A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs
Abstract
:1. Introduction
2. Results and Discussion
2.1. DMS Surfactant Structural Characterization
2.2. DMS Surfactant Performance
2.2.1. HLB Values of DMS Surfactants
2.2.2. Surface Tension
2.2.3. Salt Tolerance
2.3. Evaluation of Emulsification and Viscosity Reduction Performance of DMS Surfactant
2.3.1. Effects of Different Types of Surfactants on Viscosity of Heavy Oil Emulsification
2.3.2. Effect of the Concentration of DMS Surfactant on the Emulsification and Viscosity Reduction Effect of Heavy Oil
2.3.3. Effect of pH on the Viscosity of Heavy Oil Emulsions
2.3.4. Effect of Salinity on the Viscosity of Heavy Oil Emulsions
2.3.5. Effect of Water Content on the Viscosity of Heavy Oil Emulsions
2.4. Viscosity Reduction Mechanism of Heavy Oil Emulsification
2.4.1. Particle Size Distribution of Emulsions
2.4.2. Oil–Water Interfacial Tension
2.4.3. Zeta Potential at the Oil–Water Interface
2.4.4. Rheological Properties
2.5. Molecular Dynamics Simulations
2.6. Emulsification Viscosity Reduction Mechanism of DMS Surfactant
3. Materials and Methods
3.1. Materials
3.2. Synthesis of DMS Surfactant
3.3. Characterization
3.4. Surfactant Performance Evaluation Methods
3.4.1. Hydrophilic–Lipophilic Balance Measurements
3.4.2. Surface Tension Measurement
3.4.3. Salt Tolerance Measurements
3.5. Emulsification and Viscosity Reduction Evaluation of Heavy Oil
3.5.1. Preparation of Heavy Oil Emulsions
3.5.2. Determination of Viscosity-Reducing Effects of Emulsion
3.5.3. Determination of Emulsion Stability
3.6. Emulsification and Viscosity Reduction Mechanism of DMS Surfactant
3.6.1. Particle Size Distribution of Emulsions
3.6.2. Determination of Interfacial Tension (IFT)
3.6.3. Determination of Zeta Potential (ξ)
3.6.4. Heavy Oil Rheological Properties
3.7. Molecular Dynamics Simulations’ Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.M.; Wang, G.Q.; Qi, J.C.; Schandl, H.; Li, Y.M.; Feng, C.Y.; Yang, X.C.; Wang, Y.; Wang, X.Z.; Liang, S. Scarcity-weighted fossil fuel footprint of China at the provincial level. Appl. Energy 2020, 258, 114081. [Google Scholar] [CrossRef]
- Hart, A. The novel THAI–CAPRI technology and its comparison to other thermal methods for heavy oil recovery and upgrading. J. Pet. Explor. Prod. Technol. 2014, 4, 427–437. [Google Scholar] [CrossRef]
- Guo, K.; Li, H.L.; Yu, Z.X. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Castanier, L.M.; Brigham, W.E. Upgrading of crude oil via in situ combustion. J. Pet. Sci. Eng. 2003, 39, 125–136. [Google Scholar] [CrossRef]
- Mokheimer, E.M.A.; Hamdy, M.; Abubakar, Z.; Shakeel, M.R.; Habib, M.A.; Mahmoud, M. A comprehensive review of thermal enhanced oil recovery: Techniques evaluation. J. Energy Resour. Technol.-Trans. ASME 2019, 141, 18. [Google Scholar] [CrossRef]
- Soleimani, A.; Sobati, M.A.; Movahedirad, S. An investigation on the viscosity reduction of iranian heavy crude oil through dilution method. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2021, 40, 934–944. [Google Scholar] [CrossRef]
- Homayuni, F.; Hamidi, A.A.; Vatani, A. An experimental investigation of viscosity reduction for pipeline transportation of heavy and extra-heavy crude oils. Pet. Sci. Technol. 2012, 30, 1946–1952. [Google Scholar] [CrossRef]
- Tang, X.D.; Zhou, T.D.; Li, J.J.; Deng, C.L.; Qin, G.F. Experimental study on a biomass-based catalyst for catalytic upgrading and viscosity reduction of heavy oil. J. Anal. Appl. Pyrolysis 2019, 143, 104684. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.X.; Xiong, R.Y.; Gao, C.H.; Zhang, X.J.; Luo, D. In situ modi fi cation of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism. Chin. J. Chem. Eng. 2024, 67, 166–173. [Google Scholar] [CrossRef]
- Lei, T.M.; Cao, J.; Li, A.F.; Ning, Y.F.; Xu, G.B.; Chen, Y.P.; Liu, D.D. Synthesis and oil displacement performance evaluation of a novel functional polymer for heavy oil recovery. J. Mol. Liq. 2024, 402, 124746. [Google Scholar] [CrossRef]
- Wu, R.N.; Yan, Y.H.; Li, X.X.; Tan, Y.B. Preparation and evaluation of double-hydrophilic diblock copolymer as viscosity reducers for heavy oil. J. Appl. Polym. Sci. 2023, 140, 14. [Google Scholar] [CrossRef]
- Wang, H.; Taborda, E.A.; Alvarado, V.; Cortés, F.B. Influence of silica nanoparticles on heavy oil microrheology via time-domain NMR T<sub>2</sub> and diffusion probes. Fuel 2019, 241, 962–972. [Google Scholar] [CrossRef]
- Patel, H.; Shah, S.; Ahmed, R.; Ucan, S. Effects of nanoparticles and temperature on heavy oil viscosity. J. Pet. Sci. Eng. 2018, 167, 819–828. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, R.Q.; Wang, B.; Cheng, Z.G.; Liu, C.K.; Tang, Y.W.; Zhu, J.F. Synthesis of polyether carboxylate and the effect of different electrical properties on its viscosity reduction and emulsification of heavy oil. Polymers 2023, 15, 3139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wang, Q.X.; Yang, D.; Hu, T.Y.; Zhang, L.L.; Jiang, C.Y. Synthesis and properties evaluation of novel gemini surfactant with temperature tolerance and salt resistance for heavy oil. J. Mol. Liq. 2023, 382, 121851. [Google Scholar] [CrossRef]
- Dong, B.; Qin, Z.Y.; Wang, Y.W.; Zhang, J.H.; Xu, Z.; Liu, A.X.; Guo, X.Q. Investigating the rheology and stability of heavy crude oil-in- water emulsions using apg08 emulsifiers. ACS Omega 2022, 12, 37736–37747. [Google Scholar] [CrossRef]
- Si, Y.W.; Zhu, Y.W.; Liu, T.; Xu, X.R.; Yang, J.Y. Synthesis of a novel borate ester anion-nonionic surfactant and its application in viscosity reduction and emulsification of heavy crude oil. Fuel 2023, 333, 126453. [Google Scholar] [CrossRef]
- Negi, H.; Faujdar, E.; Saleheen, R.; Singh, R.K. Viscosity modification of heavy crude oil by using a chitosan-based cationic surfactant. Energy Fuels 2020, 34, 4474–4483. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, M.X.; Hou, J.; Zhang, L.L.; Jiang, C.Y. Design, synthesis and properties evaluation of emulsified viscosity reducers with temperature tolerance and salt resistance for heavy oil. J. Mol. Liq. 2022, 356, 118977. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, R.Q.; Tang, Y.W.; Zhu, J.F.; Sun, Y.H.; Zhang, G.H. Synthesis of polycarboxylate viscosity reducer and the effect of different chain lengths of polyether on viscosity reduction of heavy oil. Polymers 2022, 14, 3367. [Google Scholar] [CrossRef]
- Liu, L.L.; He, S.; Tang, L.; Yang, S.; Ma, T.; Su, X. Application of co2-switchable oleic-acid-based surfactant for reducing viscosity of heavy oil. Molecules 2021, 26, 6273. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, E.S.; Sulaiman, W.R.W. Adsorption behaviors of surfactants for chemical flooding in enhanced oil recovery. J. Ind. Eng. Chem. 2015, 21, 1239–1245. [Google Scholar] [CrossRef]
- Souayeh, M.; Al-Maamari, R.S.; Karimi, M.; Aoudia, M. Wettability alteration and oil recovery by surfactant assisted low salinity water in carbonate rock: The impact of nonionic/anionic surfactants. J. Pet. Sci. Eng. 2021, 197, 108108. [Google Scholar] [CrossRef]
- Vatanparast, H.; Alizadeh, A.H.; Bahramian, A.; Bazdar, H. Wettability alteration of low-permeable carbonate reservoir rocks in presence of mixed ionic surfactants. Pet. Sci. Technol. 2011, 29, 1873–1884. [Google Scholar] [CrossRef]
- Galimberti, M.; Martino, M.; Guenzi, M.; Leonardi, G.; Citterio, A. Thermal stability of ammonium salts as compatibilizers in polymer/layered silicate nanocomposites. e-Polymers 2009, 14, 686–699. [Google Scholar] [CrossRef]
- Iglauer, S.; Wu, Y.; Shuler, P.; Tang, Y.; Goddard, W.A. Alkyl polyglycoside/1-naphthol formulations: A case study of surfactant enhanced oil recovery. Tenside Surfactants Deterg. 2011, 48, 121–126. [Google Scholar] [CrossRef]
- Zhang, Q.; Gou, S.H.; Zhao, L.; Fei, Y.M.; Zhou, L.H.; Li, S.W.; Wu, Y.P.; Guo, Q.P. Solution behavior of water-soluble poly(acrylamide-co-sulfobetaine) with intensive antisalt performance as an enhanced oil-recovery chemical. J. Appl. Polym. Sci. 2018, 135, 10. [Google Scholar] [CrossRef]
- Song, B.L.; Hu, X.; Shui, X.Q.; Cui, Z.G.; Wang, Z.J. A new type of renewable surfactants for enhanced oil recovery: Dialkylpolyoxyethylene ether methyl carboxyl betaines. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 489, 433–440. [Google Scholar] [CrossRef]
- Yoshimura, T.; Ichinokawa, T.; Kaji, M.; Esumi, K. Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloids Surf. A-Physicochem. Eng. Asp. 2006, 273, 208–212. [Google Scholar] [CrossRef]
- Gao, S.F.; Song, Z.Z.; Zhu, D.; Lan, F.; Jiang, Q.Z. Synthesis, surface activities, and aggregation behavior of phenyl-containing carboxybetaine surfactants. RSC Adv. 2018, 8, 33256–33268. [Google Scholar] [CrossRef]
- Zuo, Q.; Wang, Z.H.; Li, P.; Yang, L.Y.; Song, Z.Z. Studies on the synthesis and application properties of a betaine surfactant with a benzene ring structure. Appl. Sci. 2023, 13, 4378. [Google Scholar] [CrossRef]
- Banu, J.R.; Kavitha, S.; Kannah, R.Y.; Devi, T.P.; Gunasekaran, M.; Kim, S.H.; Kumar, G. A review on biopolymer production via lignin valorization. Bioresour. Technol. 2019, 290, 121790. [Google Scholar] [CrossRef]
- Chio, C.L.; Sain, M.; Qin, W.S. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Chen, Z.; Wan, C.X. Biological valorization strategies for converting lignin into fuels and chemicals. Renew. Sust. Energ. Rev. 2017, 73, 610–621. [Google Scholar] [CrossRef]
- Naqvi, M.; Yan, J.Y.; Dahlquist, E. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization. Appl. Energy 2012, 90, 24–31. [Google Scholar] [CrossRef]
- Qin, Y.L.; Lin, X.L.; Lu, Y.Q.; Wu, S.Y.; Yang, D.J.; Qiu, X.Q.; Fang, Y.X.; Wang, T.J. Preparation of a low reducing effect sulfonated alkali lignin and application as dye dispersant. Polymers 2018, 10, 982. [Google Scholar] [CrossRef]
- Zimniewska, M.; Kozlowski, R.; Batog, J. Nanolignin modified linen fabric as a multifunctional product. Mol. Cryst. Liq. Cryst. 2008, 484, 409–416. [Google Scholar] [CrossRef]
- Çetin, N.S.; Özmen, N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production -: I.: Organosolv lignin modified resins. Int. J. Adhes. Adhes. 2002, 22, 477–480. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Xie, Y.; Cheng, X.S.; Jin, Y.Q.; Xu, M.Y. Research on enzymatic hydrolysis lignin modified petroleum asphalt. In Proceedings of the 1st International Congress on Advanced Materials, Jinan, China, 13–16 May 2011; pp. 1080–1083. [Google Scholar]
- Chen, S.Y.; Zhou, Y.J.; Liu, H.J.; Yang, J.J.; Wei, Y.Y.; Zhang, J.A. Synthesis and physicochemical investigation of anionic-nonionic surfactants based on lignin for application in enhanced oil recovery. Energy Fuels 2019, 33, 6247–6257. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhou, X.P.; Yang, J.X.; Dai, Y.; Wang, W.B.; Jiang, W.M.; Li, X.L.; Zhang, J.A. Study on synthesis and properties of novel bisphenyl sulphonate Gemini surfactant based on lignin for enhanced oil recovery. J. Mol. Liq. 2023, 390, 123072. [Google Scholar] [CrossRef]
- Lou, C.H.; Zhou, Y.L.; Yan, A.; Liu, Y. Extraction cellulose from corn-stalk taking advantage of pretreatment technology with immobilized enzyme. RSC Adv. 2021, 12, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, S.M.; Fang, X.C.; Zhou, X.; Wang, J.Y.; Bai, F.D.; Peng, S.Z. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin. Eur. Polym. J. 2019, 116, 265–274. [Google Scholar] [CrossRef]
- Mohamed, N.H.; Bahners, T.; Wego, A.; Gutmann, J.S.; Ulbricht, M. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide. Appl. Surf. Sci. 2012, 259, 261–269. [Google Scholar] [CrossRef]
- Ang, M.; Gallardo, M.R.; Dizon, G.V.C.; De Guzman, M.R.; Tayo, L.L.; Huang, S.H.; Lai, C.L.; Tsai, H.A.; Hung, W.S.; Hu, C.C.; et al. Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance. J. Membr. Sci. 2019, 587, 117188. [Google Scholar] [CrossRef]
- Ding, T.T.; Liu, R.X.; Yan, X.F.; Zhang, Z.Y.; Xiong, F.Q.; Li, X.G.; Wu, Z.P. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int. J. Biol. Macromol. 2023, 241, 124458. [Google Scholar] [CrossRef] [PubMed]
- Chaibi, W.; Guemra, K. Synthesis of amphiphilic diblock copolymer and study of their self-assembly in aqueous solution. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3045–3054. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Lin, H.B.; Xiong, Z.; Wu, Z.Y.; Wang, Y.; Xiang, L.C.; Wu, A.G.; Liu, F. A silane-based interfacial crosslinking strategy to design PVDF membranes with versatile surface functions. J. Membr. Sci. 2016, 520, 769–778. [Google Scholar] [CrossRef]
- Zhou, J.H.; Sui, Z.J.; Zhu, J.; Li, P.; De, C.; Dai, Y.C.; Yuan, W.K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007, 45, 785–796. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, F.; Wang, W.; Li, Z.; Qiao, W.; Cheng, L. Studies on dynamic interfacial tension between crude oil and novel surfactant solutions with buffered alkali. Energy Sources Part A-Recovery Util. Environ. Eff. 2007, 29, 537–547. [Google Scholar] [CrossRef]
- Schott, H. Solubility parameter and hydrophilic-lipophilic balance of nonionic surfactants. J. Pharm. Sci. 1984, 73, 790–792. [Google Scholar] [CrossRef]
- Das Burman, A.; Dey, T.; Mukherjee, B.; Das, A.R. Solution properties of the binary and ternary combination of sodium dodecyl benzene sulfonate, polyoxyethylene sorbitan monlaurate, and polyoxyethylene lauryl ether. Langmuir 2000, 16, 10020–10027. [Google Scholar] [CrossRef]
- Sun, C.X.; Ma, H.; Yu, F.C.; Xia, S.Q. Preparation and evaluation of hydroxyethyl cellulose-based functional polymer for highly efficient utilization of heavy oil under the harsh reservoir environments. Int. J. Biol. Macromol. 2024, 259, 128972. [Google Scholar] [CrossRef]
- He, X.L.; Wang, Z.Y.; Gang, H.Z.; Ye, R.Q.; Yang, S.Z.; Mu, B.Z. Less bound cations and stable inner salt structure enhanced the salt tolerance of the bio-based zwitterionic surfactants. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 635, 128074. [Google Scholar] [CrossRef]
- Wang, G.H.; Chen, H.Z. Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Sep. Purif. Technol. 2013, 105, 98–105. [Google Scholar] [CrossRef]
- Yuan, S.; Li, B.Y.; Chang, L.Y.; Guo, H.; Ding, L.; Hou, J.J.; Zhang, S.L.; Zang, C.A.; Zheng, L.; Yang, W.Q.; et al. Characterization and antioxidant activity of differentiated fractionation lignin from corn stover. Int. J. Biol. Macromol. 2025, 303, 140538. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.L.; Jing, G.L.; Zhang, H.Y.; Li, M.Y.; Wu, Z.L. Influence of demulsifier on interfacial film between oil and water. Colloid Surf. A-Physicochem. Eng. Asp. 2006, 272, 27–31. [Google Scholar] [CrossRef]
- Adeyanju, O.A.; Oyekunle, L.O. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines. J. Pet. Sci. Eng. 2019, 182, 106294. [Google Scholar] [CrossRef]
- Li, Y.Y.; Yang, D.J.; Wang, S.J.; Xu, H.F.; Li, P.W. Fabrication and optimization of pickering emulsion stabilized by lignin nanoparticles for curcumin encapsulation. ACS Omega 2024, 9, 21994–22002. [Google Scholar] [CrossRef]
- Zong, C. Sphere Packings; Springer: New York, NY, USA, 2004. [Google Scholar]
- Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Pal, R. Shear viscosity behavior of emulsions of two immiscible liquids. J. Colloid Interface Sci. 2000, 225, 359–366. [Google Scholar] [CrossRef]
- Gao, F.F.; Xu, Z.; Liu, G.K.; Yuan, S.L. Molecular dynamics simulation: The behavior of asphaltene in crude oil and at the oil/water interface. Energy Fuels 2014, 28, 7368–7376. [Google Scholar] [CrossRef]
- Chen, M.F.; Wang, Y.F.; Chen, W.H.; Ding, M.C.; Zhang, Z.Y.; Zhang, C.H.; Cui, S.Z. Synthesis and evaluation of multi-aromatic ring copolymer as viscosity reducer for enhancing heavy oil recovery. Chem. Eng. J. 2023, 470, 144220. [Google Scholar] [CrossRef]
Surfactant | Crude Oil | Viscosity Reduction Rate (%) | References |
---|---|---|---|
Polyether carboxylates (APAD) | North China heavy oil. | 98.34% | [14] |
Gemini (E4A15) | Bohai oilfield heavy oil. | 98.0% | [15] |
Isooctyl glucoside (APG08) | Karamay heavy oil. | 88.82% | [16] |
Boron-containing anionic-nonionic surfactants (SYW) | Xinjiang heavy oil. | 97.3% | [17] |
Chitosan-based cationic surfactants (CBCS) | Western India heavy oil. | 82% | [18] |
Terpolymer of Bisphenol (AFOP-n) | Bohai Sea heavy oil. | 98.22% | [19] |
polyether carboxylic acid–sulfonic acid polymeric (SAAP) | North China heavy oil. | 95% | [20] |
Switchable oligomeric surfactants (OA/cyclen) | Shengli heavy oil. | 99% | [21] |
Element | C | H | O | S | N |
---|---|---|---|---|---|
Content (wt%) | 57.30 | 9.29 | 21.16 | 3.10 | 9.17 |
Sample | Mn (g/mol) | Polydispersity Index (PDI) |
---|---|---|
MAL | 1031 | 2.88 |
DMS | 3643 | 1.24 |
Ion Types | Cl− | HCO3− | Na+ | Ca2+ | Mg2+ | TDS |
---|---|---|---|---|---|---|
Concentration (mg/L) | 5863 | 341 | 3510 | 220 | 89 | 10,023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Liu, T.; Xu, X.; Yang, J. A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs. Molecules 2025, 30, 2419. https://doi.org/10.3390/molecules30112419
Wu Q, Liu T, Xu X, Yang J. A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs. Molecules. 2025; 30(11):2419. https://doi.org/10.3390/molecules30112419
Chicago/Turabian StyleWu, Qiutao, Tao Liu, Xinru Xu, and Jingyi Yang. 2025. "A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs" Molecules 30, no. 11: 2419. https://doi.org/10.3390/molecules30112419
APA StyleWu, Q., Liu, T., Xu, X., & Yang, J. (2025). A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs. Molecules, 30(11), 2419. https://doi.org/10.3390/molecules30112419