Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = heat-resistant molds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2537 KiB  
Proceeding Paper
Theoretical and Experimental Research on Centrifugal Casting of Short and Long Castings
by Angel Velikov, Ivan Georgiev, Boyko Krastev and Krum Petrov
Eng. Proc. 2025, 100(1), 58; https://doi.org/10.3390/engproc2025100058 - 28 Jul 2025
Viewed by 132
Abstract
The technological process of the centrifugal casting of short and long castings is examined during development. The values of the technological parameters at applying heat-resistant coating on the working surface of metal molds were established. With a high-speed camera, the temperature of the [...] Read more.
The technological process of the centrifugal casting of short and long castings is examined during development. The values of the technological parameters at applying heat-resistant coating on the working surface of metal molds were established. With a high-speed camera, the temperature of the free surface during the pouring of the melts was measured. Research experiments were conducted. A mathematical model of the centrifugal casting process with a horizontal axis was created. Full article
Show Figures

Figure 1

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 393
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 3753 KiB  
Article
Thermal Shock and Synergistic Plasma and Heat Load Testing of Powder Injection Molding Tungsten-Based Alloys
by Mauricio Gago, Steffen Antusch, Alexander Klein, Arkadi Kreter, Christian Linsmeier, Michael Rieth, Bernhard Unterberg and Marius Wirtz
J. Nucl. Eng. 2025, 6(3), 25; https://doi.org/10.3390/jne6030025 - 7 Jul 2025
Viewed by 310
Abstract
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O [...] Read more.
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O3, W-3Re-1TiC, W-3Re-2Y2O3, W-1HfC and W-1La2O3-1TiC. These were tested alongside ITER-grade tungsten in the PSI-2 linear plasma device under ITER-relevant plasma and heat loads to assess their suitability for use in a fusion reactor. All materials showed good behavior when exposed to the lower pulse number tests (≤1000 ELM-like pulses), although standard tungsten performed slightly better, with no observable difference in surface roughness. High-power shots, namely one laser pulse of 1.6 GWm−2, revealed that samples containing yttria are more prone to melting and droplet ejection. After high pulse number tests (10,000 and 100,000 pulses), with and without plasma, the reference tungsten showed the most cracking and highest surface roughness of all materials, while the PIM samples seemed to have a higher resistance to cracking. This can be attributed to the higher ductility of these alloys, particularly those containing rhenium. This means that tungsten-based alloys, whether produced via PIM or other methods, could potentially be used in certain areas of a fusion reactor. Full article
Show Figures

Graphical abstract

37 pages, 5280 KiB  
Review
Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
by Seung-Hoon Lee, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Electronics 2025, 14(13), 2682; https://doi.org/10.3390/electronics14132682 - 2 Jul 2025
Viewed by 2785
Abstract
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass [...] Read more.
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass Reflow Molded Underfill (MR MUF) underfills lower but do not eliminate the internal thermal resistance that rises sharply beyond 12layer stacks. We then synthesize recent hybrid bonding studies, showing that an optimized Cu pad density, interface characteristic, and mechanical treatments can cut junction-to-junction thermal resistance by between 22.8% and 47%, raise vertical thermal conductivity by up to three times, and shrink the stack height by more than 15%. A meta-analysis identifies design thresholds such as at least 20% Cu coverage that balances heat flow, interfacial stress, and reliability. The review next traces the chain from Coefficient of Thermal Expansion (CTE) mismatch to Cu protrusion, delamination, and warpage and classifies mitigation strategies into (i) material selection including SiCN dielectrics, nano twinned Cu, and polymer composites, (ii) process technologies such as sub-200 °C plasma-activated bonding and Chemical Mechanical Polishing (CMP) anneal co-optimization, and (iii) the structural design, including staggered stack and filleted corners. Integrating these levers suppresses stress hotspots and extends fatigue life in more than 16layer stacks. Finally, we outline a research roadmap combining a multiscale simulation with high layer prototyping to co-optimize thermal, mechanical, and electrical metrics for next-generation 20-layer HBM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

14 pages, 1615 KiB  
Article
Investigation on the Properties of Phenolic-Resin-Based Functional Gradient Thermal Protection Composite Materials
by Jiangman Li, Weixiong Chen and Jianlong Chang
Aerospace 2025, 12(6), 536; https://doi.org/10.3390/aerospace12060536 - 13 Jun 2025
Cited by 1 | Viewed by 714
Abstract
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix [...] Read more.
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix (crosslinked phenolic resin). The thermal stability of the cured product was studied by a thermogravimetric analyser (TG and DTG). The mechanical properties, heat resistance, and ablation properties of the composites were tested. The ablation morphology, element analysis, and phase structure of the composites were analysed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD), respectively. The results show that the phenolic resin has a lower initial viscosity and a longer pot life at 80 °C, and a higher carbon residue rate (70.18%). The tensile strength of the composites is close to 40 MPa, the tensile modulus is higher than 1.35 GPa, the compression modulus is higher than 10 MPa, and the elongation at break is higher than 1.55%. SiO2, SiC, and ZrO2 ceramic phases were formed after ablation, which effectively improved the ablation performance of the composites. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

17 pages, 4788 KiB  
Article
Preparation of Phenolic Epoxy-Based Electronic Packaging Materials with High Thermal Conductivity by Creating an Interfacial Heat Conduction Network
by Minghao Ye, Jing Jiang, Lin Zhao, Hongyu Zhu, Junjie Wang, Zicai Sun, Dewei Zhang, Ming Li and Yagang Zhang
Polymers 2025, 17(11), 1507; https://doi.org/10.3390/polym17111507 - 28 May 2025
Viewed by 464
Abstract
As one of the most widely used packaging materials, epoxy composite (EP) offers excellent insulation properties; however, its intrinsic low thermal conductivity (TC) limits its application in high-frequency and high-power devices. To enhance the TC of EP, six highly thermally conductive inorganic fillers, [...] Read more.
As one of the most widely used packaging materials, epoxy composite (EP) offers excellent insulation properties; however, its intrinsic low thermal conductivity (TC) limits its application in high-frequency and high-power devices. To enhance the TC of EP, six highly thermally conductive inorganic fillers, namely, Al2O3, MgO, ZnO, Si3N4, h-BN, and AlN, were incorporated into the EP matrix at varying contents (60–90 wt.%). The resulting epoxy molding compounds (EMCs) demonstrated significant improvement in thermal conductivity coefficient (λ) at high filler contents (90 wt.%), ranging from 0.67 W m−1 K−1 to 1.19 W m−1 K−1, compared to the pristine epoxy composite preform (ECP, 0.36 W m−1 K−1). However, it was found that the interfacial thermal resistance (ITR) between EP and filler materials is a major hindrance restricting TC improvement. In order to address this challenge, graphene nanosheets (GNSs) and carbon nanotubes (CNTs) were introduced as additives to reduce the ITR. The experimental results indicated that CNTs were effective in enhancing the TC, with the optimized EMC achieving a λ value of 1.14 W m−1 K−1 using 60 wt.% Si3N4 + 2 wt.% CNTs. Through the introduction of a small amount of CNT (2 wt.%), the inorganic filler content was significantly reduced from 90 wt.% to 60 wt.% while still maintaining high thermal conductivity (1.14 W m−1 K−1). We propose that the addition of CNTs helps in the construction of a partial heat conduction network within the EP matrix, thereby facilitating interfacial heat transfer. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

13 pages, 628 KiB  
Article
Injection-Molded Jute Filler Composites Evaluated Against Stringent Requirements
by Savana Othman Mohammed, Alwand Osman, Faranak Bazooyar, Else-Marie Malmek, Thomas Koch Ecoist, Nowshir Fatima, Mikael Skrifvars and Pooria Khalili
J. Compos. Sci. 2025, 9(6), 255; https://doi.org/10.3390/jcs9060255 - 23 May 2025
Viewed by 505
Abstract
This study investigates the mechanical, thermal, and liquid resistance properties of injection-molded composites made from recycled polypropylene (rPP) reinforced with jute fillers. Maleic anhydride-grafted polypropylene (MAPP) was used as a compatibilizer to enhance filler–matrix interfacial bonding. Tensile, flexural, and Charpy impact tests, along [...] Read more.
This study investigates the mechanical, thermal, and liquid resistance properties of injection-molded composites made from recycled polypropylene (rPP) reinforced with jute fillers. Maleic anhydride-grafted polypropylene (MAPP) was used as a compatibilizer to enhance filler–matrix interfacial bonding. Tensile, flexural, and Charpy impact tests, along with density measurements, heat deflection temperature (HDT) tests, and resistance to short-duration liquid contact, were conducted to evaluate the composites. Results indicate that the addition of jute powder significantly improved stiffness (Young’s modulus increased up to 233%) and thermal stability (HDT increased to 147 °C for rPP/J40/MAPP) while reducing impact toughness due to the brittle nature of jute fillers. MAPP-modified composites demonstrated enhanced tensile and flexural strength compared to unmodified counterparts, with tensile strength improving by approximately 23% for rPP/J30/MAPP. The composites exhibited excellent liquid resistance, showing no visible changes after exposure to various automotive and household fluids. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

20 pages, 8874 KiB  
Article
Oxidation Resistance, Ablation Resistance, and Ablation Mechanism of HfC–B4C-Modified Carbon Fiber/Boron Phenolic Resin Ceramizable Composites
by Hairun Wen, Wei Zhang, Zongyi Deng, Xueyuan Yang and Wenchao Huang
Polymers 2025, 17(10), 1412; https://doi.org/10.3390/polym17101412 - 20 May 2025
Viewed by 605
Abstract
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications [...] Read more.
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications of Cf/Ph in harsh environments. In this paper, a novel hafnium carbide (HfC) and boron carbide (B4C)-modified Cf/Ph was fabricated via an impregnating and compression molding route. The synergistic effect of HfC and B4C on the thermal stability, flexural strength, microstructure, and phase evolution of the ceramizable composite was studied. The resulting ceramizable composites exhibited excellent resistance to oxidative corrosion and ablation behavior. The residual yield at 1400 °C and the flexural strength after heat treatment at 1600 °C for 20 min were 46% and 54.65 MPa, respectively, with an increase of 79.59% in flexural strength compared to that of the composites without ceramizable fillers. The linear ablation rate (LAR) and mass ablation rate (MAR) under a heat flux density of 4.2 MW/m2 for the 20 s were as low as −8.33 × 10−3 mm/s and 3.08 × 10−2 g/s. The ablation mechanism was further revealed. A dense B–C–N–O–Hf ceramic layer was constructed in situ as an efficient thermal protection barrier, significantly reducing the corrosion of the carbon fibers. Full article
Show Figures

Graphical abstract

18 pages, 9050 KiB  
Article
Processing of Thermotropic Fully Aromatic Polyesters by Powder Molding Accompanied by Solid-State Post-Polymerization
by Pavel A. Mikhaylov, Anton V. Mityukov, Dmitry V. Dudka, Yaroslav V. Golubev, Valery G. Kulichikhin and Alexander Ya. Malkin
Polymers 2025, 17(10), 1358; https://doi.org/10.3390/polym17101358 - 15 May 2025
Viewed by 467
Abstract
Thermotropic polyesters are a subject of keen interest due to their exceptional heat resistance, thermal stability, and high strength. However, these thermal characteristics pose significant constraints on standard manufacturing processes, as the melting temperatures of these polymers can exceed 300 °C. This study [...] Read more.
Thermotropic polyesters are a subject of keen interest due to their exceptional heat resistance, thermal stability, and high strength. However, these thermal characteristics pose significant constraints on standard manufacturing processes, as the melting temperatures of these polymers can exceed 300 °C. This study explored the feasibility of manufacturing final items molded from prepolymers through a solid-state polymerization process. A copolymer composed of 4-acetoxybenzoic acid (4ABA), 3-acetoxybenzoic acid (3ABA), and 4′-acetoxybiphenyl-4-carboxylic acid (ABCA) was synthesized using melt polycondensation. To comprehensively evaluate the performance of the resulting material, several sets of samples were prepared, including those containing TiO2. Experimental samples from the pre-polymers were obtained through injection molding followed by high-temperature solid-state post-polymerization. The final products underwent a range of tests, including rheological and mechanical analyses, as well as thermal evaluations. The products demonstrated sufficient strength and stability. The proposed method of solid-state post-condensation offers significant potential advantages for the practical application of manufacturing high-performance engineering materials. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

15 pages, 20353 KiB  
Article
Study on the Preparation and Properties of Thermally Conductive Semi-Aromatic Heat-Resistant PA5T-CO-10T/ Hexagonal Boron Nitride Composites
by Bingxiao Liu, Yunzhen Zhu, Chen Yang, Liqun Ma, Fuchun Zhang, Mingzheng Hao, Zhongqiang Wang, Lizhen Bai, Jiale An and Dongqi Xiao
Polymers 2025, 17(8), 1031; https://doi.org/10.3390/polym17081031 - 10 Apr 2025
Viewed by 432
Abstract
In this paper, we report a novel thermally conductive semi-aromatic heat-resistant PA5T-CO-10T/hexagonal boron nitride (PA5T-CO-10T/BN) composite, based on as-synthesized PA5T-CO-10T, which is a copolymer of poly (pentamethylene terephthalamide) (PA5T) and poly (decamethylene terephthalamide) (PA10T). We confirmed the structure of PA5T-CO-10T through a nuclear [...] Read more.
In this paper, we report a novel thermally conductive semi-aromatic heat-resistant PA5T-CO-10T/hexagonal boron nitride (PA5T-CO-10T/BN) composite, based on as-synthesized PA5T-CO-10T, which is a copolymer of poly (pentamethylene terephthalamide) (PA5T) and poly (decamethylene terephthalamide) (PA10T). We confirmed the structure of PA5T-CO-10T through a nuclear magnetic resonance carbon spectrometer (13C-NMR). The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results indicate that PA5T-CO-10T demonstrates a processing window (greater than 90 °C) which is suitable for melt processing and injection molding. Moreover, the PA5T-CO-10T composites with different BN contents were tested by scanning electron microscopy (SEM), a thermal conductivity meter, a rotational rheometer and X-ray diffraction (XRD). The results indicate that as the content of h-BN increases, the thermal conductivity of the PA5T-CO-10T/BN composites is significantly enhanced. When the mass of h-BN reaches 30 wt%, the thermal conductivity of the composite material is 2.5 times that of the original matrix resin. Simultaneously, there is a notable upward trend observed in the storage modulus, loss modulus, complex viscosity and orientation degree of h-BN. This is attributed to the high thermal conductivity and the high orientation degree of h-BN, which ensure the continuous enhancement of the material’s thermal conductivity. Additionally, the introduction of h-BN enhances the degree of connection between the material’s molecular chains. PA5T-CO-10T/BN possesses excellent heat resistance and thermal conductivity, presenting significant application prospects in the fields of electronics, electrical appliances and automobiles. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

19 pages, 10969 KiB  
Article
Heat Shield Properties of Lightweight Ablator Series for Transfer Vehicle Systems with Different Laminated Structures Under High Enthalpy Flow Environments
by Masayuki Ohkage, Kei-ichi Okuyama, Soichiro Hori and Tsumugi Ishida
Aerospace 2025, 12(4), 281; https://doi.org/10.3390/aerospace12040281 - 27 Mar 2025
Viewed by 748
Abstract
The thermal protection system of a re-entry vehicle requires a high-heat-resistant heat shield to protect the spacecraft. Most of the ablative materials developed so far have high heat resistance but have technical issues such as long production times. In this study, we propose [...] Read more.
The thermal protection system of a re-entry vehicle requires a high-heat-resistant heat shield to protect the spacecraft. Most of the ablative materials developed so far have high heat resistance but have technical issues such as long production times. In this study, we propose a new ablative material (LATS/PEEK) consisting of PEEK and carbon felt as a material that can solve these problems. PEEK has excellent properties such as a short production time and its ability to be produced using 3D printer technology. In addition, PEEK can be molded with a variety of fusion bonding methods, so it is possible to mold the heat shield and structural components as a single structure. However, heating tests conducted in previous research have confirmed the expansion phenomenon of CF/PEEK produced by 3D printers. The expansion of the ablative material is undesirable because it changes the aerodynamic characteristics during re-entry flight. Therefore, the purpose of this research is to clarify the mechanism of the expansion phenomenon of the ablative material based on PEEK resin. Therefore, we conducted thermal gravimetric analysis (TGA) and thermomechanical analysis (TMA) and concluded that the expansion phenomenon during the heating test was caused by the pressure increase inside the ablative material due to pyrolysis gas. Based on this mechanism, we developed a new 3D LATS/PEEK with a structure that can actively release pyrolysis gas, and we conducted a heating test using an arc-heating wind tunnel. As a result, it was found that 3D LATS/PEEK had less expansion and deformation during the heating test than CF/PEEK manufactured using a 3D printer. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

26 pages, 11173 KiB  
Article
Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy
by Liang Huang, Yan Cao, Mengfei Zhang, Zhichao Meng, Tuo Wang and Xiaozhe Zhu
Materials 2025, 18(3), 531; https://doi.org/10.3390/ma18030531 - 24 Jan 2025
Viewed by 2858
Abstract
As the core component of chain-less ammunition transmission system, the large long lead cylinder adopts ZL205A alloy, which has the advantages of high strength and wear resistance. However, in its main casting production process, the forming quality is mainly determined by the casting [...] Read more.
As the core component of chain-less ammunition transmission system, the large long lead cylinder adopts ZL205A alloy, which has the advantages of high strength and wear resistance. However, in its main casting production process, the forming quality is mainly determined by the casting process parameters under the premise of determining a reasonable casting system. Considering that the casting process parameters are the process feedback expression of the macroscopic forming quality and comprehensive mechanical properties by controlling the coupling effect of the metal liquid flow in the microscopic flow field, the directional solidification crystallization of the alloy and the solid–liquid heat transfer and heat transfer during the filling and solidification process, the accurate and reasonable selection of casting process parameters is conducive to the stable guarantee of pouring quality. On the basis of the optimized column gap casting system, this study combined numerical simulation and data statistics. Within the rationality of each casting process parameter constructed by single-factor analysis, the response surface method was used to construct a quantitative guidance relationship of each process parameter coupling mapping casting defect, and based on this model, the optimal process parameter combination was realized as follows: compared with traditional metal mold casting and unoptimized low pressure casting, the tensile strength of non-porous casting with holding pressure 14.68 kPa, casting temperature 717.152 °C and mold preheating temperature 256.12 °C increased by 6.6% and 4.1%, respectively, hardness increased by 14.3% and 8.4% respectively, and the elongation is increased by 16.9% and 10.6%, respectively, thus efficiently and accurately improving the process quality. Full article
Show Figures

Graphical abstract

14 pages, 16266 KiB  
Article
The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel
by Junbo Zhang, Bing Du, Fuzhen Sun, Yan Li and Yang Liu
Coatings 2025, 15(1), 52; https://doi.org/10.3390/coatings15010052 - 6 Jan 2025
Cited by 2 | Viewed by 1039
Abstract
Previous studies have focused on the laser cladding of high-entropy alloys (HEAs) on untreated H13 steel, yielding promising results. However, there is limited research on laser cladding HEAs on heat-treated H13 steel, which is more common in the automotive mold industry. In this [...] Read more.
Previous studies have focused on the laser cladding of high-entropy alloys (HEAs) on untreated H13 steel, yielding promising results. However, there is limited research on laser cladding HEAs on heat-treated H13 steel, which is more common in the automotive mold industry. In this study, CoCrFeNiAl/WC high-entropy alloy composite coatings were fabricated on heat-treated H13 steel using laser cladding, addressing the gap in applying HEAs on heat-treated tool steels. The influence of the WC content on the phase composition, microstructure, and mechanical properties of the composite coating was investigated. The coating exhibits a dual-layer microstructure consisting of a working layer and a transition layer with different compositions. The results indicate that the CoCrFeNiAl/WC working layer primarily consists of FCC phases. As the WC content increases, metallurgical reactions occur in the working layer, forming (Fe,Co)3W3C, Co4W2C, and Cr7C3 carbide precipitates. This significantly enhances the hardness and wear resistance of the coating, with the final hardness being 1.23 times that of the substrate, the wear weight loss being only 0.21 times that of the substrate, and the average friction coefficient being only 0.82 times that of the substrate. Full article
Show Figures

Figure 1

24 pages, 5037 KiB  
Article
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part I—Research Methodology and Results
by Paweł Wawrzyniak, Waldemar Karaszewski and Artur Różański
Materials 2024, 17(21), 5233; https://doi.org/10.3390/ma17215233 - 27 Oct 2024
Cited by 2 | Viewed by 2209
Abstract
Polyethylene terephthalate (PET) is widely used in bottle production due to its cost-effectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content [...] Read more.
Polyethylene terephthalate (PET) is widely used in bottle production due to its cost-effectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content in the vPET-rPET blend, as well as the preform heating/cooling conditions in the stretch blow molding (SBM) process on the microscopic bottle properties. Microscopic properties such as crystallinity, density, viscosity, relaxation degree of the amorphous phase, and microcavitation in PET were examined. This study reveals that microcavity and solid-state post-condensation effects occur during PET deformation in the SBM process. The increase in free volume, indicating microcavitation, was confirmed by measuring positron annihilation lifetime spectroscopy (PALS). PALS and density of the amorphous phase studies prove a reduction in the dimensions of the free volumes, with a simultaneous significant increase in their number and ellipsoidization. It can be associated with crystallite rotation in a temperature-dependent non-crystalline matrix. The occurrence of solid-state post-condensation effects was confirmed by measuring the intrinsic viscosity. The conclusions resulting from the analysis of the microstructure affecting the mechanical strength of the material were validated by pressure resistance tests of the bottles. Full article
Show Figures

Graphical abstract

20 pages, 7103 KiB  
Article
Towards High-Quality Investment Casting of Ti-6Al-4V with Novel Calcium Zirconate Crucibles and Optimized Process Control
by Florian Bulling, Ulrich E. Klotz, Alexander Heiss, Lisa Freitag, Christina Faßauer and Christos G. Aneziris
Metals 2024, 14(11), 1222; https://doi.org/10.3390/met14111222 - 26 Oct 2024
Cited by 2 | Viewed by 1559
Abstract
The investment casting of titanium and its alloys relies on a high resistance of the crucibles and shell molds in terms of temperature and reactivity. The availability of ceramic crucibles that offer sufficient resistance to the titanium melt enables vacuum induction melting (VIM). [...] Read more.
The investment casting of titanium and its alloys relies on a high resistance of the crucibles and shell molds in terms of temperature and reactivity. The availability of ceramic crucibles that offer sufficient resistance to the titanium melt enables vacuum induction melting (VIM). CaZrO3 prepared from a mixture of CaO and ZrO2 as a raw material for refractory ceramics shows a high corrosion resistance against metallic melts even under very high temperatures up to 1800 °C. Crucibles and shell molds of CaZrO3 were successfully produced and used in subsequent casting trials. This study is focused on the refractory crucibles suitable for casting Ti-6Al-4V (Ti-64) using a tilt casting machine. In order to evaluate the crucible reaction and, therefore, the quality of the castings, chemical analyses, investigations of the microstructures and hardness measurements were carried out. Careful control of the melting duration is mandatory to avoid crucible reactions that otherwise result in contamination of the cast with oxygen and zirconium. This was achieved by modified coil geometries. Under optimized casting conditions, the oxygen and zirconium impurity limits of ASTM B367-09 for titanium castings were met. Based on the correlations found, optimized casting parameters with regard to material quantity, coil geometry and heating power could be determined in order to provide guidance for a high-quality casting process with VIM. Full article
Show Figures

Figure 1

Back to TopTop