Scholar] [CrossRef] [PubMed]
- Wittkop, L.; Boettler, T. More than shots in the dark: Driving vaccine efficacy in cirrhosis. Gut 2023, 73, 8–9. [Google Scholar] [CrossRef]
- Simbrunner, B.; Hartl, L.; Jachs, M.; Bauer, D.; Scheiner, B.; Hofer, B.S.; Stattermayer, A.F.; Marculescu, R.; Trauner, M.; Mandorfer, M.; et al. Dysregulated biomarkers of innate and adaptive immunity predict infections and disease progression in cirrhosis. JHEP Rep. 2023, 5, 100712. [Google Scholar] [CrossRef]
- Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Alvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Guo, J.S. Clinical features and significance of cirrhosis-associated immune dysfunction. Zhonghua Gan Zang Bing Za Zhi 2016, 24, 724–727. [Google Scholar]
- Irvine, K.M.; Ratnasekera, I.; Powell, E.E.; Hume, D.A. Causes and Consequences of Innate Immune Dysfunction in Cirrhosis. Front. Immunol. 2019, 10, 293. [Google Scholar]
- Schinas, G.; Polyzou, E.; Mitropetrou, F.; Pazionis, A.; Gogos, C.; Triantos, C.; Akinosoglou, K. COVID-19 Vaccination in Patients with Chronic Liver Disease. Viruses 2022, 14, 2778. [Google Scholar] [CrossRef]
- Innis, B.L.; Lynch, J.A. Immunization against Hepatitis E. Cold Spring Harb. Perspect. Med. 2018, 8, a032573. [Google Scholar] [CrossRef]
- Letafati, A.; Taghiabadi, Z.; Roushanzamir, M.; Memarpour, B.; Seyedi, S.; Farahani, A.V.; Norouzi, M.; Karamian, S.; Zebardast, A.; Mehrabinia, M.; et al. From discovery to treatment: Tracing the path of hepatitis E virus. Virol. J. 2024, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Georgiev, P.; Ringel, A.E.; Sharpe, A.H.; Haigis, M.C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 2023, 35, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Ongradi, J.; Kovesdi, V. Factors that may impact on immunosenescence: An appraisal. Immun. Ageing 2010, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Bulati, M.; Caruso, C.; Colonna-Romano, G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by “inflamm-ageing”. Ageing Res. Rev. 2017, 36, 125–136. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Garcia, D.; Blomberg, B.B. B Cell Immunosenescence. Annu. Rev. Cell Dev. Biol. 2020, 36, 551–574. [Google Scholar] [CrossRef]
- Boraschi, D.; Italiani, P. Immunosenescence and vaccine failure in the elderly: Strategies for improving response. Immunol. Lett. 2014, 162 Pt B, 346–353. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef]
- Chen, L.; Shao, C.; Li, J.; Zhu, F. Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines 2024, 12, 1289. [Google Scholar] [CrossRef]
- Grubeck-Loebenstein, B.; Della, B.S.; Iorio, A.M.; Michel, J.P.; Pawelec, G.; Solana, R. Immunosenescence and vaccine failure in the elderly. Aging Clin. Exp. Res. 2009, 21, 201–209. [Google Scholar] [CrossRef]
- Oh, S.J.; Lee, J.K.; Shin, O.S. Aging and the Immune System: The Impact of Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity. Immune Netw. 2019, 19, e37. [Google Scholar] [CrossRef]
- Weinberger, B. Adjuvant strategies to improve vaccination of the elderly population. Curr. Opin. Pharmacol. 2018, 41, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Tregoning, J.S.; Russell, R.F.; Kinnear, E. Adjuvanted influenza vaccines. Hum. Vaccines Immunother. 2018, 14, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Podda, A.; Del, G.G. MF59-adjuvanted vaccines: Increased immunogenicity with an optimal safety profile. Expert. Rev. Vaccines 2003, 2, 197–203. [Google Scholar] [CrossRef]
- Mohan, T.; Verma, P.; Rao, D.N. Novel adjuvants & delivery vehicles for vaccines development: A road ahead. Indian J. Med. Res. 2013, 138, 779–795. [Google Scholar]
- Calabro, S.; Tritto, E.; Pezzotti, A.; Taccone, M.; Muzzi, A.; Bertholet, S.; De Gregorio, E.; O’Hagan, D.T.; Baudner, B.; Seubert, A. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 2013, 31, 3363–3369. [Google Scholar] [CrossRef]
- Ko, E.J.; Kang, S.M. Immunology and efficacy of MF59-adjuvanted vaccines. Hum. Vaccines Immunother. 2018, 14, 3041–3045. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, Z.; Liu, H.; Man, J.; Oladejo, A.O.; Ibrahim, S.; Wang, S.; Hao, B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024, 16, 674. [Google Scholar] [CrossRef]
- Ghaffar, K.A.; Giddam, A.K.; Zaman, M.; Skwarczynski, M.; Toth, I. Liposomes as nanovaccine delivery systems. Curr. Top. Med. Chem. 2014, 14, 1194–1208. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al, B.A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e9394. [Google Scholar] [CrossRef]
- Oyewumi, M.O.; Kumar, A.; Cui, Z. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 2010, 9, 1095–1107. [Google Scholar] [CrossRef]
- Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Parodi, V.; de Florentiis, D.; Martini, M.; Ansaldi, F. Inactivated influenza vaccines: Recent progress and implications for the elderly. Drugs Aging 2011, 28, 93–106. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Sun, B.; Guo, Y.; Yan, K.; Liu, D.; Zang, Y.; Jiang, C.; Zhang, Y.; Kong, W. Immune response of C57BL/6J mice to herpes zoster subunit vaccines formulated with nanoemulsion-based and liposome-based adjuvants. Int. Immunopharmacol. 2021, 101 Pt B, 108216. [Google Scholar] [CrossRef]
- Baay, M.; Bollaerts, K.; Verstraeten, T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among older adults. Vaccine 2018, 36, 4207–4214. [Google Scholar] [CrossRef] [PubMed]
- Horton, H.A.; Kim, H.; Melmed, G.Y. Vaccinations in older adults with gastrointestinal diseases. Clin. Geriatr. Med. 2014, 30, 17–28. [Google Scholar] [CrossRef]
- Ecarnot, F.; Maggi, S. Vaccination against Respiratory Infections in the Immunosenescent Older Adult Population: Challenges and Opportunities. Semin. Respir. Crit. Care Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Hammerton, S.M.; Billings, W.Z.; Hemme, H.; Ross, T.M.; Shen, Y.; Handel, A. Estimating standard-dose and high-dose Fluzone vaccine efficacies for influenza A based on HAI titers. J. Infect. Dis. 2024, 231, 1336–1345. [Google Scholar] [CrossRef]
- Pereira, B.; Xu, X.N.; Akbar, A.N. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front. Immunol. 2020, 11, 583019. [Google Scholar] [CrossRef]
- Prelog, M. Differential approaches for vaccination from childhood to old age. Gerontology 2013, 59, 230–239. [Google Scholar] [CrossRef]
- Wagner, A.; Garner-Spitzer, E.; Jasinska, J.; Kollaritsch, H.; Stiasny, K.; Kundi, M.; Wiedermann, U. Age-related differences in humoral and cellular immune responses after primary immunisation: Indications for stratified vaccination schedules. Sci. Rep. 2018, 8, 9825. [Google Scholar] [CrossRef]
- Dorrington, M.G.; Bowdish, D.M. Immunosenescence and novel vaccination strategies for the elderly. Front. Immunol. 2013, 4, 171. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Mao, Q.; An, C.; Zhang, J.; Gao, F.; Bian, L.; Li, C.; Liang, Z.; Xu, M.; Wang, J. Heterologous prime-boost: Breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg. Microbes Infect. 2021, 10, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Kardani, K.; Bolhassani, A.; Shahbazi, S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016, 34, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Marin-Hernandez, D.; Nixon, D.F.; Hupert, N. Heterologous vaccine interventions: Boosting immunity against future pandemics. Mol. Med. 2021, 27, 54. [Google Scholar] [CrossRef]
- Gu, Y.; Tang, X.; Zhang, X.; Song, C.; Zheng, M.; Wang, K.; Zhang, J.; Ng, M.H.; Hew, C.L.; Li, S.; et al. Structural basis for the neutralization of hepatitis E virus by a cross-genotype antibody. Cell Res. 2015, 25, 604–620. [Google Scholar] [CrossRef]
- Ansaldi, F.; Bacilieri, S.; Durando, P.; Sticchi, L.; Valle, L.; Montomoli, E.; Icardi, G.; Gasparini, R.; Crovari, P. Cross-protection by MF59-adjuvanted influenza vaccine: Neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine 2008, 26, 1525–1529. [Google Scholar] [CrossRef]
- Brown, L.E. The role of adjuvants in vaccines for seasonal and pandemic influenza. Vaccine 2010, 28, 8043–8045. [Google Scholar] [CrossRef]
- Yechezkel, I.; Law, M.; Tzarum, N. From Structural Studies to HCV Vaccine Design. Viruses 2021, 13, 833. [Google Scholar] [CrossRef]
- Geng, Y.; Shi, T.; Wang, Y. Epidemiology of Hepatitis E. Adv. Exp. Med. Biol. 2023, 1417, 33–48. [Google Scholar]
- Emerson, S.U.; Clemente-Casares, P.; Moiduddin, N.; Arankalle, V.A.; Torian, U.; Purcell, R.H. Putative neutralization epitopes and broad cross-genotype neutralization of Hepatitis E virus confirmed by a quantitative cell-culture assay. J. Gen. Virol. 2006, 87 Pt 3, 697–704. [Google Scholar] [CrossRef]
- Abravanel, F.; Lhomme, S. Hecolin vaccine: Long-term efficacy against HEV for a three-dose regimen. Lancet 2024, 403, 782–783. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Z.; Xia, N. Prophylactic Hepatitis E Vaccine. Adv. Exp. Med. Biol. 2023, 1417, 227–245. [Google Scholar] [PubMed]
- Wen, J.; Behloul, N.; Dai, X.; Dong, C.; Liang, J.; Zhang, M.; Shi, C.; Meng, J. Immunogenicity difference between two hepatitis E vaccines derived from genotype 1 and 4. Antiviral Res. 2016, 128, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, X.; Zhang, Z.; Li, S.; Zhang, J.; Xia, N.; Zhao, Q. Prophylactic Hepatitis E Vaccines: Antigenic Analysis and Serological Evaluation. Viruses 2020, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, D.; Wilkie, C.; Bentley, E.M.; Mayora-Neto, M.; Wright, E.; Scott, S.; Ray, S.; Castillo-Olivares, J.; Heeney, J.L.; Mattiuzzo, G.; et al. Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature. Front. Immunol. 2023, 14, 1184362. [Google Scholar] [CrossRef]
- Burton, D.R. Antiviral neutralizing antibodies: From in vitro to in vivo activity. Nat. Rev. Immunol. 2023, 23, 720–734. [Google Scholar] [CrossRef]
- Sayed, I.M.; Elkhawaga, A.A.; El-Mokhtar, M.A. In vivo models for studying Hepatitis E virus infection; Updates and applications. Virus Res. 2019, 274, 197765. [Google Scholar] [CrossRef]
- Wu, X.; Chen, P.; Lin, H.; Hao, X.; Liang, Z. Hepatitis E virus: Current epidemiology and vaccine. Hum. Vaccines Immunother. 2016, 12, 2603–2610. [Google Scholar] [CrossRef]
- Ciglenecki, I.; Rumunu, J.; Wamala, J.F.; Nkemenang, P.; Duncker, J.; Nesbitt, R.; Gignoux, E.; Newport, T.; Heile, M.; Jamet, C.; et al. The first reactive vaccination campaign against hepatitis E. Lancet Infect. Dis. 2022, 22, 1110–1111. [Google Scholar] [CrossRef]
- Parvez, M.K. Chronic hepatitis E infection: Risks and controls. Intervirology 2013, 56, 213–216. [Google Scholar] [CrossRef]
- Riveiro-Barciela, M.; Rodriguez-Frias, F.; Buti, M. Hepatitis E virus: New faces of an old infection. Ann. Hepatol. 2013, 12, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Willauer, A.N.; Sherman, K.E. Hepatitis E virus: Has anything changed? Curr. Opin. Gastroenterol. 2023, 39, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Brayne, A.B.; Dearlove, B.L.; Lester, J.S.; Kosakovsky, P.S.; Frost, S. Genotype-Specific Evolution of Hepatitis E Virus. J. Virol. 2017, 91, e02241-16. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Tan, C.; Wu, J.; Xu, Y.; Li, X.; Zhong, Z.; Li, S.; Qiu, Y.; Feng, B. Characterization of genotype IV hepatitis E virus-like particles expressed in E coli. Heliyon 2023, 9, e15284. [Google Scholar] [CrossRef]
- Behrendt, P.; Wedemeyer, H. Vaccines against hepatitis E virus: State of development. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022, 65, 192–201. [Google Scholar] [CrossRef]
Population | Increased Risk Factors | Potential Consequences | Vaccine Efficacy Concerns |
---|---|---|---|
Pregnant Women | Immune modulation (Th2 bias), high viral loads | Fulminant hepatitis, maternal and fetal mortality, obstetric complications | Insufficient clinical data, need for vaccine safety trials |
Immunocompromised Individuals | Immunosuppressive therapies (e.g., tacrolimus, MMF), poor immune response | Chronic infection, liver fibrosis, cirrhosis | Reduced vaccine response, need for tailored strategies |
Patients with Chronic Liver Disease (CLD) | Pre-existing liver damage, immune dysfunction | Accelerated liver decompensation, acute-on-chronic liver failure | Vaccine response may be impaired, ongoing immune dysfunction |
Elderly | Immunosenescence, altered immune response | Reduced vaccine efficacy, shorter protection duration | Need for higher doses or adjuvants, concerns about cross-protection |
Research Gap | Current Challenges | Future Directions |
---|---|---|
Clinical Data in Special Populations | Limited Phase III trial data in pregnant women, immunocompromised individuals, and CLD patients | Multi-center trials in high-risk groups, including long-term safety and efficacy studies |
Vaccine Response in Immunocompromised Groups | Poor vaccine efficacy due to immunosuppressive therapy | Sequential “vaccine-immunomodulator” strategies, personalized immunization schedules |
Vaccine Efficacy in Elderly Populations | Reduced immune response due to immunosenescence | Use of adjuvants (e.g., MF59, AS04), exploration of higher vaccine doses or booster shots |
Cross-Genotype Protection | Limited cross-neutralization of HEV genotypes | Development of broad-spectrum vaccines, incorporation of multiple genotypes and epitopes |
Global Accessibility and Prequalification | Limited access in low-income countries due to lack of WHO prequalification | Global collaborations for vaccine distribution, funding mechanisms for vaccine accessibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Duan, B.; Liu, M.; Zhang, Y.; Wu, F.; Li, G.; Ouyang, Y. Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations. Vaccines 2025, 13, 621. https://doi.org/10.3390/vaccines13060621
Wang M, Duan B, Liu M, Zhang Y, Wu F, Li G, Ouyang Y. Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations. Vaccines. 2025; 13(6):621. https://doi.org/10.3390/vaccines13060621
Chicago/Turabian StyleWang, Meng, Binwei Duan, Mengcheng Liu, Yuxuan Zhang, Feng Wu, Guangming Li, and Yabo Ouyang. 2025. "Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations" Vaccines 13, no. 6: 621. https://doi.org/10.3390/vaccines13060621
APA StyleWang, M., Duan, B., Liu, M., Zhang, Y., Wu, F., Li, G., & Ouyang, Y. (2025). Vaccination Strategies and Research Gaps in Hepatitis E Virus for Special Populations. Vaccines, 13(6), 621. https://doi.org/10.3390/vaccines13060621