Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,585)

Search Parameters:
Keywords = heat extreme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

12 pages, 2376 KiB  
Article
Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach
by Xu Yu, Hanlong Wang and Hai Huang
Materials 2025, 18(15), 3702; https://doi.org/10.3390/ma18153702 - 6 Aug 2025
Abstract
Copper alloys are critical heat sink materials for fusion reactor divertors due to their high thermal conductivity (TC) and strength, yet their performance under extreme particle bombardment and heat fluxes in future tokamaks requires enhancement. While neutron-induced transmutation helium affects the properties of [...] Read more.
Copper alloys are critical heat sink materials for fusion reactor divertors due to their high thermal conductivity (TC) and strength, yet their performance under extreme particle bombardment and heat fluxes in future tokamaks requires enhancement. While neutron-induced transmutation helium affects the properties of copper, the atomistic mechanisms linking helium bubble size to thermal transport remain unclear. This study employs non-equilibrium molecular dynamics (NEMD) simulations to isolate the effect of bubble diameter (10, 20, 30, 40 Å) on TC in copper, maintaining a constant He-to-vacancy ratio of 2.5. Results demonstrate that larger bubbles significantly impair TC. This reduction correlates with increased Kapitza thermal resistance and pronounced lattice distortion from outward helium diffusion, intensifying phonon scattering. Phonon density of states (PDOS) analysis reveals diminished low-frequency peaks and an elevated high-frequency peak for bubbles >30 Å, confirming phonon confinement and localized vibrational modes. The PDOS overlap factor decreases with bubble size, directly linking microstructural evolution to thermal resistance. These findings elucidate the size-dependent mechanisms of helium bubble impacts on thermal transport in copper divertor materials. Full article
(This article belongs to the Special Issue Advances in Computation and Modeling of Materials Mechanics)
Show Figures

Figure 1

28 pages, 11045 KiB  
Article
Evaluating the Microclimatic Performance of Elevated Open Spaces for Outdoor Thermal Comfort in Cold Climate Zones
by Xuan Ma, Qian Luo, Fangxi Yan, Yibo Lei, Yuyang Lu, Haoyang Chen, Yuhuan Yang, Han Feng, Mengyuan Zhou, Hua Ding and Jingyuan Zhao
Buildings 2025, 15(15), 2777; https://doi.org/10.3390/buildings15152777 - 6 Aug 2025
Abstract
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on [...] Read more.
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on warm or temperate climates, leaving a significant research gap regarding their thermal performance in cold climate zones characterized by extreme seasonal variations. Specifically, few studies have investigated how these spaces perform under conditions typical of northern Chinese cities like Xi’an, which is explicitly classified within the Cold Climate Zone according to China’s national standard GB 50176-2016 and experiences both severe summer heat and cold winter conditions. To address this gap, we conducted field measurements and numerical simulations using the ENVI-met model (v5.0) to systematically evaluate the microclimatic performance of elevated ground-floor spaces in Xi’an. Key microclimatic parameters—including air temperature, mean radiant temperature, relative humidity, and wind velocity—were assessed during representative summer and winter conditions. Our findings indicate that the height of the elevated structure significantly affects outdoor thermal comfort, identifying an optimal elevated height range of 3.6–4.3 m to effectively balance summer cooling and winter sheltering needs. These results provide valuable design guidance for architects and planners aiming to enhance outdoor thermal environments in cold climate regions facing distinct seasonal extremes. Full article
Show Figures

Figure 1

19 pages, 14381 KiB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 - 6 Aug 2025
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

11 pages, 1392 KiB  
Article
Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature
by Yolanda Garrido, Joaquín Quesada-Medina, José David Sánchez, Ana Sánchez-Zurano, Eduardo Iniesta-López, Adrián Hernández-Fernández, Antonia Pérez de los Ríos and Francisco José Hernández-Fernández
Processes 2025, 13(8), 2479; https://doi.org/10.3390/pr13082479 - 6 Aug 2025
Abstract
This study investigates the viability of a native Scenedesmus sp. strain for use in a 50 L bubble column photobioreactor designed to reduce greenhouse gas emissions under simulated spring, extreme summer, and winter conditions. The experiments were conducted by placing the reactor in [...] Read more.
This study investigates the viability of a native Scenedesmus sp. strain for use in a 50 L bubble column photobioreactor designed to reduce greenhouse gas emissions under simulated spring, extreme summer, and winter conditions. The experiments were conducted by placing the reactor in a controlled climatic chamber, which allowed us to regulate the temperature, light intensity, and day–night cycles throughout the entire experiment. The results showed that under simulated spring conditions (a maximum temperature of 22 °C), the algal culture grew continuously for 61 days. Under extreme summer conditions (a maximum temperature of 39 °C), an initial drop in cell density was followed by recovery and continued growth over 75 days, although biomass production was 35% lower. Under winter conditions (a maximum temperature of 10 °C), the culture failed, indicating the need to prevent temperatures below 10 °C. In terms of biomass production, the culture densities achieved were 1.04 g L−1 and 0.68 g L−1 in the spring and summer trials, respectively. The Scenedesmus sp. strain demonstrated high carbon capture efficiency, tolerance to extreme heat, and sustained growth without the need for fresh medium or pH adjustments for over 60 days during spring and extreme summer conditions, confirming its potential for outdoor applications. Full article
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Viewed by 70
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

14 pages, 3520 KiB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 - 4 Aug 2025
Viewed by 232
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

18 pages, 7997 KiB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Viewed by 210
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

21 pages, 3755 KiB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 - 4 Aug 2025
Viewed by 173
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 261
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 303
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 - 2 Aug 2025
Viewed by 334
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

24 pages, 9086 KiB  
Article
Linking Optimization Success and Stability of Finite-Time Thermodynamics Heat Engines
by Julian Gonzalez-Ayala, David Pérez-Gallego, Alejandro Medina, José M. Mateos Roco, Antonio Calvo Hernández, Santiago Velasco and Fernando Angulo-Brown
Entropy 2025, 27(8), 822; https://doi.org/10.3390/e27080822 - 2 Aug 2025
Viewed by 141
Abstract
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in [...] Read more.
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in the interaction between heat reservoirs and the working fluid. The first corresponds to a fully reversible limit, and the second one is the fully dissipative limit; in between both limits, the heat exchange between reservoirs and working fluid produces irreversibilities and entropy generation. The distance between these two extremal configurations is minimized, independently of the chosen metric, in the state where the efficiency is half the Carnot efficiency. This boundary encloses the region where irreversibilities dominate or the reversible behavior dominates (region of success). A general stability dynamics is proposed based on the endoreversible nature of the model and the operation parameter in charge of defining the operation regime. For this purpose, the maximum ecological and maximum Omega regimes are considered. The results show that for single perturbations, the dynamics rapidly directs the system towards the success region, and under random perturbations producing stochastic trajectories, the system remains always in this region. The results are contrasted with the case in which no restitution dynamics exist. It is shown that stability allows the system to depart from the original steady state to other states that enhance the system’s performance, which could favor the evolution and specialization of systems in nature and in artificial devices. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

25 pages, 3590 KiB  
Article
Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness
by Jan Hora
Fire 2025, 8(8), 304; https://doi.org/10.3390/fire8080304 - 1 Aug 2025
Viewed by 228
Abstract
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A [...] Read more.
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A with stress-based training and Team B with standard training) under realistic conditions. Using 58 thermocouples and 4 radiometers, temperature distribution and radiant heat flux were measured to evaluate water distribution efficiency and cooling performance during interventions. Team A consistently achieved temperature reductions of approximately 320 °C in the upper layers and 250–400 °C in the middle layers, maintaining stable conditions, whereas Team B only achieved partial cooling, with upper-layer temperatures remaining at 750–800 °C. Additionally, Team A recorded lower radiant heat flux densities (e.g., 20.74 kW/m2 at 0°) compared to Team B (21.81 kW/m2), indicating more effective water application and adaptability. The findings confirm that stress-based training enhances firefighters’ operational readiness and their ability to distribute water effectively during interventions. This skill is essential for safer and effective management of indoor fires under extreme conditions. This study supports the inclusion of stress-based and scenario-based training in firefighter education to enhance safety and operational performance. Full article
Show Figures

Figure 1

17 pages, 1522 KiB  
Article
Characterization of Solid Particulates to Be Used as Storage as Well as Heat Transfer Medium in Concentrated Solar Power Systems
by Rageh Saeed, Syed Noman Danish, Shaker Alaqel, Nader S. Saleh, Eldwin Djajadiwinata, Hany Al-Ansary, Abdelrahman El-Leathy, Abdulelah Alswaiyd, Zeyad Al-Suhaibani, Zeyad Almutairi and Sheldon Jeter
Appl. Sci. 2025, 15(15), 8566; https://doi.org/10.3390/app15158566 - 1 Aug 2025
Viewed by 142
Abstract
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in [...] Read more.
Using solid particulates as a heat transfer medium for concentrated solar power (CSP) systems has many advantages, positioning them as a superior option compared with conventional heat transfer media such as steam, oil, air, and molten salt. However, a critical imperative lies in the comprehensive evaluation of the properties of potential solid particulates intended for utilization under such extreme thermal conditions. This paper undertakes an exhaustive examination of both ambient and high-temperature thermophysical properties of four naturally occurring particulate materials, Riyadh white sand, Riyadh red sand, Saudi olivine sand, and US olivine sand, and one well-known engineered particulate material. The parameters under scrutiny encompass loose bulk density, tapped bulk density, real density, sintering temperature, and thermal conductivity. The results reveal that the theoretical density decreases with the increase in temperature. The bulk density of solid particulates depends strongly on the particulate size distribution, as well as on the compaction. The tapped bulk density was found to be larger than the loose density for all particulates, as expected. The sintering test proved that Riyadh white sand is sintered at the highest temperature and pressure, 1300 °C and 50 MPa, respectively. US olivine sand was solidified at 800 °C and melted at higher temperatures. This proves that US olivine sand is not suitable to be used as a thermal energy storage and heat transfer medium in high-temperature particle-based CSP systems. The experimental results of thermal diffusivity/conductivity reveal that, for all particulates, both properties decrease with the increase in temperature, and results up to 475.5 °C are reported. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

Back to TopTop