Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness
Abstract
1. Introduction
2. Methodology
2.1. Evaluation Method of Thermal and Radiant Exposure During Compartment Fire Intervention
2.2. Training Simulator Setup
2.3. Firefighters’ Activities
2.4. Temperature Distribution
2.5. Analysis of the Temperature Values Obtained
2.6. Analysis of Temperatures at Height Levels and Creation of Zones
2.7. Analysis of Heat Flux Density
3. Results
3.1. Evaluation of Vertical Temperature Profiles Using Sigmoidal Modeling
3.2. Consolidated Thermal Load Modeling at Different Height Levels
3.3. Analysis of Radiant Heat Flux Using Polynomial Modeling
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edwards, R.; Hanson, A.; Thorpe, M. Culture and Processes of Adult Learning, 1st ed.; Routledge: London, UK, 1993. [Google Scholar] [CrossRef]
- Loewenstein, G.F.; Weber, E.U.; Hsee, C.K.; Welch, N. Risk as feelings. Psychol. Bull. 2001, 127, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.Z. The Tyranny of Metrics; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Bishop, S.R.; Holborn, P.G.; Beard, A.N. Nonlinear Dynamics of Flashover in Compartment Fires. Fire Saf. J. 1993, 21, 11–45. [Google Scholar] [CrossRef]
- Moore-Merrell, L.; Kerber, S.; Horn, G.P.; Smith, D.L. Effects of Crew Size on Firefighter Health and Safety. Int. Fire Serv. J. Leadersh. Manag. 2021, 15, 7–25. Available online: https://d1gi3fvbl0xj2a.cloudfront.net/2021-12/IFSJLM%20Vol15_Horn.pdf (accessed on 23 July 2025).
- Grimwood, P. 3D Gas Cooling–Burst & Pause Cycles: A Comparative Evaluation of Water-Fog Versus Straight Streams to Cool and Inert Fire Gases in the Overhead of a Compartment Fire. High Rise Firef. 2016, 1, 1–12. Available online: https://highrisefire.co.uk/docs/3D%20GAS%20COOLING.pdf (accessed on 23 July 2025).
- Games, K.E.; Winkelmann, Z.K.; Mcginnis, K.D.; Mcadam, J.S.; Pascoe, D.D.; Sefton, J.M. Functional Performance of Firefighters After Exposure to Environmental Conditions and Exercise. J. Athl. Train. 2020, 55, 25–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mackay, D.; Barber, T.; Yeoh, G.H. Experimental and computational studies of compartment fire behavior training scenarios. Build. Environ. 2010, 45, 2312–2322. [Google Scholar] [CrossRef]
- Stakes, K.; Willi, J.M.; Chaffer, R.; Madrzykovski, D.; Horn, G.P. Exposure Risks and Potential Control Measures for a Fire Behavior Lab Training Structure: Part A-Fire Dynamics and Thermal Risk. Fire Technol. 2023, 59, 2089–2125. [Google Scholar] [CrossRef]
- Horn, G.P.; Kerber, S.; Fernhall, B.; Smith, D.L. Thermal response characteristics of firefighters wearing different levels of personal protective equipment during controlled structure fires. J. Occup. Environ. Hyg. 2017, 14, 937–944. [Google Scholar]
- Tomášek, A. The Training and Observation Simulator, Stages I and II, Will Accompany the Technical Report for the Project Documentation for a Building Permit; Fire Brigade of the Czech Republic: Prague, Czech Republic, 2010. [Google Scholar]
- Larva, J. The Gas Technology Design Will Accompany the Technical Report for the Project Documentation for a Building Permit; Fire Brigade of the Czech Republic: Prague, Czech Republic, 2010. [Google Scholar]
- Sax, N.I. (Ed.) Dangerous Properties of Industrial Materials, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 9780471701347. [Google Scholar] [CrossRef]
- Heskestad, G. Dynamics of the fire plume. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 356, 2815–2833. [Google Scholar] [CrossRef]
- Zukoski, E.E. Fluid Dynamic Aspects of Room Fires. In Proceedings of the First International Symposium, Gaithersburg, MD, USA, 7–11 October 1985; pp. 1–30. [Google Scholar]
- Lönnermark, A. On the Characteristics of Fires in Tunnels. Ph.D. Thesis, Department of Fire Safety Engineering and Systems Safety, Lund University, Lund, Sweden, 2005. ISBN 91-628-6637-0. Available online: https://lucris.lub.lu.se/ws/files/4559367/545455.pdf (accessed on 23 May 2025).
- Žižka, J. A Set of Experimental Tests in Simulated Fire in Confined Space Conditions was Performed in the Zbiroh Training Facility. Master’s Thesis, Technical University of Ostrava, Ostrava, Czech Republic, 2012. [Google Scholar]
- Särdqvist, S. Water and Other Extinguishing Agents; Räddnings Verket: Karlstad, Sweden, 2002; p. 155. ISBN 91-7253-265-3. [Google Scholar]
- Grant, G.; Brenton, J.A.; Drysdale, D. Fire suppression by water sprays. Prog. Energy Combust. Sci. 2000, 26, 79–130. [Google Scholar] [CrossRef]
- Costarelli, D. Sigmoidal Functions, Approximation, and Applications; Università Roma Tre: Roma, Italy, 2013; Available online: http://193.204.165.196/Allegati/Dottorato/TESI/costarel/Sigmoidal_Approximation_Costarelli.pdf (accessed on 23 May 2025).
- Liu, X.; Wu, S.; Zhu, K.; Cai, Y.; Huang, Y. Mesoscopic lattice Boltzmann model for radiative heat transfer in graded-index media. Phys. Rev. Res. 2022, 4, 013125. [Google Scholar] [CrossRef]
- Žižka, J.; Bernatíková, Š.; Dudáček, A. Heat Stress During Firefighters Training for Intervention in Tunnels and Other Enclosed Spaces. Transp. Res. Procedia 2023, 74, 1444–1451. [Google Scholar] [CrossRef]
- Madrzykowski, D. Fatal Training Fires: Fire Analysis for the Fire Service; NIST Special Publication; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.
- Madrzykowski, D.; Kerber, S. Fire Fighting Tactics Under Wind Driven Fire Conditions: Laboratory Experiments; NIST Technical Note 1618; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2009. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1618.pdf (accessed on 23 May 2025).
- Kerber, S. Analysis of Changing Residential Fire Dynamics and Its Implications on Firefighter Operational Timeframes; NIST Technical Note 1797; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. Available online: https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1797.pdf (accessed on 23 May 2025).
- Kerber, S.; Madrzykowski, D. Effect of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction; NIST Technical Note 1629; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2009. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1629.pdf (accessed on 23 May 2025).
- Grimwood, P.; Hartin, E.; McDonough, J.; Raffel, S.H.A.N. 3D Fire Fighting: Training, Techniques, and Tactics; Fire Protection Publication: Stillwater, AK, USA, 2005; ISBN 978-0879392581. [Google Scholar]
- Fry, W.A.; Sidebottom, J.G.; Hughes, J.L.; Phelan, B.J. Characterizing a firefighter’s immediate thermal environment in live-fire training. Fire Technol. 2021, 57, 1705–1728. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model, 6th ed.; NIST Special Publication 1018; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. Available online: https://www.nist.gov/ (accessed on 23 May 2025).
- Hjertager, L.K.; Hjertager, B.H.; Solberg, T. CFD Modelling of Fast Chemical Reactions in Turbulent Liquid Flows. Comput. Chem. Eng. 2002, 26, 507–515. [Google Scholar] [CrossRef]
Temperature Level | Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | N | |||||||
a | b | c | a | b | c | a | b | c | |
S81 | −0.4661 | 2.4899 | −1.802 | −0.4723 | 1.3828 | −1.5246 | −0.4792 | 2.4241 | −1.802 |
S80 | −0.4696 | 2.4613 | −1.8733 | −0.4613 | 1.4671 | −1.5125 | −0.4911 | 2.3539 | −1.8733 |
S78 | −0.4739 | 2.3743 | −1.9282 | −0.4792 | 2.4241 | −1.7171 | −0.4947 | 2.2726 | −1.9282 |
S77 | −0.464 | 2.3587 | −1.9204 | −0.4911 | 2.3539 | −1.7895 | −0.4964 | 2.1918 | −1.9204 |
S76 | −0.4592 | 2.321 | −1.9265 | −0.4947 | 2.2726 | −1.8285 | −0.4961 | 2.1267 | −1.9265 |
S75 | −0.4644 | 2.1788 | −1.9313 | −0.4964 | 2.1918 | −1.8203 | −0.4905 | 2.0464 | −1.9313 |
S74 | −0.4676 | 2.0413 | −1.8626 | −0.4961 | 2.1267 | −1.8399 | −0.4736 | 2.0273 | −1.8626 |
S73 | −0.402 | 2.0828 | −1.9295 | −0.4905 | 2.0464 | −1.8264 | −0.4638 | 1.7058 | −1.9295 |
S71 | −0.3681 | 2.1482 | −1.9342 | −0.4736 | 2.0273 | −1.794 | −0.4642 | 2.4241 | −1.9342 |
S70 | −0.4723 | 1.3828 | −1.5246 | −0.4638 | 1.7058 | −1.6912 | −0.4723 | 2.4899 | −1.5246 |
Level and Time | Team A | Team B | Empty |
---|---|---|---|
Median Up 508 s | 374 °C | 507 °C | 465 °C |
Median Down 508 s | 52 °C | 52 °C | 100 °C |
S 78 1880 mm 508 s | 455 °C | 505 °C | 560 °C |
S72 680 mm 508 s | 45 °C | 50 °C | 100 °C |
Median Up 1400 s | 401 °C | 498 °C | 481 °C |
Median Down 1400 s | 54 °C | 55 °C | 103 °C |
S 78 1880 mm 1400 s | 500 °C | 580 °C | 580 °C |
S72 680 mm 1400 s | 50 °C | 52 °C | 105 °C |
Normalized Heat Flux Density Maximum | |||
---|---|---|---|
kW·m−2 | |||
Radiometer | No Team | Team A | Team B |
45° | 25.67 | 22.58 | 23.13 |
0° | 22.31 | 20.74 | 21.81 |
90° | 15.68 | 15.68 | 16.54 |
Left | 12.43 | 11.78 | 13.11 |
180° | 14.47 | 11.78 | 13.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hora, J. Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness. Fire 2025, 8, 304. https://doi.org/10.3390/fire8080304
Hora J. Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness. Fire. 2025; 8(8):304. https://doi.org/10.3390/fire8080304
Chicago/Turabian StyleHora, Jan. 2025. "Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness" Fire 8, no. 8: 304. https://doi.org/10.3390/fire8080304
APA StyleHora, J. (2025). Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness. Fire, 8(8), 304. https://doi.org/10.3390/fire8080304