Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy
Abstract
:1. Introduction
2. Selection of Process Environment
2.1. Pressure Difference Parameter Selection
2.2. Selection of Initial Pouring Temperature and Preheating Temperature
2.3. Establishment of ZL205A Alloy Material Library
2.4. Setting Boundary Conditions
3. Analysis of Numerical Simulation Results of Casting Process
3.1. Filling and Solidification Numerical Simulation Analysis of Column Slot Pouring Optimization System
3.2. Optimization of Casting Process Parameters of Column Gap Casting Optimization System
3.2.1. Single-Factor Experimental Design of Casting Process Parameters
3.2.2. Orthogonal Experimental Design of Casting Process Parameters
3.2.3. Response Surface Experiment Design of Casting Process Parameters
3.2.4. Verification of Optimal Parameters of Casting Process
4. Conclusions
- (1)
- Compared with the non-optimized cast material, the optimized cast material exhibits higher fracture toughness due to its finer crystal structure, fewer intergranular pores and intergranular segregation.
- (2)
- Compared with traditional metal mold casting and unoptimized low-pressure casting, the tensile strength of non-porous casting with pressure-holding pressure 14.68 kPa, casting temperature 717.152 °C and mold preheating temperature 256.12 °C increased by 6.6% and 4.1%, respectively, hardness increased by 14.3% and 8.4%, respectively, and the elongation is increased by 16.9% and 10.6%, respectively, thus efficiently and accurately improving the process quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Wang, H.W.; Zhu, Z.J. Effects of scraps and yttrium on the as-casting microstructure, hot tearing and solidification characteristics of ZL205A alloy. Rare Metal Mat. Eng. 2010, 39, 5–10. [Google Scholar] [CrossRef]
- Wang, C.H.; Yang, G.Y.; Alimasi, A. Effect of printing parameters of 3DP sand mold on the casting performance of ZL205A alloy. Acta Metall. Sin. 2022, 58, 921–931. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, L.; Zhao, B.; Sun, M.; He, M. Microstructure and Mechanical Properties of ZL205A Aluminum Alloy Produced by Squeeze Casting after Heat Treatment. Metals 2022, 12, 2037. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Mingione, E.; Ucciardello, N. FEM simulations for the optimization of the inlet gate system in rapid investment casting process for the realization of heat exchangers. Int. J. Metalcast. 2022, 16, 1152–1163. [Google Scholar] [CrossRef]
- Xu, H.; Liu, W.L.; Wang, Y.P.; Ma, S.Z.; Yuan, C.; Jia, H.L.; Cheng, X.M.; Wang, R. Control and optimization of defects in die casting of complicated right crankcase cover. J. Mater. Res. Technol. 2024, 33, 2831–2840. [Google Scholar] [CrossRef]
- Amit, C.; Hari, V. Reliability based design optimization of casting process parameters using Markov chain model. Mater. Today 2022, 63, 602–606. [Google Scholar] [CrossRef]
- Li, S.; Yan, S.; Cao, Z.; Liu, S.; Chen, D. Data-driven optimization method for aluminum alloy casting process parameters and alloy composition. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 323–328. [Google Scholar] [CrossRef]
- Wang, J.C.; Zuo, Y.B.; Zhu, Q.F.; Li, J.; Wang, R.; Liu, X.D. Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions. China Foundry 2024, 21, 387–396. [Google Scholar] [CrossRef]
- Puga, H.; Barbosa, J.; Azevedo, T. Low pressure sand casting of ultrasonically de-gassed AlSi7Mg0.3 alloy: Modelling and experimental validation of mould filling. Mater. Design 2016, 94, 384–391. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liu, J.H.; Chen, J.M.; Wen, F.L.; Jia, R.; Ma, Q.X. Optimization of residual stress in low-pressure casting of ZL205A alloys. J. Manuf. Process. 2023, 99, 338–350. [Google Scholar] [CrossRef]
- Ashok, R.R.; Sekar, S.; Jayakumar, K.S.; Prakash, K.; Antony, D.P. Optimization on stir casting process parameters of Al7050 based composites using Taguchi technique. Mater. Today Proc. 2024, 69, 1–10. [Google Scholar] [CrossRef]
- Muthu, R.K.; Muraliraja, R. Optimization of squeeze casting process parameters for the production of Al composite reinforced with bone powder. Mater. Today Proc. 2023, 65, 1–10. [Google Scholar] [CrossRef]
- Abayomi, A.A.; Adeolu, A.A.; Oluwatosin, A.B.; Moses, E.Y.; Abel, A.B.; Henry, K.T.; Bayode, J.O. Optimization of selected casting parameters on the mechanical behaviour of Al 6061/glass powder composites. Heliyon 2022, 8, e09350. [Google Scholar] [CrossRef]
- He, Y.; Lu, D.; Li, Z.; Lu, D. Multi-Objective Optimization of The Low-Pressure Casting of Large-Size Aluminum Alloy Wheels through a Systematic Optimization Idea. Materials 2023, 16, 6223. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Mohamed, M.E. On the improvement of castings quality in hybrid low-pressure sand-casting (LPSC) process in a fully integrated CAE environment. Int. J. Adv. Manuf. Technol. 2023, 127, 2309–2326. [Google Scholar] [CrossRef]
- Venkata, R.R.; Kalyankar, V.D.; Waghmare, G. Parameters optimization of selected casting processes using teaching–learning-based optimization algorithm. Appl. Math. Model. 2014, 38, 5592–5608. [Google Scholar] [CrossRef]
- Nandagopal, M.; Sivakumar, K.; Velmurugan, S.; Durairaj, R.B.; Mageshwaran, G. Multi-objective optimization of western bentonite (Al2H2Na2O13Si4)-blended green sand casting process parameters to improve mould quality. Trans. Can. Soc. Mech. Eng. 2020, 45, 110–119. [Google Scholar] [CrossRef]
- Li, C.X.; Sun, L.L. A robust optimization approach for steeling-continuous casting charge batch planning with uncertain slab weight. J. Process Control 2024, 144, 5–10. [Google Scholar] [CrossRef]
- Deng, J.X.; Liu, G.M.; Wang, L.; Liu, G.; Wu, X.S. Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm. J. Ind. Inf. Integr. 2024, 39, 100600. [Google Scholar] [CrossRef]
- Natrayan, L.; Senthil, M.K. Chapter Ten—Optimization of wear parameters of aluminium hybrid metal matrix composites by squeeze casting using Taguchi and artificial neural network. Sustain. Manuf. Des. 2021, 10, 223–234. [Google Scholar] [CrossRef]
- Xi, X.H.; Xiang, X.; Ming, J.W. Hot tearing behavior of ZL205A alloy cylindrical low-pressure castings with slit gating and feeding system. Int. J. Meatlcast. 2023, 17, 2970–2980. [Google Scholar] [CrossRef]
- Yao, M.R.; Xu, J.; Sun, D.; Huang, L.; Wang, C.F. Microstructure phase analysis and process optimization of ZL205A metal mold casting. Mater. Lett. 2024, 377, 137388. [Google Scholar] [CrossRef]
- Shehzad, M.A.; Bashir, A.; Ul, A.M.N. Reservoir inflow prediction by employing response surface-based models conjunction with wavelet and bootstrap techniques. Math. Probl. Eng. 2021, 2021, 4086918. [Google Scholar] [CrossRef]
- Hu, R.M.; Ludkovski, M. Sequential design for ranking response surfaces. SIAM-ASA J. Uncertain. Quantif. 2017, 5, 212–239. [Google Scholar] [CrossRef]
- Guo, T.B.; Sun, Q.Z.; Li, K.Z. Effect of temperature gradient and cooling rate on solidification structure and properties of ZL205A alloy. Rare Metal Mater. Eng. 2022, 51, 2400–2408. [Google Scholar]
- Abhishek, K.; Harikrishnan, R.; Cheruvu, S.K.; Ashish, K.N. Laser polishing of additive manufactured stainless-steel parts by line focused beam: A response surface method for improving surface finish. J. Manuf. Process. 2025, 133, 1310–1328. [Google Scholar] [CrossRef]
- Liu, Z.C.; Quan, Z.H.; Zhao, Y.H.; Zhang, W.L.; Yang, M.G.; Chang, Z.J. Optimization of a cold thermal energy storage system with micro heat pipe arrays by statistical approach: Taguchi method and response surface method. Renew. Energy 2025, 238, 121899. [Google Scholar] [CrossRef]
Lifting Liquid | Mold Filling | Turbocharge | Pressure Maintaining | Pressure Relief | |
---|---|---|---|---|---|
Time t (s) | 7 | 13.3 | 4 | 1500 | 1 |
Pressure P (kPa) | 13.82 | 29.82 | 39.82 | 39.82 | 0 |
Rate of pressure increasing V (kPa/s) | 1.5 | 1.2 | 2.5 | ||
Rising velocity V (cm/s) | 10 | 6 |
Heat Exchange Interface Type | Mold—Sand Core | Alloy—Cold Iron | Riser Pipe—Cast | Cold Iron—Cast | Riser—Cast |
---|---|---|---|---|---|
Coefficient of heat transfer H [W/(m2·K)] | H = 500 | H = 2000 | H = 20 | H = 500 | H = 20 |
Meshing Method | Mesh Minimum Size | Mesh Maximum Size | Partition Quantity | Minimum Jacobian | Computation Time | ||
---|---|---|---|---|---|---|---|
Plan 1 | Surface Mesh | Triangular Mesh | 0.6 mm | 1 mm | 58,006 | 0.62 | <1 h |
Volume Mesh | Hexahedral Mesh | 0.6 mm | 1 mm | 905,338 | 0.65 | ||
Plan 2 | Surface Mesh | Triangular Mesh | 0.6 mm | 1 mm | 85,884 | 0.77 | 1.5 h |
Volume Mesh | Hexahedral Mesh | 0.6 mm | 1 mm | 1,604,376 | 0.78 | ||
Plan 3 | Surface Mesh | Triangular Mesh | 0.6 mm | 1 mm | 198,276 | 0.94 | 2 h |
Volume Mesh | Hexahedral Mesh | 0.6 mm | 1 mm | 3,259,789 | 0.92 |
Experiment Number | A Pressure-Holding Pressure/kPa | B Pouring Temperature/°C | C Mold Preheating Temperature/°C | Porosity/% |
---|---|---|---|---|
1 | 5 | 680 | 230 | 1.16 |
2 | 5 | 700 | 260 | 0.88 |
3 | 5 | 720 | 290 | 1.21 |
4 | 10 | 680 | 290 | 1.38 |
5 | 10 | 700 | 230 | 0.92 |
6 | 10 | 720 | 260 | 0.45 |
7 | 15 | 680 | 260 | 1.46 |
8 | 15 | 700 | 290 | 0.71 |
9 | 15 | 720 | 230 | 0.52 |
Range R | A Pressure-Holding Pressure/kPa | B Pouring Temperature/°C | C Mold Preheating Temperature/°C |
---|---|---|---|
K1 | 1.083 | 1.330 | 0.867 |
K2 | 0.917 | 0.837 | 0.930 |
K3 | 0.896 | 0.727 | 1.100 |
R | 0.187 | 0.603 | 0.233 |
Test Number | A Pressure-Holding Pressure/kPa | B Pouring Temperature/°C | C Mold Preheating Temperature/°C | Porosity/% |
---|---|---|---|---|
1 | 0 | 0 | 0 | 0.46 |
2 | −1 | −1 | 0 | 1.09 |
3 | 1 | 1 | 0 | 0.05 |
4 | 0 | 0 | 0 | 0.32 |
5 | −1 | 0 | −1 | 1.24 |
6 | 0 | −1 | 1 | 1.38 |
7 | 0 | 0 | 0 | 0.44 |
8 | 1 | 0 | 1 | 0.71 |
9 | 0 | 0 | 0 | 0.5 |
10 | 0 | 1 | 1 | 0.59 |
11 | 0 | 1 | −1 | 0.85 |
12 | −1 | 1 | 0 | 1.01 |
13 | 1 | 0 | −1 | 0.59 |
14 | 0 | 0 | 0 | 0.36 |
15 | −1 | 0 | 1 | 0.58 |
16 | 0 | −1 | −1 | 1.85 |
17 | 1 | −1 | 0 | 1.46 |
Source | Sum of Squares of Deviations | Degree of Freedom | Mean Square | F Value | p Value | Significance |
---|---|---|---|---|---|---|
Model | 3.63 | 9 | 0.4 | 73.65 | <0.0001 | ** |
A—Holding pressure | 0.15 | 1 | 0.15 | 28.15 | 0.0011 | ** |
B—Pouring temperature | 1.34 | 1 | 1.34 | 245.82 | <0.0001 | ** |
C—Mold preheating temperature | 0.2 | 1 | 0.2 | 36.85 | 0.0005 | ** |
AB | 0.44 | 1 | 0.44 | 80.83 | <0.0001 | ** |
AC | 0.15 | 1 | 0.15 | 27.8 | 0.0012 | ** |
BC | 0.011 | 1 | 0.011 | 2.02 | 0.1987 | |
A2 | 0.01 | 1 | 0.01 | 1.89 | 0.212 | |
B2 | 0.8 | 1 | 0.8 | 146.98 | <0.0001 | ** |
C2 | 0.42 | 1 | 0.42 | 76.13 | <0.0001 | ** |
Residue | 0.038 | 7 | 5.478 × 10−3 | |||
Missing fit | 0.016 | 3 | 5.468 × 10−3 | 1 | 0.4803 | ns |
Pure error | 0.022 | 4 | 5.488 × 10−3 | |||
Sum | 3.66 | 16 |
Test Number | A Pressure-Holding Pressure/kPa | B Pouring Temperature/°C | C Mold Preheating Temperature/°C | Porosity/% |
---|---|---|---|---|
1 | 5 | 680 | 230 | 1.16 |
2 | 5 | 680 | 260 | 1.09 |
3 | 5 | 700 | 230 | 1.24 |
4 | 5 | 700 | 260 | 0.88 |
5 | 5 | 700 | 290 | 0.58 |
6 | 5 | 720 | 260 | 1.01 |
7 | 5 | 720 | 290 | 1.21 |
8 | 10 | 680 | 230 | 1.85 |
9 | 10 | 680 | 290 | 1.38 |
10 | 10 | 700 | 230 | 0.92 |
11 | 10 | 700 | 260 | 0.46 |
12 | 10 | 700 | 260 | 0.32 |
13 | 10 | 700 | 260 | 0.44 |
14 | 10 | 700 | 260 | 0.5 |
15 | 10 | 720 | 230 | 0.85 |
16 | 10 | 720 | 260 | 0.45 |
17 | 10 | 720 | 290 | 0.59 |
18 | 15 | 680 | 260 | 1.46 |
19 | 15 | 700 | 290 | 0.71 |
20 | 15 | 700 | 290 | 0.71 |
21 | 15 | 720 | 230 | 0.52 |
22 | 15 | 720 | 260 | 0.05 |
23 | 14.68 | 717.152 | 256.12 | 0.006 Best |
Casting Method | Structure Design of Casting System | Porosity/% | Tensile Strength/MPa | Elongation /% | Hardness/HV |
---|---|---|---|---|---|
Traditional metal casting | Two serpentine straight runner, inner runner and cross runner riser | 1.2% | 472 | 7.1 | 147 |
Traditional low-pressure casting | Single side column straight runner, cross runner and ladder inner runner | 0.65% | 483 | 7.5 | 155 |
New low-pressure casting | Thermal insulation riser, slot type inner runner, column type straight runner and cold iron | 0% | 503 | 8.3 | 168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Cao, Y.; Zhang, M.; Meng, Z.; Wang, T.; Zhu, X. Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy. Materials 2025, 18, 531. https://doi.org/10.3390/ma18030531
Huang L, Cao Y, Zhang M, Meng Z, Wang T, Zhu X. Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy. Materials. 2025; 18(3):531. https://doi.org/10.3390/ma18030531
Chicago/Turabian StyleHuang, Liang, Yan Cao, Mengfei Zhang, Zhichao Meng, Tuo Wang, and Xiaozhe Zhu. 2025. "Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy" Materials 18, no. 3: 531. https://doi.org/10.3390/ma18030531
APA StyleHuang, L., Cao, Y., Zhang, M., Meng, Z., Wang, T., & Zhu, X. (2025). Optimization Design of Casting Process for Large Long Lead Cylinder of Aluminum Alloy. Materials, 18(3), 531. https://doi.org/10.3390/ma18030531