Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = heavy metals remediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1862 KiB  
Article
A GIS and Multivariate Analysis Approach for Mapping Heavy Metals and Metalloids Contamination in Landfills: A Case Study from Al-Kharj, Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy and Naji Rikan
Land 2025, 14(8), 1697; https://doi.org/10.3390/land14081697 - 21 Aug 2025
Abstract
This study employs Geographic Information Systems (GIS) combined with multivariate statistical techniques to evaluate soil contamination at two landfill sites in Al-Kharj, Saudi Arabia. A total of 32 soil samples were collected and analyzed for heavy metals and metalloids (HMs) using a range [...] Read more.
This study employs Geographic Information Systems (GIS) combined with multivariate statistical techniques to evaluate soil contamination at two landfill sites in Al-Kharj, Saudi Arabia. A total of 32 soil samples were collected and analyzed for heavy metals and metalloids (HMs) using a range of contamination indices and established soil quality standards. GIS mapping revealed that the Al-Kharj landfill 1 (Kj1) experienced a steady area expansion from 2014 through 2025, while landfill Kj2 expanded from 2014 until 2022, after which its area contracted following the construction of additional facilities. The average values of HMs observed were as follows: Fe (9909 mg/kg), Al (6709 mg/kg), Mn (155.9 mg/kg), Zn (36.4 mg/kg), Cr (24.1 mg/kg), V (22.2 mg/kg), Ni (19.5 mg/kg), Cu (8.20 mg/kg), Pb (7.91 mg/kg), Co (4.32 mg/kg), and As (2.29 mg/kg). Notably, Kj2 exhibited overall higher HM concentrations than Kj1, with particularly elevated levels of Cr, Ni, and Pb. Although most HMs remained within internationally accepted safety limits, only three samples (9.4% of the total) exceeded the WHO threshold for Pb (>30 mg/kg). An analysis using contamination and enrichment factors pointed to increased concentrations of Pb, Zn, and Cr, suggesting localized anthropogenic contributions. Additionally, all samples recorded an ecological risk index (Eri) below 40, and the levels of As, Cr, and Pb consistently stayed under their respective effects range-low (ERL) thresholds, indicating minimal contamination risks. The variations in HM contamination between the sites are likely attributable to differences in the sources of metal inputs and removal processes. These findings highlight the need for continuous monitoring and localized remediation strategies to ensure environmental safety and sustainable landfill management. Full article
36 pages, 2136 KiB  
Review
Valorization of Agro-Industrial Lignin as a Functional Polymer for Sustainable Wastewater Treatment
by Elena Ungureanu, Bogdan-Marian Tofanica, Eugen Ulea, Ovidiu C. Ungureanu, Maria E. Fortună, Răzvan Rotaru, Irina Volf and Valentin I. Popa
Polymers 2025, 17(16), 2263; https://doi.org/10.3390/polym17162263 - 21 Aug 2025
Abstract
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the [...] Read more.
The rational design of functional and sustainable polymers is central to addressing global environmental challenges. In this context, unmodified lignin derived from Sarkanda grass (Tripidium bengalense), an abundant agro-industrial lignocellulosic byproduct, was systematically investigated as a natural polymeric adsorbent for the remediation of aqueous media contaminated with heavy metals. The study evaluates lignin’s behavior toward nine metal(loid) ions: arsenic, cadmium, chromium, cobalt, copper, iron, nickel, lead, and zinc. Adsorption performance was systematically investigated under static batch conditions, optimizing key parameters, with equilibrium and kinetic data modeled using established isotherms and rate equations. Surface characterization and seed germination bioassays provided supporting evidence. Unmodified Sarkanda grass lignin demonstrated effective adsorption, exhibiting a clear preference for Cu(II) followed by other divalent cations, with lower capacities for As(III) and Cr(VI). Adsorption kinetics consistently followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Thermodynamic studies revealed spontaneous and endothermic processes. Bioassays confirmed significant reduction in aqueous toxicity and strong metal sequestration. This work positions unmodified Sarkanda grass lignin as a bio-based, low-cost polymer platform for emerging water treatment technologies, contributing to circular bioeconomy goals and highlighting the potential of natural polymers in sustainable materials design. Full article
(This article belongs to the Special Issue Designing Polymers for Emerging Applications)
Show Figures

Figure 1

19 pages, 3627 KiB  
Article
Sustainable Management Approaches to Heavy Metal Pollution in Arid Soils Using Soil Amendments and Plant-Based Remediation
by Nasser H. Almeaiweed, Saud S. Aloud, Khaled D. Alotaibi, Mohannad A. Al Watban, Waeel S. Alrobaish and Majed S. Alorf
Sustainability 2025, 17(16), 7558; https://doi.org/10.3390/su17167558 - 21 Aug 2025
Abstract
This study examined the effect of sulfur, ethylenediaminetetraacetic acid (EDTA), olive mill wastewater (OMW), and their mixtures in remediating metal-polluted soils by implementing both leaching trials and a greenhouse experiment with sunflower (Helianthus annuus). In the leaching study, soils were subjected [...] Read more.
This study examined the effect of sulfur, ethylenediaminetetraacetic acid (EDTA), olive mill wastewater (OMW), and their mixtures in remediating metal-polluted soils by implementing both leaching trials and a greenhouse experiment with sunflower (Helianthus annuus). In the leaching study, soils were subjected to five discharge volumes (V1–V5). EDTA significantly improved metal mobility of Cd (221.4) mg·kg−1 in V2, Pb (340.8) mg·kg−1 in V3, and Zn (1.01) mg·kg−1 in V3, while OMW moderately mobilized Cd and Mn. However, sulfur mitigated leaching by buffering soil pH and metal immobilization. Mixed treatments revealed moderate leaching behavior. EDTA lowered soil pH (5.3) and raised EC (1763) µS/cm, while sulfur maintained stable chemical environments. In the greenhouse experiment, amendments significantly influenced biomass and metal uptake. Sunflower roots accumulated the highest Cd under sulfur (733.5) mg·kg−1 and Mn under EDTA (743.3) mg·kg−1. EDTA restricted Cd translocation (TF = 0), while OMW enhanced Cr movement to shoots (TF = 17.6). EDTA also reduced Cd bioavailability, whereas OMW raised Pb and Mn availability. Overall, EDTA improved metal solubility for potential removal and sulfur in stabilized metals, while OMW acted as a moderate mobilizer. Sunflower demonstrated selective metal uptake, indicating its potential in phytoremediation strategies tailored to specific contaminants. Full article
Show Figures

Figure 1

18 pages, 4673 KiB  
Article
Effect of Iron–Carbon–Zeolite Substrate Configuration on Cadmium Removal in Vertical-Flow Constructed Wetlands
by Mengyi Li, Shiyu Chen, Jundan Chen, Naifu Zhou and Guanlong Yu
Separations 2025, 12(8), 223; https://doi.org/10.3390/separations12080223 - 21 Aug 2025
Abstract
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland [...] Read more.
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland (TF-CW), a zeolite–iron–carbon constructed wetland (FT-CW), and an iron–carbon–zeolite mixed constructed wetland (H-CW), to investigate the purification performance and mechanisms of constructed wetlands for cadmium-containing wastewater (0~6 mg/L). The results demonstrated that iron–carbon–zeolite composite substrates significantly enhanced Cd2+ removal efficiency (>99%) through synergistic redox-adsorption mechanisms, where the iron–carbon substrate layer dominated Fe-Cd co-precipitation, while the zeolite layer achieved short-term cadmium retention through ion-exchange adsorption. FT-CW exhibited superior NH4+-N removal efficiency (77.66%~92.23%) compared with TF-CW (71.45%~88.05%), while iron–carbon micro-electrolysis effectively inhibited NO3-N accumulation (<0.1 mg/L). Under cadmium stress, Typha primarily accumulated cadmium through its root systems (>85%) and alleviated oxidative damage by dynamically regulating antioxidative enzyme activity, with the superoxide dismutase (SOD) peak occurring at 3 mg/L Cd2+ treatment. Microbial community analysis revealed that iron–carbon substrates promoted the relative abundance of Bacteroidota and Patescibacteria as well as the enrichment of Saccharimonadales, Thauera, and Rhodocyclaceae (genera), enhancing system stability. This study confirms that iron–carbon–zeolite CWs provide an efficient and sustainable technological pathway for heavy metal-contaminated water remediation through multidimensional mechanisms of “chemical immobilization–plant enrichment–microbial metabolism”. Full article
Show Figures

Figure 1

18 pages, 2147 KiB  
Review
Recent Advances in Heavy Metal Stabilization and Resource Recovery from Municipal Solid Waste Incineration Fly Ash
by Yunfei He, Yue Jiang, Lingwei Ren, Chenyiyi Qian, Han Zhang, Yuchi Zhong, Xuetong Qu, Jibo Dou, Shuai Zhang, Jiafeng Ding and Hangjun Zhang
Toxics 2025, 13(8), 695; https://doi.org/10.3390/toxics13080695 - 20 Aug 2025
Viewed by 201
Abstract
Municipal solid waste incineration fly ash (MSWI FA) is recognized as a hazardous solid waste due to its enrichment in toxic heavy metals and high leaching potential. This review systematically summarizes the current understanding of heavy metal occurrence in MSWI FA and associated [...] Read more.
Municipal solid waste incineration fly ash (MSWI FA) is recognized as a hazardous solid waste due to its enrichment in toxic heavy metals and high leaching potential. This review systematically summarizes the current understanding of heavy metal occurrence in MSWI FA and associated environmental risks. Solidification and stabilization methods, such as cement-based curing and chemical immobilization, are widely applied due to their cost-effectiveness and operability, though their long-term stability and recovery potential remain limited. Thermal treatment technologies, including sintering, vitrification, thermal separation, and molten salt processes, have shown excellent performance in reducing volume and enhancing the immobilization or recovery of heavy metals. However, these methods are often limited by high energy demands and operational complexity. Recently, emerging technologies such as electrodialysis, bioleaching, and electrokinetic remediation have demonstrated promising capabilities for selective metal recovery under relatively mild conditions. Nevertheless, these novel approaches remain at an early stage of development and have thus far been validated only at the laboratory or pilot scale. Overall, integrating multiple treatment technologies while advancing resource-oriented and low-carbon approaches will be essential for the sustainable management of MSWI FA. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

40 pages, 4676 KiB  
Review
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication
by Anna Nowik-Zając and Vira Sabadash
Membranes 2025, 15(8), 249; https://doi.org/10.3390/membranes15080249 - 19 Aug 2025
Viewed by 350
Abstract
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and [...] Read more.
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and molecule selectivity through the incorporation of novel carriers, including ionic liquids and task-specific extractants, as well as through polymer functionalization techniques. Improvements in mechanical and chemical stability, achieved via the utilization of high-performance polymers such as polyvinylidene fluoride (PVDF) and polyether ether ketone (PEEK), as well as cross-linking approaches, are critically analyzed. The expanded application of PIMs in the removal of heavy metals, organic micropollutants, and gas separation, particularly for carbon dioxide capture, is discussed with an emphasis on efficiency and operational robustness. The integration of PIMs with electrochemical and optical transduction platforms for sensor development is also reviewed, highlighting enhancements in sensitivity, selectivity, and response time. Furthermore, emerging trends towards the fabrication of sustainable PIMs using biodegradable polymers and green solvents are evaluated. Advances in scalable manufacturing techniques, including phase inversion and electrospinning, are addressed, outlining pathways for the industrial translation of PIM technologies. The review concludes by identifying current limitations and proposing future research directions necessary to fully exploit the potential of PIMs in industrial and environmental sectors. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

24 pages, 1738 KiB  
Review
Biomineralization Mediated by Iron-Oxidizing Microorganisms: Implication for the Immobilization and Transformation of Heavy Metals in AMD
by Siyu Li, Chengcheng Li, Xubo Gao, Mengyun Zhu, Huihui Li and Xue Wang
Minerals 2025, 15(8), 868; https://doi.org/10.3390/min15080868 - 17 Aug 2025
Viewed by 168
Abstract
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant [...] Read more.
Iron, an essential element for virtually all known organisms, serves not only as a micronutrient but also as an energy source for bacteria. Iron-oxidizing microorganisms mediate Fe(II) oxidation under diverse redox conditions, yielding amorphous iron (hydr)oxides or crystalline iron minerals. This globally significant biogeochemical process drives modern iron cycling across terrestrial and aquatic ecosystems. The resulting biomineralization not only produces secondary minerals but also effectively immobilizes heavy metals, offering a sustainable strategy for environmental remediation. This review systematically examines (1) the biogeochemical mechanisms and mineralogical signatures of Fe(II) oxidation by four distinct iron oxidizers: acidophilic aerobes (e.g., Acidithiobacillus), neutrophilic microaerophiles (e.g., Gallionella), nitrate-reducing anaerobes (e.g., Acidovorax), and anoxygenic phototrophs (e.g., Rhodobacter); (2) research advances in heavy metal immobilization by biogenic iron minerals: adsorption, coprecipitation, and structural incorporation; and (3) the impact of pH, temperature, organic matter, and coexisting ions on Fe(II) oxidation efficiency and iron mineral formation by iron-oxidizing bacteria. By characterizing iron-oxidizing bacterial species and their functional processes under varying pH and redox conditions, this study provides critical insights into microbial behaviors driving the evolution of acid mine drainage (AMD). Full article
Show Figures

Figure 1

16 pages, 909 KiB  
Article
Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals
by Dariusz Gruszka, Katarzyna Szopka, Iwona Gruss and Maja Złocka
Sustainability 2025, 17(16), 7424; https://doi.org/10.3390/su17167424 - 16 Aug 2025
Viewed by 419
Abstract
This study was conducted in nine allotment garden complexes in Wrocław, West Poland (Central Europe). Soil samples were collected from each garden and analyzed for their total concentrations of Zn, Cu, Pb and Cd, alongside the percentage of organic carbon C. Contaminant levels [...] Read more.
This study was conducted in nine allotment garden complexes in Wrocław, West Poland (Central Europe). Soil samples were collected from each garden and analyzed for their total concentrations of Zn, Cu, Pb and Cd, alongside the percentage of organic carbon C. Contaminant levels varied widely between sites: Zn ranged from 101.1 to 3464.5 mg/kg, Cu from 24.93 to 322.45 mg/kg, Cd from 0.51 to 6.31 mg/kg, and Pb from 19.92 to 401.85 mg/kg. The highest metal contamination was found for the garden complex placed on the former impact of the Hutmen. The organic carbon content ranged from 2.12% to 7.64%, indicating substantial variability in organic matter levels across the studied sites. This variability may significantly influence the soils’ capacity to retain heavy metals. A significant positive correlation was observed between soil organic carbon and the total concentrations of Pb, Cu and Zn, suggesting that soils richer in organic matter may retain higher levels of heavy metals. These findings underscore the dual role of organic matter as both a beneficial soil component and a potential contributor to heavy metal retention in urban garden soils. Protecting and enhancing SOM in polluted soils is a beneficial strategy, remediating environmental damage while aligning with global sustainability goals. Full article
Show Figures

Graphical abstract

21 pages, 7113 KiB  
Article
Ecological Responses of Mercury to Selenium in Farmland: Insights from Metal Transport in Crops, Soil Properties, Enzyme Activities, and Microbiome
by Yuxin Li, Shuyun Guan, Guangpeng Pei, Xiaorong Zhang, Yongbing Zhang, Junbao Huang, Yingzhong Lv and Hua Li
Agriculture 2025, 15(16), 1753; https://doi.org/10.3390/agriculture15161753 - 16 Aug 2025
Viewed by 294
Abstract
Selenium (Se) is a natural detoxifier of the heavy metal mercury (Hg), and the interaction between Se and Hg has been widely investigated. However, the ecological response of Hg to Se in Hg-contaminated farmland requires further study, especially the relationship between Se–Hg interactions [...] Read more.
Selenium (Se) is a natural detoxifier of the heavy metal mercury (Hg), and the interaction between Se and Hg has been widely investigated. However, the ecological response of Hg to Se in Hg-contaminated farmland requires further study, especially the relationship between Se–Hg interactions and soil abiotic and biological properties. Through a field experiment, the effects of different levels of exogenous Se (0, 0.50, 0.75, 1.00, and 2.00 mg kg−1) on Hg and Se transport in maize, soil properties, enzyme activities, and the microbial community in Hg-contaminated farmland were systematically studied. The Se treatments significantly reduced the Hg concentration in maize roots, stems, leaves, and grains and significantly increased the Se concentration in maize tissues. Except for the 0.75 mg kg−1 Se treatment which significantly increased electrical conductivity compared to the control, other Se treatments had non-significant effect on soil physicochemical properties (pH, conductivity, organic matter content, and cation exchange capacity) and oxidoreductase activities (catalase, peroxidase, and ascorbate peroxide). The activities of soil invertase, urease, and alkaline phosphatase increased significantly after Se application, and the highest enzyme activities were observed with a 0.50 mg kg−1 Se treatment. The bacteria and fungi with the highest relative abundance in this study were Proteobacteria (>30.5%) and Ascomycota (>73.4%). The results of a redundancy analysis and predictions of the microbial community showed that there was a significant correlation between the soil nutrient cycle enzyme activity, microbial community composition, and microbial community function. Overall, exogenous Se application was found to be a viable strategy for mitigating the impact of Hg stress on ecosystems. Furthermore, the results provide new insights into the potential for the large-scale application of Se in the remediation of Hg-contaminated farmland. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2354 KiB  
Article
Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions
by Sergey N. Adamovich, Arailym M. Nalibayeva, Yerlan N. Abdikalykov, Mirgul Zh. Turmukhanova, Elena G. Filatova, Alexandr D. Chugunov, Igor A. Ushakov, Elizaveta N. Oborina, Igor B. Rozentsveig and Francis Verpoort
Int. J. Mol. Sci. 2025, 26(16), 7903; https://doi.org/10.3390/ijms26167903 - 15 Aug 2025
Viewed by 188
Abstract
Zeolites are widely used as adsorbents due to their porous structure and ion-exchange capabilities. However, their adsorption efficiency for heavy metal ions remains limited. To enhance their performance, the natural zeolite heulandite (Z) was functionalized with guanidine derivatives: N-[3-(triethoxysilyl)propyl]guanidine (1 [...] Read more.
Zeolites are widely used as adsorbents due to their porous structure and ion-exchange capabilities. However, their adsorption efficiency for heavy metal ions remains limited. To enhance their performance, the natural zeolite heulandite (Z) was functionalized with guanidine derivatives: N-[3-(triethoxysilyl)propyl]guanidine (1), -aminoguanidine (2), and -acetyl-guanidine (3). The resulting materials (Z1Z3) were evaluated for their ability to adsorb Co2+, Cu2+, and Ni2+ from aqueous solutions. The composition and structure of silanes 13 were confirmed by FT-IR and 1H and 13C NMR spectroscopy methods. The modified zeolites were characterized using nitrogen adsorption/desorption (BET) and SEM-EDX to confirm their functionalization and assess the structural changes. A TGA-DSC was used to determine the thermal stability. The adsorption experiments were conducted in single and multi-ionic aqueous solutions at pH 5.0 to evaluate metal uptake. Functionalization significantly improved the adsorption efficiency, with Z1Z3 showing a three to six times greater adsorption capacity than the unmodified zeolite. The adsorption efficiency followed the trend Cu2+ > Co2+ > Ni2+, primarily due to chelate complex formation between the metal ions and guanidine groups. The SEM-EDX confirmed the co-localization of nitrogen atoms and metal ions. The functional materials (Z1Z3) exhibited strong potential as adsorbents for noble, heavy, and toxic metal ions, and could find applications in industry, agriculture, ecology, medicine, chemistry, wastewater treatment, soil remediation, chemisorption, filtration, chromatography, etc. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

26 pages, 2226 KiB  
Review
Unveiling the Sustainable and Biological Remediation of Heavy Metals Contaminations in Soils and Water Ecosystems Through Potential Microbes—A Review
by Kallol Das, Md Abdullah Al Masud, Aniruddha Sarker, Ramadan A. Arafa and Margi Patel
Sustainability 2025, 17(16), 7357; https://doi.org/10.3390/su17167357 - 14 Aug 2025
Viewed by 1095
Abstract
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to [...] Read more.
This review provides a critical summary of the biological remediation of heavy metals by leveraging the potential of microbes in soils and water ecosystems, highlighting major research findings and practical obstacles. Heavy metals (HMs) pose a severe threat to environmental health due to their toxicity and persistence, necessitating effective remediation strategies. Biological remediation, especially through microorganisms and enzymatic actions, offers a promising alternative to conventional methods due to its eco-friendly and cost-effective nature. The review discusses various microbes, including bacteria, fungi, and algae known for their metal-binding capacities and transformation abilities. It delves into the mechanisms of bioremediation, such as biosorption, bioaccumulation, and biotransformation, facilitated by microbial enzymes like oxidoreductases and hydrolases that remove or bind the chemical structure of HMs. This paper also explores genetic engineering approaches to enhance microbial efficacy in HMs’ uptake and resistance. Furthermore, the review addresses the significant challenges in scaling bioremediation from a laboratory to the field, such as the complexity of environmental conditions, the presence of mixed contaminants, and the need for system optimization to improve efficiency and sustainability. It also evaluates the current legislative framework governing bioremediation practices, suggesting a need for clearer policies to support the integration of biological methods into mainstream remediation strategies. Conclusively, while microbial and enzymatic remediation presents considerable potential, extensive research is needed to overcome existing hurdles and develop robust, field-applicable systems. This paper calls for a multidisciplinary approach combining microbiology, engineering, and environmental sciences to advance this promising field. Full article
Show Figures

Figure 1

21 pages, 980 KiB  
Article
Remediation of Heavy Metal-Contaminated Soils Using Phosphate-Enriched Sewage Sludge Biochar
by Protogene Mbasabire, Yves Theoneste Murindangabo, Jakub Brom, Protegene Byukusenge, Jean de Dieu Marcel Ufitikirezi, Josine Uwihanganye, Sandra Nicole Umurungi, Marie Grace Ntezimana, Karim Karimunda and Roger Bwimba
Sustainability 2025, 17(16), 7345; https://doi.org/10.3390/su17167345 - 14 Aug 2025
Viewed by 409
Abstract
Heavy metals represent long-lasting contaminants that pose significant risks to both human health and ecosystem integrity. Originating from both natural and anthropogenic activities, they bioaccumulate in organisms through the food web, leading to widespread and long-lasting contamination. Industrialization, agriculture, and urbanization have exacerbated [...] Read more.
Heavy metals represent long-lasting contaminants that pose significant risks to both human health and ecosystem integrity. Originating from both natural and anthropogenic activities, they bioaccumulate in organisms through the food web, leading to widespread and long-lasting contamination. Industrialization, agriculture, and urbanization have exacerbated soil and water contamination through activities such as mining, industrial production, and wastewater use. In response to this challenge, biochar produced from waste materials such as sewage sludge has emerged as a promising remediation strategy, offering a cost-effective and sustainable means to immobilize heavy metals and reduce their bioavailability in contaminated environments. Here we explore the potential of phosphate-enriched biochar, derived from sewage sludge, to adsorb and stabilize heavy metals in polluted soils. Sewage sludge was pyrolyzed at various temperatures to produce biochar. A soil incubation experiment was conducted by adding phosphate-amended biochar to contaminated soil and maintaining it for one month. Heavy metals were extracted using a CaCl2 extraction method and analyzed using atomic absorption spectrophotometry. Results demonstrated that phosphate amendment significantly enhanced the biochar’s capacity to immobilize heavy metals. Amending soils with 2.5 wt% phosphate-enriched sewage sludge biochar led to reductions in bioavailable Cd (by 65–82%), Zn (40–75%), and Pb (52–88%) across varying pyrolysis temperatures. Specifically, phosphate-amended biochar reduced the mobility of Cd and Zn more effectively than unamended biochar, with a significant decrease in their concentrations in soil extracts. For Cu and Pb, the effectiveness varied with pyrolysis temperature and phosphate amendment, highlighting the importance of optimization for specific metal contaminants. Biochar generated from elevated pyrolysis temperatures (500 °C) showed an increase in ash content and pH, which improved their ability to retain heavy metals and limit their mobility. These findings suggest that phosphate-amended biochar reduces heavy metal bioavailability, minimizing their entry into the food chain. This supports a sustainable approach for managing hazardous waste and remediating contaminated soils, safeguarding ecosystem health, and mitigating public health risks. Full article
Show Figures

Figure 1

15 pages, 1247 KiB  
Article
The Impact of Cd Pollution on Arbuscular Mycorrhizal Fungal Communities in Paddy Fields
by Wangbiao Xia, Yingchun Liao, Xinyi Chen, Liang Li, Yanning Shi, Yaxin Liu, Jingmin Zhang and Jiankang Fu
Plants 2025, 14(16), 2501; https://doi.org/10.3390/plants14162501 - 12 Aug 2025
Viewed by 263
Abstract
Arbuscular mycorrhizal fungi (AMF) demonstrate considerable potential for remediating soils contaminated with heavy metals. However, comprehensive research examining the effects of cadmium (Cd) contamination on AMF communities in paddy fields remains scarce, constraining their broader application in such environments. In this study, high-throughput [...] Read more.
Arbuscular mycorrhizal fungi (AMF) demonstrate considerable potential for remediating soils contaminated with heavy metals. However, comprehensive research examining the effects of cadmium (Cd) contamination on AMF communities in paddy fields remains scarce, constraining their broader application in such environments. In this study, high-throughput sequencing was utilized to assess AMF community structure in paddy soils subjected to five distinct levels of Cd contamination. The study also explored the effect of different soil properties on AMF community dynamics. A total of 188 AMF taxa were identified across all soil samples, spanning four families. The Claroideoglomeraceae family emerged as the predominant group, exhibiting notable Cd tolerance. While elevated Cd concentrations inhibited the AMF community structure, lower concentrations increased the α-diversity of the community. Furthermore, soil-available phosphorus, calcium levels, and pH were found to be critical factors driving shifts in AMF community structure. Redundancy analysis explicitly quantified the relative strength of environmental factors, demonstrating that phosphorus and pH directly influenced the AMF community structure through significant effects, while Cd and calcium exerted their influence via indirect or nonlinear pathways. Given the relative abundance advantage of Claroideoglomeraceae in Cd-contaminated environments and its positive correlation with Cd concentration, we hypothesize that this group may exhibit Cd tolerance. Therefore, it could be considered a potential candidate species for prioritization in future field inoculation trials, and its practical application potential should be further validated. Full article
(This article belongs to the Special Issue Bio-Based Solutions for Sustainable Plant Systems)
Show Figures

Figure 1

25 pages, 9730 KiB  
Article
Sustainable Synthesis and Dual-Function Sorption of Carbonated Hydroxyapatite for Cadmium and Nitrate Removal
by Cristina Rodica Dumitrescu, Monica Matei, György Deák, Mădălina Boboc, Elena Holban and Florina Diana Gheorghe
Int. J. Mol. Sci. 2025, 26(16), 7766; https://doi.org/10.3390/ijms26167766 - 11 Aug 2025
Viewed by 255
Abstract
Nitrate (NO3) and cadmium (Cd2+) are common water pollutants with distinct chemical behaviors, often requiring different removal strategies. This study presents a low-cost synthesis of carbonated hydroxyapatite nanopowder (cHA), Ca5(PO4)3-y(CO3) [...] Read more.
Nitrate (NO3) and cadmium (Cd2+) are common water pollutants with distinct chemical behaviors, often requiring different removal strategies. This study presents a low-cost synthesis of carbonated hydroxyapatite nanopowder (cHA), Ca5(PO4)3-y(CO3)y(OH) (y = 0.13–0.17), using eggshell waste as a calcium precursor, aimed at removing both NO3 and Cd2+ from wastewater. SEM and TEM analyses revealed a porous nanostructure with an average particle size of 13.53 ± 6.43 nm and a specific surface area of 7.568 m2/g. Adsorption experiments were conducted under varying conditions, including contact time (0.3–3 h), dosage (0.3–2 g/L), initial concentrations (10–100 mg/L for NO3; 5–15 mg/L for Cd2+), and temperature (22 and 50 ± 2 °C). Cd2+ removal reached up to 99% at pH 2–4.5, while NO3 removal peaked at 38% in competitive systems, within 30 min. In single-ion systems, maximum nitrate uptake was 19.14 mg/g at 50 °C. Characterization using FT-IR, EDS, and XRD (with Rietveld refinement) confirmed carbonate B-type substitution and structural changes due to ion exchange and chemisorption. The results demonstrate that cHA derived from food waste is an efficient and sustainable sorbent, particularly for cadmium removal in contaminated water. Full article
(This article belongs to the Special Issue Research of Hydroxyapatite-Based Materials and Their Applications)
Show Figures

Figure 1

12 pages, 1459 KiB  
Article
Primary Soil Investigation near a Potentially Contaminated Site in Cluj-Napoca, Romania
by Emanuella Țîmpău, Carmen Roba and Maria Bizău-Cârstea
Appl. Sci. 2025, 15(16), 8865; https://doi.org/10.3390/app15168865 - 11 Aug 2025
Viewed by 200
Abstract
Considering the need to identify areas contaminated by anthropogenic activities to include them in remediation programs, the main objective of the present study was to investigate the heavy metals content in several soil samples from the proximity of a potentially contaminated site. The [...] Read more.
Considering the need to identify areas contaminated by anthropogenic activities to include them in remediation programs, the main objective of the present study was to investigate the heavy metals content in several soil samples from the proximity of a potentially contaminated site. The total metal concentrations for Cu, Mn, Fe, Cr, Ni, Pb, Zn, and Cd were determined by flame atomic absorption spectrometry (AAS-F) along with the general physico-chemical parameters (pH, redox potential, electrical conductivity, total dissolved solids, and salinity). The results showed that some of the soils classified for sensitive use had high contents of Cu, Cr, Pb, and Zn, exceeding the alert and even intervention threshold. With exception of Zn, the content of heavy metals in the soils with less sensitive usage was relatively low, being within the limits imposed by national legislation. Various fluctuations in the metal content were observed between the soils sampled from 5 cm depth and those from 30 cm depth. The overall results should present interest for the local authorities and be correlated with environmental concerns for the human population living in the area. Full article
Show Figures

Figure 1

Back to TopTop