Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (709)

Search Parameters:
Keywords = heat-pressing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13584 KiB  
Article
Enhanced Diffraction and Spectroscopic Insight into Layer-Structured Bi6Fe2Ti3O18 Ceramics
by Zbigniew Pędzich, Agata Lisińska-Czekaj, Dionizy Czekaj, Agnieszka Wojteczko and Barbara Garbarz-Glos
Materials 2025, 18(15), 3690; https://doi.org/10.3390/ma18153690 - 6 Aug 2025
Abstract
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was [...] Read more.
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was conducted to optimize the heat treatment parameters. Energy-dispersive X-ray spectroscopy (EDS) confirmed the conservation of the chemical composition following calcination. Final densification was achieved through hot pressing. The crystal structure of the sintered samples, examined via X-ray diffraction at room temperature, revealed a tetragonal symmetry for BFTO ceramics sintered at 850 °C. Electron backscatter diffraction (EBSD) provided detailed insight into the crystallographic orientation and microstructure. Broadband dielectric spectroscopy (BBDS) was employed to investigate the dielectric response of BFTO ceramics over a frequency range of 10 mHz to 10 MHz and a temperature range of −30 °C to +200 °C. The temperature dependence of the relative permittivity (εr) and dielectric loss tangent (tan δ) were measured within a frequency range of 100 kHz to 900 kHz and a temperature range of 25 °C to 570 °C. The impedance data obtained from the BBDS measurements were validated using the Kramers–Kronig test and modeled using the Kohlrausch–Williams–Watts (KWW) function. The stretching parameter (β) ranged from ~0.72 to 0.82 in the impedance formalism within the temperature range from 200 °C to 20 °C. Full article
Show Figures

Figure 1

18 pages, 1621 KiB  
Article
The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
by David Sango-Parco, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López and Frank Alexis
Bioengineering 2025, 12(8), 838; https://doi.org/10.3390/bioengineering12080838 (registering DOI) - 1 Aug 2025
Viewed by 278
Abstract
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences [...] Read more.
This research demonstrates the potential of plant waste cellulose as a remarkable biomaterial for multilayer tablet formulation. Rice husks (RC) and orange peels (OC) were used as cellulose sources and characterized for a comparison with commercial cellulose. The FTIR characterization shows minimal differences in their chemical components, making them equivalent for compression into tablets containing ibuprofen. TGA measurements indicate that the RC is slightly better for multilayer formulations due to its favorable degradation profile. This is corroborated by an XRD analysis that reveals its higher crystalline fraction (~55%). The use of a heat press at combined high pressures and temperatures allows the layer-by-layer tablet formulation of ibuprofen, taken as a model drug. Additionally, this study compares the release profile of three types of tablets compressed with cellulose: mixed (MIX), two-layer (BL), and three-layer (TL). The MIX tablet shows a profile like that of conventional ibuprofen tablets. Although both BL and TL tablets significantly reduce their release percentage in the first hours, the TL ones have proven to be better in the long run. In fact, formulations made of extracted cellulose sandwiching ibuprofen display a zero-order release profile and prolonged release since the drug release amounts to ~70% after 120 h. This makes the TL formulations ideal for maintaining the therapeutic effect of the drug and improving patients’ wellbeing and compliance while reducing adverse effects. Full article
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 162
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

15 pages, 1294 KiB  
Article
Heat Wave Beliefs and Behaviors in Southern Spain
by Aaron Metzger, Yuval Baharav, Peter Mitchell, Lilly Nichols, Breahnna Saunders, Alexis Arlak, Megan Finke, Megan Gottemoeller, Kurt Shickman, Kathy Baughman McLeod and Gregory A. Wellenius
Int. J. Environ. Res. Public Health 2025, 22(8), 1196; https://doi.org/10.3390/ijerph22081196 - 31 Jul 2025
Viewed by 131
Abstract
Extreme heat is a pressing public health threat. This study assesses and describes the interrelationships between beliefs about heat waves, individuals’ precautionary behaviors during heat waves, and demographic factors. In May 2022, we surveyed 1051 residents (aged 25–90 years) in Southern Spain, a [...] Read more.
Extreme heat is a pressing public health threat. This study assesses and describes the interrelationships between beliefs about heat waves, individuals’ precautionary behaviors during heat waves, and demographic factors. In May 2022, we surveyed 1051 residents (aged 25–90 years) in Southern Spain, a region that experiences frequent heat waves. We found that many participants engaged in heat wave avoidance (80.5%, e.g., spending more time indoors), impact reduction (63.7%, e.g., drinking more water), or prosocial behavior (31.6%, e.g., helping others). However, one in four (25.9%) respondents also indicated that they personally do not need to worry about heat waves. Heat wave beliefs and behaviors were modestly correlated with demographic characteristics. Individuals who view themselves as less vulnerable to heat-related health risks (“impervious” beliefs) were less likely to report altering their behavior during heat waves. Public health efforts aiming to change behavior during heat waves may anticipate “impervious” beliefs and demographic differences in risk perception and heat-related behaviors. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

13 pages, 8060 KiB  
Article
Microstructural, Mechanical, and Thermal Properties of Textured Si3N4/BN Composite Ceramics Prepared Using Two-Step Sintering
by Dexiang Gong, Yi Zhou, Yunwei Shi and Qianglong He
Materials 2025, 18(15), 3573; https://doi.org/10.3390/ma18153573 - 30 Jul 2025
Viewed by 245
Abstract
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase [...] Read more.
Textured Si3N4/BN composite ceramics were successfully fabricated using two-step sintering, combining pseudo-hot isostatic pressing (PHIP) and gas pressure sintering. The grain size of h-BN platelets had a significant influence on densification and mechanical and thermal properties. With an increase in h-BN grain size, the volume density of the composite ceramics gradually decreased, while flexural strength gradually increased. Meanwhile, larger h-BN platelets were more likely to trigger toughening mechanisms like large-angle deflection and greatly increase fracture toughness. Through proper selection of h-BN grain size, textured ceramics, with the addition of h-BN platelets of 1–2 μm, showed high thermal conductivity (∼92 W∙m−1∙K−1) and reliable mechanical properties (∼540 MPa, ∼7.5 MPa∙m1/2, ∼11.1 GPa). Therefore, texture control is an effective means of improving the overall performance of ceramic materials. Novel textured composite ceramics thus have great potential in large-scale fabrication and directional heat dissipation applications. Full article
Show Figures

Graphical abstract

20 pages, 8132 KiB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 198
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

20 pages, 8312 KiB  
Article
Experimental Investigation of Magnetic Abrasive Finishing for Post-Processing Additive Manufactured Inconel 939 Parts
by Michał Marczak, Dorota A. Moszczyńska and Aleksander P. Wawrzyszcz
Appl. Sci. 2025, 15(15), 8233; https://doi.org/10.3390/app15158233 - 24 Jul 2025
Viewed by 263
Abstract
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a [...] Read more.
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a pressing need for advanced, adaptable finishing techniques that can operate effectively on complex geometries. This research focuses on optimizing the process parameters—eccentricity, rotational speed, and machining time—to enhance surface integrity following preliminary vibratory machining. Custom-designed samples underwent sequential machining, including heat treatment and 4 h vibratory machining, before MAF was applied under controlled conditions using ferromagnetic Fe-Si abrasives. Surface roughness measurements demonstrated a significant reduction, achieving Ra values from 1.21 µm to below 0.8 µm in optimal conditions, representing more than a fivefold improvement compared to the as-printed state (5.6 µm). Scanning Electron Microscopy (SEM) revealed progressive surface refinement, with MAF effectively removing adhered particles left by prior processing. Statistical analysis confirmed the dominant influence of eccentricity on the surface profile parameters, particularly Rz. The findings validate the viability of MAF as a precise, controllable, and complementary finishing method for LPBF-manufactured Inconel 939 components, especially for geometrically complex or hard-to-reach surfaces. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

14 pages, 9051 KiB  
Article
Mechanical Properties and Fatigue Life Estimation of Selective-Laser-Manufactured Ti6Al4V Alloys in a Comparison Between Annealing Treatment and Hot Isostatic Pressing
by Xiangxi Gao, Xubin Ye, Yuhuai He, Siqi Ma and Pengpeng Liu
Materials 2025, 18(15), 3475; https://doi.org/10.3390/ma18153475 - 24 Jul 2025
Viewed by 167
Abstract
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison [...] Read more.
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison of their mechanical performances based on the specimen orientation is still lacking. In this study, horizontally and vertically built Ti6Al4V SLM specimens that underwent the aforementioned treatments, together with their microstructural and defect characteristics, were, respectively, investigated using metallography and X-ray imaging. The mechanical properties and failure mechanism, via fracture analysis, were obtained. The critical factors influencing the mechanical properties and the correlation of the fatigue lives and failure origins were also estimated. The results demonstrate that the mechanical performances were determined by the α-phase morphology and defects, which included micropores and fewer large lack-of-fusion defects. Following the coarsening of the α phase, the strength decreased while the plasticity remained stable. With the discrepancy in the defect occurrence, anisotropy and scatter of the mechanical performances were introduced, which was significantly alleviated with HIP treatment. The fatigue failure origins were governed by defects and the α colony, which was composed of parallel α phases. Approximately linear relationships correlating fatigue lives with the X-parameter and maximum stress amplitude were, respectively, established in the AT and HIP states. The results provide an understanding of the technological significance of the evaluation of mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 3187 KiB  
Article
Elastocaloric Performance of Natural Rubber: The Role of Nanoclay Addition
by Marica Bianchi, Luca Fambri, Mauro Bortolotti, Alessandro Pegoretti and Andrea Dorigato
Molecules 2025, 30(14), 3035; https://doi.org/10.3390/molecules30143035 - 19 Jul 2025
Viewed by 318
Abstract
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under [...] Read more.
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under moderate stress (~a few MPa). Despite these advantages, the cooling efficiency of NR remains lower than that of conventional vapor-compression systems. Therefore, improving the cooling capacity of NR is essential for the development of solid-state cooling technologies competitive with existing ones. To address this, two series of NR-based nanocomposites, containing 1, 3, and 5 phr nanofiller, were prepared by melt compounding and hot pressing and characterized in terms of morphology, thermal, mechanical, and elastocaloric properties. The results highlighted that the better dispersion of the organoclays within the rubber matrix promoted not only a better mechanical behavior (in terms of stiffness and strength), but also a significantly enhanced cooling performance compared to MMT nanofilled systems. Moreover, NR/O-MMT samples demonstrated up to a ~45% increase in heat extracted per refrigeration cycle compared to the unfilled NR, with a coefficient of performance (COP) up to 3, approaching the COP of conventional vapor-compression systems, typically ranging between 3 and 6. The heat extracted per refrigeration cycle of NR/O-MMT systems resulted in approx. 16 J/cm3, higher with respect to the values reported in the literature for NR-based systems (ranging between 5 and 12 J/cm3). These findings emphasize the potential of organoclays in enhancing the refrigeration potential of NR for novel state cooling applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 257
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

16 pages, 8314 KiB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 381
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

13 pages, 3867 KiB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 226
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 424
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

19 pages, 10122 KiB  
Article
The Influence of Equal-Channel Angular Pressing on the Microstructure and Properties of a Steel–Aluminum Composite
by Yang Liu, Junrui Xu, Bingnan Chen, Yuqi Fan, Wenxin Lv and Hua Sun
Metals 2025, 15(7), 774; https://doi.org/10.3390/met15070774 - 9 Jul 2025
Viewed by 339
Abstract
Under the global initiative for automotive lightweighting to address climate challenges, this study investigates the microstructure evolution of steel–aluminum composites processed by hot equal-channel angular pressing (H-ECAP). Using 6061-T6 aluminum cores clad with 20 # low carbon steel tubes processed through 1–4 C-path [...] Read more.
Under the global initiative for automotive lightweighting to address climate challenges, this study investigates the microstructure evolution of steel–aluminum composites processed by hot equal-channel angular pressing (H-ECAP). Using 6061-T6 aluminum cores clad with 20 # low carbon steel tubes processed through 1–4 C-path passes (Φ = 120°, ψ = 30°), we demonstrate significant microstructural improvements. The steel component showed progressive grain refinement from 2.2 μm (1 pass) to 1.3 μm (4 pass), with substructures decreasing from 72.19% to 35.46%, HAGB increasing from 31.2% to 34.6%, and hardness increasing from 222 HV to 271 HV. Concurrently, aluminum experienced grain refinement from 59.3 μm to 28.2 μm, with recrystallized structures surging from 0.97% to 71.81%, HAGB increasing from 9.96% to 63.76%, and hardness increasing from 51.4 HV to 83.6 HV. The interfacial layer thickness reduced by 74% (29.98 μm to 7.78 μm) with decreasing oxygen content, containing FeAl3, Fe2Al5, and minimal matrix oxides. Yield strength gradually increased from 361 MPa (one pass) to 372.35 MPa (four passes), accompanied by a significant enhancement in compressive strength. These findings reveal that H-ECAP’s thermomechanical coupling effect effectively enhances interface bonding quality while suppressing detrimental intermetallic growth, providing a viable solution to overcome traditional manufacturing limitations in steel–aluminum composite applications for sustainable mobility. Full article
Show Figures

Figure 1

20 pages, 2533 KiB  
Article
Analysis of the Alterations in Symbiotic Microbiota and Their Correlation with Intestinal Metabolites in Rainbow Trout (Oncorhynchus mykiss) Under Heat Stress Conditions
by Changqing Zhou and Fengyuan Ding
Animals 2025, 15(14), 2017; https://doi.org/10.3390/ani15142017 - 8 Jul 2025
Viewed by 316
Abstract
Global warming represents one of the most pressing environmental challenges to cold-water fish farming. Heat stress markedly alters the mucosal symbiotic microbiota and intestinal microbial metabolites in fish, posing substantial barriers to the healthy artificial breeding of rainbow trout (Oncorhynchus mykiss). [...] Read more.
Global warming represents one of the most pressing environmental challenges to cold-water fish farming. Heat stress markedly alters the mucosal symbiotic microbiota and intestinal microbial metabolites in fish, posing substantial barriers to the healthy artificial breeding of rainbow trout (Oncorhynchus mykiss). However, the relationship between mucosal commensal microbiota, intestinal metabolites, and host environmental adaptability under heat stress remains poorly understood. In this study, rainbow trout reared at optimal temperature (16 °C) served as controls, while those exposed to maximum tolerated temperature (24 °C, 21 d) comprised the heat stress group. Using 16S rRNA amplicon sequencing and ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS), we analysed the mucosal commensal microbiota—including gastrointestinal digesta, gastrointestinal mucosa, skin mucus, and gill mucosa—and intestinal metabolites of rainbow trout under heat stress conditions to explore adaptive and regulatory mechanisms. Analysis of microbial composition and diversity revealed that heat stress exerted the greatest impact on the diversity of gill and skin mucus microbiota, followed by gastrointestinal digesta, with relatively minor effects on the gastrointestinal mucosa. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were predominant in the stomach, intestine, and surface mucosa. At the genus level, Acinetobacter showed the greatest increase in abundance in skin and gill mucosa under heat stress, while Enterobacteriaceae exhibited the most pronounced increase in intestinal digesta, gastric digesta, and gastric mucosa. Differential metabolites in the intestinal digesta under heat stress were predominantly enriched in pathways associated with amino acid metabolism, particularly tryptophan metabolism. This study provides a comprehensive characterisation of microbiota and metabolic profile alterations in rainbow trout under heat stress condition, offering a theoretical foundation for understanding the response mechanisms of fish commensal microbiota to thermal stress. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop