Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (235)

Search Parameters:
Keywords = heavy oil reservoirs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1749 KiB  
Article
Potential of Gas-Enhanced Oil Recovery (EOR) Methods for High-Viscosity Oil: A Core Study from a Kazakhstani Reservoir
by Karlygash Soltanbekova, Gaukhar Ramazanova and Uzak Zhapbasbayev
Energies 2025, 18(15), 4182; https://doi.org/10.3390/en18154182 - 7 Aug 2025
Abstract
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the [...] Read more.
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the results of filtration experiments investigating the application of gas EOR methods using core samples from a heavy oil reservoir. The primary objective of these experiments was to determine the oil displacement factor and analyze changes in interfacial tension upon injection of different gas agents. The following gases were utilized for modeling gas EOR processes: nitrogen (N2), carbon dioxide (CO2), and hydrocarbon gases (methane, propane). The core samples used in the study were obtained from the East Moldabek heavy oil field in Kazakhstan. Based on the results of the filtration experiments, carbon dioxide (CO2) injection was identified as the most effective gas EOR method in terms of increasing the oil displacement factor, achieving an incremental displacement factor of 5.06%. Other gas injection methods demonstrated lower efficiency. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

17 pages, 4141 KiB  
Article
TPG Conversion and Residual Oil Simulation in Heavy Oil Reservoirs
by Wenli Ke, Zonglun Li and Qian Liu
Processes 2025, 13(8), 2403; https://doi.org/10.3390/pr13082403 - 29 Jul 2025
Viewed by 299
Abstract
The Threshold Pressure Gradient (TPG) phenomenon exerts a profound influence on fluid flow dynamics in heavy oil reservoirs. However, the discrepancies between the True Threshold Pressure Gradient (TTPG) and Pseudo-Threshold Pressure Gradient (PTPG) significantly impede accurate residual oil evaluation and rational field development [...] Read more.
The Threshold Pressure Gradient (TPG) phenomenon exerts a profound influence on fluid flow dynamics in heavy oil reservoirs. However, the discrepancies between the True Threshold Pressure Gradient (TTPG) and Pseudo-Threshold Pressure Gradient (PTPG) significantly impede accurate residual oil evaluation and rational field development planning. This study proposes a dual-exponential conversion model that effectively bridges the discrepancy between TTPG and PTPG, achieving an average deviation of 12.77–17.89% between calculated and measured TTPG values. Nonlinear seepage simulations demonstrate that TTPG induces distinct flow barrier effects, driving residual oil accumulation within low-permeability interlayers and the formation of well-defined “dead oil zones.” In contrast, the linear approximation inherent in PTPG overestimates flow initiation resistance, resulting in a 47% reduction in recovery efficiency and widespread residual oil enrichment. By developing a TTPG–PTPG conversion model and incorporating genuine nonlinear seepage characteristics into simulations, this study effectively mitigates the systematic errors arising from the linear PTPG assumption, thereby providing a scientific basis for accurately predicting residual oil distribution and enhancing oil recovery efficiency. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 280
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

24 pages, 13675 KiB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 235
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 4609 KiB  
Article
Optimizing Solvent-Assisted SAGD in Deep Extra-Heavy Oil Reservoirs: Mechanistic Insights and a Case Study in Liaohe
by Ying Zhou, Siyuan Huang, Simin Yang, Qi Jiang, Zhongyuan Wang, Hongyuan Wang, Lifan Yue and Tengfei Ma
Energies 2025, 18(14), 3599; https://doi.org/10.3390/en18143599 - 8 Jul 2025
Viewed by 301
Abstract
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing [...] Read more.
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing reservoir depth was applied to evaluate SAGD performance. The results demonstrate that declining steam quality at greater burial depths significantly reduces thermal efficiency, the oil–steam ratio (OSR), and overall recovery in conventional SAGD operations. To overcome these challenges, numerical simulations were conducted to evaluate the effect of hexane co-injection in ES-SAGD. A 3 vol% hexane concentration was found to improve oil recovery by 17.3%, increase the peak oil production rate by 36.5%, and raise the cumulative oil–steam ratio from 0.137 to 0.218 compared to conventional SAGD. Sensitivity analyses further revealed that optimal performance is achieved with cyclic injection during the horizontal expansion stage and chamber pressures maintained above 3 MPa. Field-scale forecasting based on five SAGD well pairs showed that the proposed ES-SAGD configuration could enhance the cumulative recovery factor from 28.7% to 63.3% over seven years. These findings clarify the fundamental constraints imposed by steam quality in deep reservoirs and provide practical strategies for optimizing solvent-assisted SAGD operations under such conditions. Full article
Show Figures

Figure 1

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 297
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1929 KiB  
Article
An Investigation of Channeling Identification for the Thermal Recovery Process of Horizontal Wells in Offshore Heavy Oil Reservoirs
by Renfeng Yang, Taichao Wang, Lijun Zhang, Yabin Feng, Huiqing Liu, Xiaohu Dong and Wei Zheng
Energies 2025, 18(13), 3450; https://doi.org/10.3390/en18133450 - 30 Jun 2025
Viewed by 222
Abstract
The development of inter-well channeling pathways has become a major challenge restricting the effectiveness of the thermal recovery process for heavy oil reservoirs, which leads to non-uniform sweep and reduced oil recovery. This is especially true for the characteristics of the higher injection–production [...] Read more.
The development of inter-well channeling pathways has become a major challenge restricting the effectiveness of the thermal recovery process for heavy oil reservoirs, which leads to non-uniform sweep and reduced oil recovery. This is especially true for the characteristics of the higher injection–production intensity in offshore operations, making the issue more prominent. In this study, a quick and widely applicable approach is proposed for channeling identification, utilizing the static reservoir parameters and injection–production performance. The results show that the cumulative injection–production pressure differential (CIPPD) over the cumulative water equivalent (CWE) exhibits a linear relationship when connectivity exists between the injection and production wells. Thereafter, the seepage resistance could be analyzed quantitatively by the slope of the linear relationship during the steam injection process. Simultaneously, a channeling identification chart could be obtained based on the data of injection–production performance, dividing the steam flooding process into three different stages, including the energy recharge zone, interference zone, and channeling zone. Then, the established channeling identification chart is applied to injection–production data from two typical wells in the Bohai oilfield. From the obtained channeling identification chart, it is shown that Well X1 exhibits no channeling, while Well X2 exhibited channeling in the late stage of the steam flooding process. These findings are validated against the field performance (i.e., the liquid rate, water cut, flowing temperature, and flowing pressure) to confirm the accuracy. The channeling identification approach in this paper provides a guide for operational adjustments to improve the effect of the thermal recovery process in the field. Full article
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 321
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

17 pages, 2493 KiB  
Article
Comparative Evaluation of Xanthan Gum, Guar Gum, and Scleroglucan Solutions for Mobility Control: Rheological Behavior, In-Situ Viscosity, and Injectivity in Porous Media
by Jose Maria Herrera Saravia and Rosangela Barros Zanoni Lopes Moreno
Polymers 2025, 17(13), 1742; https://doi.org/10.3390/polym17131742 - 23 Jun 2025
Viewed by 315
Abstract
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility [...] Read more.
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility ratio. In this work, we compare three biopolymers (i.e., Xanthan Gum, Scleroglucan, and Guar Gum) using a core flood test on Indiana Limestone with 16–19% porosity and 180–220 mD permeability at 60 °C and 30,905 mg/L of salinity. We injected solutions at 100–1500 ppm and 0.5–6 cm3/min to measure the Resistance Factor (RF), Residual Resistance Factor (RRF), in situ viscosity, and relative injectivity. All polymers behaved as pseudoplastic fluids with no shear thickening. The RF rose from ~1.1 in the dilute regime to 5–16 in the semi-dilute regime, and the RRF spanned 1.2–5.8, indicating moderate, reversible permeability impairment. In-site viscosity reached up to eight times that of brine, while relative injectivity remained 0.5. Xanthan Gum delivered the highest viscosity boost and strongest shear thinning, Scleroglucan offered a balance of stable viscosity and a moderate RF, and Guar Gum gave predictable but lower viscosity enhancement. These results establish practical guidelines for selecting polymer types, concentration, and flow rate in reservoir-condition polymer flood designs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 4257 KiB  
Article
Comprehensive Experimental Study of Steam Flooding for Offshore Heavy Oil Recovery After Water Flooding
by Wei Zhang, Yigang Liu, Jian Zou, Qiuxia Wang, Zhiyuan Wang, Yongbin Zhao and Xiaofei Sun
Energies 2025, 18(12), 3140; https://doi.org/10.3390/en18123140 - 15 Jun 2025
Viewed by 364
Abstract
The objective of this study is to investigate the feasibility of steam flooding (SF) as an alternative method for offshore heavy oil reservoirs after water flooding (WF). A series of experiments was performed by using specially designed one-dimensional (1-D) and three-dimensional (3-D) experimental [...] Read more.
The objective of this study is to investigate the feasibility of steam flooding (SF) as an alternative method for offshore heavy oil reservoirs after water flooding (WF). A series of experiments was performed by using specially designed one-dimensional (1-D) and three-dimensional (3-D) experimental systems to prove the feasibility of SF and to study the effects of the timing of SF, the steam injection rate, and the addition of chemical agents (the nitrogen foams and displacing agents) on the performance of SF after WF. The results showed that, for offshore heavy oil reservoirs after WF processes, the SF process is a viable enhanced oil recovery method, which should start as early as possible if the economic conditions permit. It is extremely important to choose an appropriate steam injection rate for SF after the WF process. Compared with the pure SF process, the final oil recovery of the SF process with the addition of the nitrogen foam or the displacing agent increased by 12.83% and 7.58% in the 1-D experiments, respectively. The nitrogen foam and displacing agent have synergistic effects on the performance of the SF after WF processes. The final oil recovery of the SF process with the addition of the two chemical agents at the steam injection rate of 10 mL/min was 37.64%, which was 5.47% higher than that of the pure SF process in the 3-D experiments. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 2683 KiB  
Article
Study on Mechanism of Surfactant Adsorption at Oil–Water Interface and Wettability Alteration on Oil-Wet Rock Surface
by Xinyu Tang, Yaoyao Tong, Yuhui Zhang, Pujiang Yang, Chuangye Wang and Jinhe Liu
Molecules 2025, 30(12), 2541; https://doi.org/10.3390/molecules30122541 - 10 Jun 2025
Viewed by 766
Abstract
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification [...] Read more.
With the depletion of conventional light crude oil reserves in China, the demand for heavy oil exploitation has grown, highlighting the increasing significance of enhanced heavy oil recovery. Surfactants reduce oil–water interfacial tension, modify the wettability of reservoir rocks, and facilitate the emulsification of heavy oil. Consequently, investigating the adsorption behavior of surfactants at oil–water interfaces and the underlying mechanisms of wettability alteration is of considerable importance. In this study, the surface tension of four surfactants and their interfacial tension with Gudao heavy oil were measured. Among these, BS-12 exhibited a critical micelle concentration (CMC) of 6.26 × 10−4 mol·dm−3, a surface tension of 30.15 mN·m−1 at the CMC, and an adsorption efficiency of 4.54. In low-salinity systems, BS-12 achieved an ultralow interfacial tension on the order of 10−3 mN·m−1, demonstrating excellent surface activity. Therefore, BS-12 was selected as the preferred emulsifier for Gudao heavy oil recovery. Additionally, FT-IR, SEM, and contact angle measurements were used to elucidate the interfacial adsorption mechanism between BS-12 and aged cores. The results indicate that hydrophobic interactions between the hydrophobic groups of BS-12 and the adsorbed crude oil fractions play a key role. Core flooding experiments, simulating the formation of low-viscosity oil-in-water (O/W) emulsions under reservoir conditions, showed that at low flow rates, crude oil and water interact more effectively within the pores. The extended contact time between heavy oil and the emulsifier led to significant changes in rock wettability, enhanced interfacial activity, improved oil recovery efficiency, and increased oil content in the emulsion. This study analyzes the role of surfactants in interfacial adsorption and the multiphase flow behavior of emulsions, providing a theoretical basis for surfactant-enhanced oil recovery. Full article
Show Figures

Figure 1

28 pages, 8778 KiB  
Article
Integrated Simulation of CO2 Injection in Heavy Oil Reservoirs with Asphaltene Precipitation Effects
by Xiding Gao, Liehui Zhang, Lei Qin, Wenyu Shao, Xin Guan and Tao Zhang
Processes 2025, 13(6), 1838; https://doi.org/10.3390/pr13061838 - 10 Jun 2025
Viewed by 608
Abstract
The results of core flooding experiments can guide the formulation of development plans for similar oil reservoirs. However, for cores from heavy oil reservoirs, asphaltene deposition often occurs during flooding due to changes in pressure, temperature, and petroleum composition, affecting the determination of [...] Read more.
The results of core flooding experiments can guide the formulation of development plans for similar oil reservoirs. However, for cores from heavy oil reservoirs, asphaltene deposition often occurs during flooding due to changes in pressure, temperature, and petroleum composition, affecting the determination of injection parameters. Taking core samples from the Xia 018 well block as the research object, this study determined that the crude oil sample exhibits normal CO2 sensitivity based on PVT experiments and core flooding results. A corresponding asphaltene precipitation model was established and coupled with core-scale numerical simulation, forming an integrated core-scale numerical simulation method considering asphaltene precipitation. Through orthogonal experimental design, the optimized fracturing production parameters for Well Y were determined as follows: fracturing stage length of 1000 m, CO2 injection volume of 100 m3 per stage, fluid volume per stage of 1000 m3, proppant volume of 1000 m3, and injection rate of 14 m3/min. Finally, the optimized parameters were applied to simulate a case well, where the asphaltene deposition model combined with pressure nephograms during production provided effective guidance on unplugging timing. Compared with results without using the asphaltene deposition model, cumulative production decreased by 1300 m3 when the model was applied. These findings can provide a reference for the development of similar reservoirs. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

23 pages, 8978 KiB  
Article
A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs
by Qiutao Wu, Tao Liu, Xinru Xu and Jingyi Yang
Molecules 2025, 30(11), 2419; https://doi.org/10.3390/molecules30112419 - 31 May 2025
Viewed by 607
Abstract
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide [...] Read more.
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide (DMAPMA), and sulfobetaine methacrylate (SBMA) as precursors. Comprehensive characterization via 1H NMR, FTIR, and XPS validated the successful integration of amphiphilic functionalities. Hydrophilic–lipophilic balance (HLB) analysis showed a strong tendency to form stable oil-in-water (O/W) emulsions. The experimental results showed a remarkable 91.6% viscosity reduction in Xinjiang heavy crude oil emulsions at an optimum dosage of 1000 mg/L. Notably, DMS retained an 84.8% viscosity reduction efficiency under hypersaline conditions (total dissolved solids, TDS = 200,460 mg/L), demonstrating exceptional salt tolerance. Mechanistic insights derived from zeta potential measurements and molecular dynamics simulations revealed dual functionalities: interfacial modification by DMS-induced O/W phase inversion and electrostatic repulsion (zeta potential: −30.89 mV) stabilized the emulsion while disrupting π–π interactions between asphaltenes and resins, thereby mitigating macromolecular aggregation in the oil phase. As a green, bio-based viscosity suppressor, DMS exhibits significant potential for heavy oil recovery in high-salinity reservoirs, addressing the persistent challenge of salinity-induced inefficacy in conventional chemical solutions and offering a sustainable pathway for enhanced oil recovery. Full article
Show Figures

Figure 1

15 pages, 5067 KiB  
Article
Integrated Modeling of Time-Varying Permeability and Non-Darcy Flow in Heavy Oil Reservoirs: Numerical Simulator Development and Case Study
by Yongzheng Cui, Wensheng Zhou and Chen Liu
Processes 2025, 13(6), 1683; https://doi.org/10.3390/pr13061683 - 27 May 2025
Viewed by 392
Abstract
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence [...] Read more.
Studies have demonstrated that heavy oil flow exhibits threshold pressure gradient (TPG) which is closely related to the permeability and viscosity of the crude oil. Also, long-term water flooding continuously alters unconsolidated sandstone reservoir permeability through water flushing. These combined effects significantly influence water flooding performance. Therefore, in this paper, a comprehensive oil–water two phase mathematical model is developed for waterflooded heavy oil unconsolidated sandstone reservoirs based on the traditional black oil model, incorporating both time-varying permeability and threshold pressure gradient. The water-flooding-dependent threshold pressure gradient is firstly proposed, accounting for time-varying permeability. Subsequently, a simulator is developed with finite volume and Newton iteration method. Good agreement is obtained with the commercial simulator based on traditional black oil model. Afterward, the influence of permeability time variation and threshold pressure gradient is analyzed in detail. Results demonstrate that the threshold pressure gradient and time-varying permeability both decrease the oil recovery. The threshold pressure gradient (TPG) reduces the oil flow region and displacement efficiency since production. The increases in permeability after long term water flooding exacerbate reservoir heterogeneity and reduce sweep efficiency. The lowest oil recovery is observed when non-Darcy flow and permeability time variation are considered simultaneously. Furthermore, the time-varying threshold pressure gradient is observed with permeability time variation. Finally, a field data history matching was successfully performed, demonstrating the practical applicability of the proposed model. This new model better aligns with reservoir development characteristics. It can provide a theoretical guide for the development of heavy oil reservoirs. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

21 pages, 6484 KiB  
Review
Recent Developments in the CO2-Cyclic Solvent Injection Process to Improve Oil Recovery from Poorly Cemented Heavy Oil Reservoirs: The Case of Canadian Reservoirs
by Daniel Cartagena-Pérez, Alireza Rangriz Shokri and Rick Chalaturnyk
Energies 2025, 18(11), 2728; https://doi.org/10.3390/en18112728 - 24 May 2025
Viewed by 505
Abstract
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to [...] Read more.
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to its potential success in Canada and elsewhere, this paper reviews the technical and efficiency requirements of CSI EOR in post-CHOPS heavy oil reservoirs. We explain the dominant driving mechanisms of CSI with a focus on the application of CO2 as a solvent. Limitations of current thermal and non-thermal EOR methods were compared to the CSI in thin oil reservoirs. To complete the assessment, several case studies and lessons learned were included based on the latest laboratory experiments, numerical studies, and CSI pilot/field tests. Specific to thin and shallow heavy oil reservoirs with sand production (e.g., CHOPS), the key to recover incremental oil was found to re-energize depleted reservoirs in a cyclic manner with unexpensive solvents (e.g., CO2). Regarding the solvent use, laboratory experiences have not been conclusive about what solvent stream could improve oil recovery. To this end, successful field scale CO2 EOR applications have been reported in several post-CHOPS reservoirs indicating that highly productive wells during primary production might also outperform during a follow up CSI process. Numerical modeling still faces challenges to properly model the main CSI driving mechanisms, including fluid–solvent interaction and the deformation of subsurface reservoirs. Full article
Show Figures

Figure 1

Back to TopTop