Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Methods
2.3. Data Analysis
- c—carbon content (g/kg),
- ρₒ—volume density (mg/m3),
- t—level thickness (m),
- θ—percentage content of the ø > 2.0 mm fraction.
3. Results
3.1. General Characteristics of Examined Soils
3.2. Trace Elements Content of the Examined Soils
3.3. Correlation Between Selected Heavy Metals and Carbon Content in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breuste, J.H.; Artmann, M. Allotment Gardens Contribute to Urban Ecosystem Service: Case Study Salzburg, Austria. J. Urban Plan. Dev. 2015, 141, 05014023. [Google Scholar] [CrossRef]
- Cabral, I.; Costa, S.; Weiland, U.; Bonn, A. Urban Gardens as Multifunctional Nature-Based Solutions for Societal Goals in a Changing Climate. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 267–284. [Google Scholar] [CrossRef]
- Melon, M.; Dzieduszyński, T.; Gawryszewska, B.; Lasocki, M.; Hoppa, A.; Przybysz, A.; Sikorski, P. Urban Allotment Gardens with Turf Reduce Biodiversity and Provide Limited Regulatory Ecosystem Services. Sustainability 2025, 17, 6216. [Google Scholar] [CrossRef]
- Salomon, M.J.; Watts-Williams, S.J.; McLaughlin, M.J.; Cavagnaro, T.R. Urban Soil Health: A City-Wide Survey of Chemical and Biological Properties of Urban Agriculture Soils. J. Clean. Prod. 2020, 275, 122900. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.-C.; Mäder, P.; Zanetta, A.; Frey, D.; Fliessbach, A. A Gardener’s Influence on Urban Soil Quality. Front. Environ. Sci. 2018, 6, 25. [Google Scholar] [CrossRef]
- Ouédraogo, R.A.; Chartin, C.; Kambiré, F.C.; van Wesemael, B.; Delvaux, B.; Milogo, H.; Bielders, C.L. Short and Long-Term Impact of Urban Gardening on Soil Organic Carbon Fractions in Lixisols (Burkina Faso). Geoderma 2020, 362, 114110. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. Available online: https://digitalcommons.unl.edu/agronomyfacpub/15 (accessed on 25 June 2025). [CrossRef]
- Joimel, S.; Cortet, J.; Consalès, J.N.; Branchu, P.; Haudin, C.S.; Morel, J.L.; Schwartz, C. Contribution of chemical inputs on the trace elements concentrations of surface soils in urban allotment gardens. J. Soils Sediments 2021, 21, 328–337. [Google Scholar] [CrossRef]
- Paul, E.A. The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Sta-bilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef]
- Kabala, C.; Chodak, T.; Szerszen, L.; Karczewska, A.; Szopka, K.; Fratczak, U. Factors Influencing the Concentration of Heavy Metals in Soils of Allotment Gardens in the City of Wroclaw, Poland. Fresenius Environ. Bull. 2009, 18, 1277–1282. [Google Scholar]
- Mitchell, R.G.; Spliethoff, H.M.; Ribaudo, L.N.; Lopp, D.M.; Shayler, H.A.; Marquez-Bravo, L.G.; Lambert, V.T.; Ferenz, G.S.; Russell-Anelli, J.M.; Stone, E.B.; et al. Lead (Pb) and Other Metals in New York City Community Garden Soils: Factors Influencing Contaminant Distributions. Environ. Pollut. 2014, 187, 162–169. [Google Scholar] [CrossRef]
- Delbecque, N.; Verdoodt, A. Spatial Patterns of Heavy Metal Contamination by Urbanization. J. Environ. Qual. 2016, 45, 9–17. [Google Scholar] [CrossRef]
- Belon, E.; Boisson, M.; Deportes, I.Z.; Eglin, T.K.; Feix, I.; Bispo, A.O.; Galsomies, L.; Leblond, S.; Guellier, C.R. An Inventory of Trace Elements Inputs to French Agricultural Soils. Sci. Total Environ. 2012, 439, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Agrawal, S.B.; Singh, A.; Sharma, R.K.; Agrawal, M. Bioaccumulation of Heavy Metals in Vegetables: A Threat to Human Health. Terr. Aquat. Environ. Toxicol. 2007, 1, 13–23. [Google Scholar]
- Verkleij, J.A.C. The Effects of Heavy Metals Stress on Higher Plants and Their Use as Biomonitors. In Plants as Bioindicators: Indicators of Heavy Metals in the Terrestrial Environment; Markert, B., Ed.; VCH: New York, NY, USA, 1993; pp. 415–424. [Google Scholar]
- Sady, W.; Smoleń, S. Wpływ czynników glebowo-nawozowych na akumulację metali ciężkich w roślinach. Rocz. Akad. Rol. W Poznaniu. Ogrod. 2004, 37, 269–277. [Google Scholar]
- Kabata-Pendias, A.; Piotrowska, M.; Witek, T. Ocena jakości i możliwości rolniczego użytkowania gleb zanieczyszczonych metalami ciężkimi. IUNG Ser. P 1993, 53, 5–14. [Google Scholar]
- Fidos, M.J.; Rutkowska, B. Accumulation of Selected Trace Elements in Soil and Roadside Trees–Case Study. Soil Sci. Annu. 2023, 74, 163082. [Google Scholar] [CrossRef]
- Gorlach, E.; Gambus, F. Nawozy Fosforowe i Wieloskładnikowe jako Źródło Zanieczyszczenia Gleby Metalami Ciężkimi. Zesz. Probl. Post. Nauk Roln. 1997, 448a, 139–146. [Google Scholar]
- Mehes-Smith, M.; Nkongolo, K.; Cholew, E. Coping Mechanisms of Plants to Metal Contaminated Soil. In Environmental Change and Sustainability; InTech: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Hołtra, A.; Zamorska-Wojdyła, D. The Input of Trace Elements from the Motor Transport into Urban Soils of Wrocław, Poland. Sci. Total Environ. 2018, 631–632, 1163–1174. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil–Plant Interface: Phytoavailability, Translocation, and Phytoremediation–A Review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Cambier, P.; Michaud, A.; Paradelo, R.; Germain, M.; Mercier, V.; Guérin-Lebourg, A.; Revallier, A.; Houot, S. Trace Metal Availability in Soil Horizons Amended with Various Urban Waste Composts During 17 Years–Monitoring and Modelling. Sci. Total Environ. 2019, 651, 2961–2974. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, A.; Karczewska, A. Wpływ Zawodnienia na Mobilność Arzenu w Glebach Rejonu Dawnego Górnictwa Złota i Arsenu w Złotym Stoku. Rocz. Glebozn. 2011, 62, 240–248. [Google Scholar]
- Zhang, Z.; Furman, A. Soil Redox Dynamics under Dynamic Hydrologic Regimes–A Review. Sci. Total Environ. 2021, 763, 143026. [Google Scholar] [CrossRef]
- Gebski, M. Czynniki Glebowe oraz Nawozowe Wpływające na Przyswajanie Metali Ciężkich przez Rośliny. Postęp. Nauk Roln. 1998, 45, 3–16. [Google Scholar]
- Wu, Q.; Congreves, K.A. Soil Health Benefits Associated with Urban Horticulture. Sci. Total Environ. 2024, 912, 168852. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; Nuñez, R.L. Is It Healthy Urban Agriculture? Human Exposure to Potentially Toxic Elements in Urban Gardens from Andalusia, Spain. Environ. Sci. Pollut. Res. 2024, 31, 36626–36642. [Google Scholar] [CrossRef]
- Byers, H.L.; McHenry, L.J.; Grundl, T.J. Increased Risk for Lead Exposure in Children Through Consumption of Produce Grown in Urban Soils. Sci. Total Environ. 2020, 743, 140414. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M.; Tesfamariam, T. Plant Growth Stage Influences Heavy Metal Accumulation in Leafy Vegetables of Garden Cress and Sweet Basil. Chem. Biol. Technol. Agric. 2019, 6, 25. [Google Scholar] [CrossRef]
- Home, R.; Lewis, O.; Bauer, N.; Fliessbach, A.; Frey, D.; Lichtsteiner, S.; Moretti, M.; Tresch, S.; Young, C.; Zanetta, A.; et al. Effects of garden management practices, by different types of gardeners, on human wellbeing and ecological and soil sustainability in Swiss cities. Urban Ecosyst. 2019, 22, 189–199. [Google Scholar] [CrossRef]
- Jean-Soro, L.; Le Guern, C.; Bechet, B.; Lebeau, T.; Ringeard, M.F. Origin of trace elements in an urban garden in Nantes, France. J. Soils Sediments 2015, 15, 1802–1812. [Google Scholar] [CrossRef]
- Heděnec, P.; Nilsson, L.O.; Zheng, H.; Gundersen, P.; Schmidt, I.K.; Rousk, J.; Vesterdal, L. Mycorrhizal Association of Common European Tree Species Shapes Biomass and Metabolic Activity of Bacterial and Fungal Communities in Soil. Soil Biol. Biochem. 2020, 149, 107933. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Urban Cultivation in Allotments Maintains Soil Qualities Adversely Affected by Conventional Agriculture. J. Appl. Ecol. 2014, 51, 880–889. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Stoorvogel, J.J.; Vasenev, I.I. Urban Soil Organic Carbon and Its Spatial Heterogeneity in Comparison with Natural and Agricultural Areas in the Moscow Region. Catena 2013, 107, 96–102. [Google Scholar] [CrossRef]
- Burghardt, W.; Heintz, D.; Hocke, N. Soil Fertility Characteristics and Organic Carbon Stock in Soils of Vegetable Gardens Compared with Surrounding Arable Land at the Center of the Urban and Industrial Area of Ruhr, Germany. Eurasian Soil Sci. 2018, 51, 1067–1079. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Jimenez-Lopez, J.C. Effects of Soil Water Content and Organic Matter Addition on the Speciation and Bioavailability of Heavy Metals. Sci. Total Environ. 2012, 423, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Plak, A.; Bis, M.; Lata, L.; Melke, J.; Mojak, J. The Assessment of Heavy Metals Content in Total and Bioavailable Forms in the Soils Surrounding Cementownia Chełm S.A. in Chełm, Poland. Pol. J. Soil Sci. 2016, 49, 15–28. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Li, Y.; Gong, X.; Xiong, J.; Sun, Y.; Shu, Y.; Niu, D.; Lin, Y.; Wu, L.; Zhang, R. Different Dissolved Organic Matters Regulate the Bioavailability of Heavy Metals and Rhizosphere Microbial Activity in a Plant-Wetland Soil System. J. Environ. Chem. Eng. 2021, 9, 106823. [Google Scholar] [CrossRef]
- Makuch-Pietraś, I.; Wójcikowska-Kapusta, A. Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland. Land 2021, 10, 886. [Google Scholar] [CrossRef]
- Chodak, T.; Szerszeń, L.; Bogacz, A.; Gałka, B.; Kabała, C.; Kaszubkiewicz, J. Badania Monitoringowe Skażenia Gleb i Roślin na Obszarach Szczególnej Ochrony Środowiska Położonych na Terenie Miasta Wrocławia; Akademia Rolnicza we Wrocławiu: Wro-cław, Poland, 2001. [Google Scholar]
- Eko.org.pl. Gleby We Wrocławiu. Available online: http://eko.org.pl/wroclaw/srodowisko/gleby1.html (accessed on 6 July 2025).
- Tan, K.H. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Ministry of the Environment. Regulation of the Minister of the Environment of 1 September 2016 on the Method of Assessing Soil Surface Contamination. Dz.U. 2016, 1395. Available online: http://isap.sejm.gov.pl (accessed on 1 October 2024).
- Poeplau, C.; Vos, C.; Don, A. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and stone content. SOIL 2017, 3, 61–66. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Soil Carbon Stock Monitoring (CEMA 221); USDA-NRCS: Washington, DC, USA, 2023. Available online: https://www.nrcs.usda.gov/sites/default/files/2024-02/FY24_CEMA_221_Soil%20Carbon%20Stock%20Monitoring_10-2023_0.pdf (accessed on 5 August 2025).
- Lošák, T.; Hlušek, J.; Filipčík, R.; Pospíšilová, L.; Maňásek, J.; Prokeš, K.; Buňka, F.; Kráčmar, S.; Martensson, A.; Orosz, F. Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.). Plant Soil Environ. 2010, 56, 574–579. [Google Scholar] [CrossRef]
- Szynkowska, M.I.; Pawlaczyk, A.; Maćkiewicz, E. Bioaccumulation and Biomagnification of Trace Elements in the Environment. In Trace Elements in the Environment: Biogeochemistry, Biotechnology and Bioremediation; Chojnacka, K., Saeid, A., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 61–104. [Google Scholar] [CrossRef]
- Sun, H.; Tan, C.; Huang, D. Effects of Soil Organic Matter on the Accumulation, Availability and Morphology of Soil Heavy Metals. J. Nat. Sci. Hunan Norm. Univ. 2011, 34, 82–87. [Google Scholar]
- Unrine, J.M.; Hopkins, W.A.; Romanek, C.S.; Jackson, B.P. Bioaccumulation of Trace Elements in Amphibians: Influence of Trophic Position and Carbon Source. Environ. Pollut. 2007, 149, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska-Malina, J. Functions of Organic Matter in Polluted Soils: The Effect of Organic Amendments on Phytoavailability of Heavy Metals. Appl. Soil Ecol. 2018, 123, 542–545. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Idris, A.M.; Phoungthong, K.; Habib, M.A.; Mustafa, R.A. Geochemical Speciation and Bioaccumu-lation of Trace Elements in Different Tissues of Pumpkin in the Abandoned Soils: Health Hazard Perspective in a Developing Country. Toxin Rev. 2021, 41, 1124–1138. [Google Scholar] [CrossRef]
- Karabcová, H.; Pospíšilová, L.; Fiala, K.; Škarpa, P.; Bjelková, M. Effect of Organic Fertilizers on Soil Organic Carbon and Risk Trace Elements Content in Soil under Permanent Grassland. Soil Water Res. 2015, 10, 228–235. [Google Scholar] [CrossRef]
- Pinto, A.P.; Vilar, M.T.; Pinto, F.C.; Mota, A.M. Organic Matter Influence in Cadmium Uptake by Sorghum. J. Plant Nutr. 2005, 27, 2175–2188. [Google Scholar] [CrossRef]
- Pandit, T.K.; Naik, S.K.; Patra, P.K.; Das, D.K. Influence of Lime and Organic Matter on the Mobility of Cadmium in Cadmi-um-Contaminated Soil in Relation to Nutrition of Spinach. Soil Sediment Contam. 2012, 21, 419–433. [Google Scholar] [CrossRef]
- Filipović, L.; Romić, M.; Romić, D.; Filipović, V.; Ondrašek, G. Organic Matter and Salinity Modify Cadmium Soil (Phy-to)availability. Ecotoxicol. Environ. Saf. 2018, 147, 824–831. [Google Scholar] [CrossRef]
- Ingelmo, F.; Molina, M.J.; Soriano, M.D.; Gallardo, A.; Lapeña, L. Influence of Organic Matter Transformations on the Bioa-vailability of Heavy Metals in a Sludge-Based Compost. J. Environ. Manag. 2012, 95, S104–S109. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Bondar, Y.; Chrastný, V.; Šípková, A.; Pecková, E. Fabrication of Nanocomposite Zeolite Granules for Cadmium Stabilization in Contaminated Soils. Environ. Pollut. Bioavailab. 2025, 37, 2522282. [Google Scholar] [CrossRef]
- Yuan, C.; Li, Q.; Sun, Z.; Sun, H. Effects of Natural Organic Matter on Cadmium Mobility in Paddy Soil: A Review. J. Environ. Sci. 2021, 104, 204–215. [Google Scholar] [CrossRef]
- Smolders, E.; Mertens, J. Cadmium. In Heavy Metals in Soils: Environmental Pollution; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 283–311. [Google Scholar] [CrossRef]
- Yuan, C.; Li, F.; Cao, W.; Yang, Z.; Hu, M.; Sun, W. Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. J. Hazard. Mater. 2019, 378, 120672. [Google Scholar] [CrossRef]
- Smolders, E.; Mertens, J. Cadmium. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 283–311. [Google Scholar]
- Christensen, T.H. Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water Air Soil Pollut. 1984, 21, 105–114. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E.; Parker, D.R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications—A review. Eur. J. Soil Sci. 2009, 60, 590–612. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Sauvé, S.; Norvell, W.A.; McBride, M.; Hendershot, W. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol. 2000, 34, 291–296. [Google Scholar] [CrossRef]
- Bur, T.; Crouau, Y.; Bianco, A.; Gandois, L.; Probst, A. Toxicity of Pb and of Pb/Cd combination on the springtail Folsomia candida in natural soils: Reproduction, growth and bioaccumulation as indicators. Sci. Total Environ. 2012, 414, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, X.; Dai, S.; Zhou, J.; Liu, D.; Hu, Q.; Bai, J.; Zhao, L.; Nazir, N. Impact of different industrial activities on heavy metals in floodplain soil and ecological risk assessment based on bioavailability: A case study from the Middle Yellow River Basin, northern China. Environ. Res. 2023, 235, 116695. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, L.; Zhong, R.; Bao, M.; Guo, H.; Xie, Z. Binding characteristics of humic substances with Cu and Zn in response to inorganic mineral additives during swine manure composting. J. Environ. Manag. 2022, 305, 114387. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Wang, Y.; Wang, Y.; Xu, J.; Liu, X. Competitive adsorption of lead and cadmium on soil aggregate at mi-cro-interfaces: Multi-surface modeling and spectroscopic studies. J. Hazard. Mater. 2023, 448, 130915. [Google Scholar] [CrossRef]
- Baran, A.; Mierzwa-Hersztek, M.; Gondek, K.; Tarnawski, M.; Szara, M.; Gorczyca, O.; Koniarz, T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health 2019, 41, 2893–2910. [Google Scholar] [CrossRef]
- Carrillo-González, R.; Šimůnek, J.; Sauvé, S.; Adriano, D. Mechanisms and pathways of trace element mobility in soils. Adv. Agron. 2006, 91, 111–178. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001; p. 867. [Google Scholar] [CrossRef]
- Gao, Y.; Kan, A.T.; Tomson, M.B. Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ. Sci. Technol. 2003, 37, 5566–5573. [Google Scholar] [CrossRef] [PubMed]
- Bataillard, P.; Cambier, P.; Picot, C. Short-term transformations of lead and cadmium compounds in soil after contamination. Eur. J. Soil Sci. 2003, 54, 365–376. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Chen, Y.; Gat, P.; Frimmel, F.H.; Abbt-Braun, G. Metal binding by humic substances and dissolved organic matter derived from compost. In Soil and Water Pollution Monitoring, Protection and Remediation; Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S., Eds.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2006; Volume 69, pp. 287–298. [Google Scholar] [CrossRef]
- Shi, W.; Lü, C.; He, J.; En, H.; Gao, M.; Zhao, B.; Zhou, B.; Zhou, H.; Liu, H.; Zhang, Y. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals. Ecotoxicol. Environ. Saf. 2018, 154, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Trammell, T.L.E.; Day, S.; Pouyat, R.V.; Rosier, C.; Scharenbroch, B.; Yesilonis, I. Drivers of urban soil carbon dynamics. In Urban Soils, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; Chapter 4; p. 28. [Google Scholar] [CrossRef]
- Moskal, B.T.; Berthrong, S.T. Novel soil barrier systems potentially protect urban growing beds from legacy soil contamination and improve soil health. Urban Agric. Reg. Food Syst. 2018, 3, 180003. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Fathi, E.; Ahmed, M.S.; Leila, M.; Sami, M. Maastrichtian anoxia and its influence on organic matter and trace metal patterns in the southern Tethys realm of Egypt during greenhouse variability. ACS Omega 2023, 8, 19603–19612. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Mourinha, C.; Farto, M.; Dôres, J.; Patanita, M.; Cunha-Queda, C.; Natal-da-Luz, T.; Renaud, M.; Sousa, J.P. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks. Waste Manag. 2017, 61, 582–592. [Google Scholar] [CrossRef]
- Clemente, R.; Hartley, W.; Riby, P.; Dickinson, N.M.; Lepp, N.W. Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ. Pollut. 2010, 158, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Haque, E.; Thorne, P.S.; Nghiem, A.A.; Yip, C.S.; Bostick, B.C. Lead (Pb) concentrations and speciation in residential soils from an urban community impacted by multiple legacy sources. J. Hazard. Mater. 2021, 416, 125886. [Google Scholar] [CrossRef]
- Salomon, M.J.; Cavagnaro, T.R. Healthy soils: The backbone of productive, safe and sustainable urban agriculture. J. Clean. Prod. 2022, 341, 130808. [Google Scholar] [CrossRef]
- Dobson, M.C.; Edmondson, J.L.; Warren, P.H. Urban food cultivation in the United Kingdom: Quantifying loss of allotment land and identifying potential for restoration. Landsc. Urban Plan. 2020, 199, 103803. [Google Scholar] [CrossRef]
Number of Allotment Garden Complex | Name of Allotment Garden Complex | GPS Coordination of Allotment Garden |
---|---|---|
1 | LEPSZE JUTRO | N 51°07.531′, E 017°03.584′ |
2 | WYTCHNIENIE | N 51°08.055′, E 017°04.580′ |
3 | ZŁOCIEŃ | N 51°04.141′, E 017°04.239′ |
4 | SPÓŁDZIELCA | N 51°08.018′, E 017°05.797′ |
5 | JARZĘBINA | N 51°06.057′, E 016°58.937′ |
6 | RADOŚĆ | N 51°06.183′, E 016°58.270′ |
7 | NOWY KANAŁ | N 51°07.895′, E 017°04.215′ |
8 | MALINA | N 51°06.367′, E 016°58.719′ |
9 | OŚWIATA | N 51°05.959′, E 016°58.217′ |
Number of Allotment Garden Complex | Granulometric Group (PSSA Classification) | Floatable Fraction (<0.02 [MM] [%], MIN–MAX/MEAN ± STD.DEV) | pH H2O Distillated, MIN–MAX/MEAN ± STD.DEV | pH KCl–MEAN, MIN–MAX/MEAN ± STD.DEV | C [%], MIN–MAX/MEAN ± STD.DEV | N [%], MIN–MAX/MEAN ± STD.DEV | C/N, MIN–MAX/MEAN ± STD.DEV |
---|---|---|---|---|---|---|---|
1 | LS | 14–21/17.67 ± 2.24 | 6.74–7.08/6.93 ± 0.12 | 6.53–6.84/6.74 ± 0.12 | 4.3–5.77/4.71 ± 0.44 | 0.24–0.38/0.29 ± 0.04 | 15.11–18.26/16.23 ± 1.07 |
2 | LS, SCL, S | 5–30/18.55 ± 7.3 | 6.9–7.78/7.4 ± 0.28 | 6.04–7.58/6.99 ± 0.32 | 2.51–7.64/4.86 ± 1.98 | 0.14–0.4/0.27 ± 0.09 | 14.72–20.68/17.67 ± 1.59 |
3 | SL, SCL | 11–28/20.54 ± 5.39 | 6.65–7.38/6.97 ± 0.22 | 6.49–7.11/6.9 ± 0.2 | 2.12–3.69/2.81 ± 0.51 | 0.12–0.26/0.19 ± 0.04 | 12.99–17.79/14.73 ± 1.18 |
4 | SL, LS, SCL | 12–32/25.47 ± 5.35 | 6.73–7.45/7.18 ± 0.2 | 6.7–7.14/6.9 ± 0.13 | 2.34–5.91/4.02 ± 1.39 | 0.13–0.37/0.24 ± 0.08 | 15.19–19.10/16.86 ± 1.06 |
5 | SL, SCL | 15–26/21.10 ± 3.48 | 6.92–8.05/7.46 ± 0.4 | 6.52–7.29/6.88 ± 0.24 | 3.64–5.05/4.11 ± 0.44 | 0.22–0.34/0.27 ± 0.04 | 12.53–18.37/15.46 ± 1.63 |
6 | SL, LS, SCL | 16–25/19.88 ± 3.42 | 6.82–7.66/7.2 ± 0.31 | 6.57–7.33/6.92 ± 0.2 | 2.21–4.18/3.37 ± 0.55 | 0.15–0.28/0.21 ± 0.03 | 14.76–17.72/16.03 ± 0.98 |
7 | SL, LS, SCL | 16–24/21.17 ± 3.66 | 7.49–7.86/7.64 ± 0.14 | 7.05–7.36/7.2 ± 0.1 | 3.61–5.78/4.53 ± 0.9 | 0.2–0.34/0.26 ± 0.05 | 16.46–19.19/17.75 ± 1.1 |
8 | SCL | 22–33/26.73 ± 3.29 | 6.94–7.98/7.62 ± 0.27 | 6.19–7.16/6.9 ± 0.27 | 2.87–3.87/3.52 ± 0.31 | 0.16–0.27/0.23 ± 0.03 | 12.99–17.69/15.76 ± 1.53 |
9 | SL | 15–16/15.33 ± 0.58 | 7.23–7.63/7.48 ± 0.22 | 7.09–7.48/7.29 ± 0.2 | 3.21–3.64/3.38 ± 0.22 | 0.22–0.25/0.24 ± 0.02 | 12.95–14.82/14.06 ± 0.98 |
Kruskal–Wallis rank sum test | χ2 = 144.79, df = 8, p = 2.389 × 10−27 | χ2 = 168.37, df = 8, p = 2.832 × 10−32 | χ2 = 150.34, df = 8, p = 1.664 × 10−28 | 178.46, df = 8, p = 2.166 × 10−34 | 120.95, df = 8, p = 2.11 × 10−22 | χ2 = 171.42, df = 8, p = 6.505 × 10−33 |
Number of Allotment Garden | OCD [kg/m2], MIN–MAX/MEAN ± STD.DEV |
---|---|
1 | 1.39–1.68/1.54 ± 0.15 |
2 | 0.81–2.72/1.77 ± 0.96 |
3 | 0.69–1.31/1.00 ± 0.31 |
4 | 0.76–2.10/1.43 ± 0.67 |
5 | 1.18–1.80/1.49 ± 0.31 |
6 | 0.72–1.49/1.11 ± 0.39 |
7 | 1.17–2.06/1.62 ± 0.45 |
8 | 0.93–1.38/1.16 ± 0.23 |
9 | 1.04–1.30/1.17 ± 0.13 |
Kruskal–Wallis rank sum test | χ2 = 148.84, df = 8, p-value < 2.2 × 10−16 |
Number of Allotment Garden Complex | Zn (mg/kg, Soil Dry Mass)MIN–MAX/MEAN ± STD.DEV | Cu (mg/kg, Soil Dry Mass)MIN–MAX/MEAN ± STD.DEV | Pb (mg/kg, Soil Dry Mass)MIN–MAX/MEAN ± STD.DEV | Cd (mg/kg, Soil Dry Mass)MIN–MAX/MEAN ± STD.DEV |
---|---|---|---|---|
1 | 244.4–599/416.53 ± 112.93 | 47.5–79.55/66.88 ± 10.27 | 86–155.95/123.66 ± 23.42 | 0.68–3.41/1.6 ± 0.98 |
2 | 147.55–1303.5/581.79 ± 459.31 | 26.87–266.7/121.99 ± 96.01 | 34.2–401.85/167.33 ± 149.56 | 0.51–2.17/1.3 ± 0.57 |
3 | 101.1–1138/346.03 ± 287.58 | 27.75–72.05/40.88 ± 12.41 | 23.55–77.7/41.5 ± 14.48 | 0.62–2.35/1.13 ± 0.53 |
4 | 116.65–278.05/191.56 ± 55.1 | 24.93–63.1/40.84 ± 12.96 | 19.92–69.05/36.7 ± 15.93 | 0.78–1.16/0.95 ± 0.11 |
5 | 701–3464.5/1380.55 ± 793.21 | 156.3–322.45/213.56 ± 48.67 | 118–236.9/195.77 ± 35.22 | 3.22–6.31/4.81 ± 1.05 |
6 | 208.7–439.5/327.15 ± 69.66 | 43.79–79.55/60.59 ± 12.21 | 51.45–94.5/74.02 ± 13.62 | 1.01–1.88/1.37 ± 0.24 |
7 | 344.55–667/473.7 ± 119.69 | 58–113.7/77.89 ± 26.54 | 71.7–208/119.5 ± 63.52 | 1.38–1.89/1.68 ± 0.21 |
8 | 216.2–580.5/396.04 ± 113.7 | 57.25–120/85.01 ± 19.57 | 58.2–104.15/84.74 ± 15.72 | 1.36–2/1.78 ± 0.21 |
9 | 263.4–341.7/296.02 ± 40.75 | 56.05–80.95/64.68 ± 14.1 | 71.05–97.1/84.62 ± 13.06 | 1.04–1.38/1.16 ± 0.19 |
Kruskal–Wallis rank sum test | χ2 =187.04, df = 8, p < 2.2 × 10−16 | χ2 =207.73, df = 8, p< 2.2 × 10−16 | χ2 =213.62, df = 8, p = < 2.2 × 10−16 | χ2 =166.45, df = 8, p < 2.2 × 10−16 |
R | p | |
---|---|---|
Zn–C | 0.3912 | p = 0.000 |
Cu–C | 0.6031 | p = 0.000 |
Pb–C | 0.7245 | p = 0.000 |
Cd–C | 0.1860 | p = 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszka, D.; Szopka, K.; Gruss, I.; Złocka, M. Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals. Sustainability 2025, 17, 7424. https://doi.org/10.3390/su17167424
Gruszka D, Szopka K, Gruss I, Złocka M. Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals. Sustainability. 2025; 17(16):7424. https://doi.org/10.3390/su17167424
Chicago/Turabian StyleGruszka, Dariusz, Katarzyna Szopka, Iwona Gruss, and Maja Złocka. 2025. "Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals" Sustainability 17, no. 16: 7424. https://doi.org/10.3390/su17167424
APA StyleGruszka, D., Szopka, K., Gruss, I., & Złocka, M. (2025). Is the Soil in Allotment Gardens Healthy Enough?—Relation Between Organic Matter Content and Selected Heavy Metals. Sustainability, 17(16), 7424. https://doi.org/10.3390/su17167424