Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. Selection of Indicators
2.3.2. LST Retrieval
2.3.3. Delineation and Recognition of Urban Functional Zones
2.3.4. The Urban Thermal Field Variation Index (UTFVI)
2.3.5. BRT and Spearman’s Analyses
3. Results
3.1. Zhengzhou Functional Area Identification Results
3.2. Seasonal Spatial Distribution of Landscape Architecture Indicators and LST
3.2.1. Seasonal Spatial Distribution of Architectural Landscape Indicators
3.2.2. Seasonal Spatial Distribution Characteristics of LST
3.3. Analysis of Indicators Affecting LST and Their Correlations
3.3.1. Correlation Analysis of Each Indicator with LST
3.3.2. Percentage of Relative Impact of Each Indicator
3.4. Quantifying the Effect of Indicators on LST Seasonality
3.5. Morphological Thresholds for Different UTFVI Levels
4. Discussion
4.1. Seasonal Impact of Architectural Landscape Characteristics on LST in Different Functional Zones
4.2. Suggested Implications for Future Urban Planning
- Residence Zones: The primary influential indicators in both spring and summer are FVC, PD, MBH, and FAI. Enhancing FVC above 13% in spring and 31.6% in summer is recommended to strengthen cooling effects and reduce heat accumulation. Additionally, maintaining MBH above 24 m can improve ventilation and shading, thereby enhancing thermal comfort in high-density residential environments.
- Industry Zones: Key drivers include FVC, MBH, FAI, LSI, and PD. Increasing FVC beyond 29.2% and integrating green buffer zones with adjacent vegetation can significantly improve thermal comfort during summer. When PD exceeds 144 persons per 0.1 hectare, thermal discomfort tends to rise, likely due to increased anthropogenic heat. Therefore, controlling population density and introducing green infrastructure are effective cooling strategies.
- Business Zones: FVC, MBH, FAI, and PD significantly affect thermal comfort. Maintaining FVC above 8% in spring and 26% in summer substantially improves thermal conditions, highlighting the importance of preserving green corridors and pocket parks amid high-rise developments. Moreover, an MBH of 26.8 m or greater enhances thermal performance, likely via improved urban ventilation and shading, indicating that vertical development strategies should be integrated with green infrastructure construction.
- Public Service zones: FVC, MBH, FAI, and PD are significant indicators influencing thermal comfort. FVC should exceed 15% in spring to enhance comfort, but in summer, it should be limited below 39.1% to avoid increased humidity and restricted ventilation due to dense vegetation. A spring FAI above 0.032 promotes wind permeability and should be incorporated into the design criteria for large public buildings.
- Green Land Zones: Important indicators include FVC, PD, FAI, and LSI. To maintain thermal comfort in summer, LSI should be kept below 0.0135. Additionally, when PD exceeds 63 persons per 0.1 hectare, thermal discomfort increases, suggesting the need for crowd management or shading interventions during peak hours (Figure 15).
4.3. Regulation and Management of Urban Green Space
4.4. Limitations and Future Research Directions
5. Conclusions
- (1)
- Residence zones constitute the largest portion (41%) of Zhengzhou’s urban landscape, followed by green land zones (29%) and industry zones (16%). The results demonstrate that residence zones exhibit substantial seasonal fluctuations in LST, with an average temperature increase of 24.71 °C from spring to summer, reaching a peak of 50.18 °C. This pronounced sensitivity highlights the critical need to optimize urban planning in residence zones to mitigate heatwave risks.
- (2)
- FVC demonstrates a consistent cooling effect across all functional zones and seasons, with the strongest influence observed during summer. Elevated FVC reduces LST primarily through evapotranspiration and shading, particularly in business and industry zones. Furthermore, landscape indicators generally dominate in most zones and seasons, with their relative contribution exceeding 45% in green land zones. These findings emphasize the critical role of landscape design in future urban planning, especially in densely populated or high-temperature regions.
- (3)
- PD plays a pivotal role in regulating LST, exerting a pronounced influence especially during the summer season. The impact of PD is context-dependent and seasonally variable, as it can either mitigate or exacerbate temperature fluctuations. Notably, higher population densities are associated with intensified warming effects during summer and autumn. These findings imply that strategic population distribution planning could serve as an effective measure to mitigate extreme temperature events.
- (4)
- The effects of the LSI and FAI on LST exhibit notable seasonal variability. MBH plays a significant role in temperature regulation, exerting a pronounced cooling effect particularly in residence and business zones. Tall buildings enhance shading and provide thermal insulation, thereby mitigating UHI effects. Additionally, POR is identified as a key factor that substantially increases LST in residence, industry, and business zones.
- (5)
- This study suggests adopting an integrated urban design approach. The specific strategies are as follows: a. residence zones: prioritize the regulation through building and vegetation coverage; b. industry zones: maintain vegetation coverage and adjust population density; c. business zones: focus on building height to enhance shading effects; d. public service zones: consider the windward facade area index of buildings as a regulatory indicator; and e. green land zones: increase the ratio of perimeter to area to maximize the cooling effect.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Yang, X.; Cui, P.; Sun, Y.; Song, B. Machine-Learning-Algorithm-Based Prediction of Land Use/Land Cover and Land Surface Temperature Changes to Characterize the Surface Urban Heat Island Phenomena over Harbin, China. Land 2024, 13, 1164. [Google Scholar] [CrossRef]
- Ashwini, K.; Sil, B.S.; Kafy, A.A.; Altuwaijri, H.A.; Nath, H.; Rahaman, Z.A. Harnessing Machine Learning Algorithms to Model the Association between Land Use/Land Cover Change and Heatwave Dynamics for Enhanced Environmental Management. Land 2024, 13, 1273. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization-induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Safarrad, T.; Ghadami, M.; Dittmann, A.; Pazhuhan, M. Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran). Land 2021, 10, 945. [Google Scholar] [CrossRef]
- Murage, P.; Hajat, S.; Kovats, R.S. Effect of night-time temperatures on cause and age-specific mortality in London. Environ. Epidemiol. 2017, 1, e005. [Google Scholar] [CrossRef] [PubMed]
- Cichowicz, R.; Bochenek, A.D. Assessing the effects of urban heat islands and air pollution on human quality of life. Anthropocene 2024, 46, 100433. [Google Scholar] [CrossRef]
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Asghari Saraskanroud, S.; Faramarzi Ouri, B.; Zeinali, B.; Mostafazadeh, R. Estimation of land surface temperature (LST) using single-channel and multi-band methods in Sablan mountainous region. Adv. Space Res. 2024, 74, 2915–2929. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, J.; Shi, J.; Shi, C.; Sun, S.; Liu, W. A data fusion method for generating hourly seamless land surface temperature from Himawari-8 AHI data. Remote Sens. 2022, 14, 5170. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Weng, S.-S.; Zeng, Z.-L.; Ding, M.-H.; Wang, Y.-Q.; Liang, Z. Hourly land surface temperature retrieval over the Tibetan Plateau using the Geo-LightGBM framework: Fusion of Himawari-8 satellite, ERA5, and site observations. Adv. Clim. Change Res. 2024, 15, 623–635. [Google Scholar] [CrossRef]
- Hou, H.; Longyang, Q.; Su, H.; Zeng, R.; Xu, T.; Wang, Z.-H. Prioritizing environmental determinants of urban heat islands: A machine learning study for major cities in China. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103411. [Google Scholar] [CrossRef]
- Hou, H.; Su, H.; Yao, C.; Wang, Z.-H. Spatiotemporal patterns of the impact of surface roughness and morphology on urban heat island. Sustain. Cities Soc. 2023, 92, 104513. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Y.; Strebel, D.; Fan, Y.; Ge, J.; Carmeliet, J. A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale. Sustain. Cities Soc. 2024, 112, 105628. [Google Scholar] [CrossRef]
- Hu, D.; Meng, Q.; Schlink, U.; Hertel, D.; Liu, W.; Zhao, M.; Guo, F. How do urban morphological blocks shape spatial patterns of land surface temperature over different seasons? A multiindicatorial driving analysis of Beijing, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102648. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Sun, F.; Liu, M.; Wang, Y.; Wang, H.; Che, Y. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and combined effects of 3D building features and urban green space on land surface temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef]
- Lin, A.; Wu, H.; Luo, W.; Fan, K.; Liu, H. How does urban heat island differ across urban functional zones? Insights from 2D/3D urban morphology using geospatial big data. Urban Clim. 2024, 53, 101787. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Liu, W.; Tan, Z.; Hu, S.; Ao, Z.; Li, J.; Xing, H. Exploring the seasonal effects of urban morphology on land surface temperature in urban functional zones. Sustain. Cities Soc. 2024, 103, 105268. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yang, R.; Xiao, X.; Xia, J. Contribution of urban functional zones to the spatial distribution of urban thermal environment. Build. Environ. 2022, 216, 109000. [Google Scholar] [CrossRef]
- Lehnert, M.; Pánek, J.; Kopp, J.; Geletič, J.; Květoňová, V.; Jurek, M. Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landsc. Urban Plan. 2023, 233, 104713. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Du, M.; Gao, S.; Wang, P.; Liu, X. The influence of spatial grid division on the layout analysis of urban functional areas. ISPRS Int. J. Geo-Inf. 2021, 10, 189. [Google Scholar] [CrossRef]
- Mo, Y.; Bao, Y.; Wang, Z.; Wei, W.; Chen, X. Spatial coupling relationship between architectural landscape characteristics and urban heat island in different urban functional zones. Build. Environ. 2024, 257, 111545. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Huang, H.; Wu, W.; Du, X.; Wang, H. The combined use of remote sensing and social sensing data in fine-grained urban land use mapping: A case study in Beijing, China. Remote Sens. 2017, 9, 865. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, T.; Wang, Z.; Gao, M.; Shen, H. Quantifying 3D building form effects on urban land surface temperature and modeling seasonal correlation patterns. Build. Environ. 2021, 204, 108132. [Google Scholar] [CrossRef]
- Bai, Z.Q.; Wang, J.L.; Yang, F. Research progress in spatialization of population data. Prog. Geogr. 2013, 32, 1692–1702. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, K.; Li, A.; Zhang, Y.; Wang, K.; Guo, N.; Wan, H.Y.; Tan, X.; Dong, N.; Xu, X.; et al. Spatial and seasonal variation and the driving mechanism of the thermal effects of urban park green spaces in Zhengzhou, China. Land 2024, 13, 1474. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Wang, M.; Zhang, Y. Identification of urban functional areas and urban spatial structure analysis by fusing multi-source data features: A case study of Zhengzhou, China. Sustainability 2023, 15, 6505. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Ge, Y.; Zhang, X.; Zhou, Y. A 100 m gridded population dataset of China’s seventh census using ensemble learning and big geospatial data. Earth Syst. Sci. Data 2024, 16, 3705–3718. [Google Scholar] [CrossRef]
- Tolan, J.; Yang, H.-I.; Nosarzewski, B.; Couairon, G.; Vo, H.V.; Brandt, J.; Spore, J.; Majumdar, S.; Haziza, D.; Vamaraju, J.; et al. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sens. Environ. 2024, 300, 113888. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, W.; Sun, J.; Xu, X.; Wang, R.; Lu, Y.; Zhang, S.; Zhou, W. Assessing the effects of 2D/3D urban morphology on the 3D urban thermal environment by using multi-source remote sensing data and UAV measurements: A case study of the snow-climate city of Changchun, China. J. Clean. Prod. 2021, 321, 128956. [Google Scholar] [CrossRef]
- Yang, L.; Yang, X.; Zhang, H.; Ma, J.; Zhu, H.; Huang, X. Urban morphological regionalization based on 3D building blocks—A case in the central area of Chengdu, China. Comput. Environ. Urban Syst. 2022, 94, 101800. [Google Scholar] [CrossRef]
- Guo, F.; Schlink, U.; Wu, W.; Hu, D.; Sun, J. A new framework quantifying the effect of morphological features on urban temperatures. Sustain. Cities Soc. 2023, 99, 104923. [Google Scholar] [CrossRef]
- Tang, L.; Zhan, Q.; Fan, Y.; Liu, H.; Fan, Z. Exploring the impacts of greenspace spatial patterns on land surface temperature across different urban functional zones: A case study in Wuhan metropolitan area, China. Ecol. Indic. 2023, 146, 109787. [Google Scholar] [CrossRef]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. The research of split-window algorithm on the MODIS. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 703–707. [Google Scholar]
- Deng, H.; Zhang, S.; Chen, M.; Feng, J.; Liu, K. Sensitivity of local climate zones and urban functional zones to multi-scenario surface urban heat islands. Remote Sens. 2024, 16, 3048. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—Current trends. Int. J. Remote Sens. 2010, 23, 2563–2594. [Google Scholar] [CrossRef]
- Qi, L.; Hu, Y.; Bu, R.; Li, B.; Gao, Y.; Li, C. Evaluation of the Thermal Environment Based on the Urban Neighborhood Heat/Cool Island Effect. Land 2024, 13, 933. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Z.; Zhou, X.; Shen, Y.; Shen, X.; Xu, Z. Investigating the effects of urban morphological indicators on seasonal land surface temperature in a “Furnace city” from a block perspective. Sustain. Cities Soc. 2022, 86, 104165. [Google Scholar] [CrossRef]
- Zhao, K.; Ning, Z.; Xu, C.; Zhao, X.; Huang, X. How do driving indicators affect the diurnal variation of land surface temperature across different urban functional blocks? A case study of Xi’an, China. Sustain. Cities Soc. 2024, 114, 105738. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Y.; Li, X.; Li, M.; Jing, W.; Yang, J.; Chen, Z.; Liu, T. Sub-Block Urban Function Recognition with the Integration of Multi-Source Data. Sensors 2022, 22, 7862. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Y.; Liu, B.; Yang, J.; Li, M.; Jing, W.; Chen, Z. GDP spatial differentiation in the perspective of urban functional zones. Cities 2024, 151, 105126. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef]
- Moisa, M.B.; Gemeda, D.O. Assessment of urban thermal field variance index and thermal comfort level of Addis Ababa metropolitan city, Ethiopia. Heliyon 2022, 8, e10185. [Google Scholar] [CrossRef] [PubMed]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Han, D.; An, H.; Wang, F.; Xu, X.; Qiao, Z.; Wang, M.; Sui, X.; Liang, S.; Hou, X.; Cai, H.; et al. Understanding seasonal contributions of urban morphology to thermal environment based on boosted regression tree approach. Build. Environ. 2022, 226, 109770. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Yu, W.; Wu, T. Combined effects of urban forests on land surface temperature and PM2.5 pollution in the winter and summer. Sustain. Cities Soc. 2024, 104, 105309. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, K.; Ren, Y.; Li, M.; Ji, R.; Wu, X.; Yan, H.; Lin, T.; Zhang, G.; Zhou, X.; et al. 3D compact form as the key role in the cooling effect of greenspace landscape pattern. Ecol. Indic. 2024, 160, 111776. [Google Scholar] [CrossRef]
- Chinchilla, J.; Carbonnel, A.; Galleguillos, M. Effect of urban tree diversity and condition on surface temperature at the city block scale. Urban For. Urban Green. 2021, 60, 127069. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, T.; Xuan, L.; Li, W.; Wang, X.; Dong, L.; Yu, K.; Wang, Y. The Scale-Dependent Differences in Cooling Efficiency of UGS in Different Functional Areas: A Case Study of Xi’an, China. Forests 2024, 15, 1946. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Yan, J.; Qian, Y.; Wang, J.; Li, W. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Phys. Chem. Earth 2019, 110, 149–156. [Google Scholar] [CrossRef]
- Zhao, Y.; Sen, S.; Susca, T.; Iaria, J.; Kubilay, A.; Gunawardena, K.; Zhou, X.; Takane, Y.; Park, Y.; Wang, X.; et al. Beating urban heat: Multimeasure-centric solution sets and a complementary framework for decision-making. Renew. Sustain. Energy Rev. 2023, 186, 113668. [Google Scholar] [CrossRef]
- Li, W.; Wu, T.; Xuan, L.; Zhu, K.; Yu, L.; Wang, Y.; Wang, X.; Yu, K. Quantifying and Mapping the Cooling Effect and Equity of Urban Parks during Extreme Heat Events in Coastal Cities. Land 2024, 13, 1607. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Xuan, L.; Yan, Z.; Wang, C.; Du, C.; Su, Y.; Duan, J.; Yu, K. How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China. Land 2024, 13, 1117. [Google Scholar] [CrossRef]
- Zhou, T.; Jia, W.; Yan, L.; Hong, B.; Wang, K. Urban park’s vertical canopy structure and its varied cooling effect under continuous warming climate. Urban Clim. 2024, 53, 101819. [Google Scholar] [CrossRef]
- Liu, A.; Ma, X.; Du, M.; Su, M.; Hong, B. The cooling intensity of green infrastructure in local climate zones: A comparative study in China’s cold region. Urban Clim. 2023, 51, 101631. [Google Scholar] [CrossRef]
- Yang, B.; Hong, B. Pocket park in urban regeneration of China: Policy and perspective. City Environ. Interact. 2023, 19, 100109. [Google Scholar] [CrossRef]
Data Type | Resolution | Resolution | Time | Cloud Cover | Data Sources |
---|---|---|---|---|---|
Imaging data | Landsat 8 OLI_TIRS | 30 m | 12 March 2023 (Spring) | 0.06% | United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/ (accessed on 11 March 2024)) |
18 June 2023 (Summer) | 0.23% | ||||
14 October 2023 (Autumn) | 0.14% | ||||
25 December 2023 (Winter) | 4.49% | ||||
POI data | / | / | 2023 | / | Gao De Map (https://www.amap.com/ (accessed on 13 March 2024)) |
Road network data | / | / | 2023 | / | OpenStreetMap (https://www.openstreetmap.org (accessed on 13 March 2024)) |
Building vector data | / | / | 2023 | / | Baidu’s online map (https://map.baidu.com (accessed on 13 March 2024)) |
Population density | / | 200 m | 2020 | / | (https://figshare.com/s/d9dd5f9bb1a7f4fd3734 (accessed on 10 March 2024)) [33] |
Global 1 m tree height | / | 1 m | 2020 | / | (https://registry.opendata.aws/dataforgood-fb-forests (accessed on 13 March 2024)) [34] |
Global lake boundary vector data | / | / | 2023 | / | OpenStreetMap (https://www.openstreetmap.org (accessed on 10 March 2024)) |
Wind data | Wind speed | Wind | Time | / | https://www.wunderground.com/ (accessed on 10 March 2024) |
N | 7 mph | Spring (12 March 2023) | / | ||
NNE | 7 mph | Summer (18 June 2023) | / | ||
NW | 11 mph | Autumn (14 October 2023) | / | ||
W | 4 mph | Winter (25 December 2023) | / |
Categories | Description |
---|---|
Residence Zones | Residential communities, apartments |
Industry Zones | Corporations |
Business Zones | Catering services, shopping services, domestic services, financial insurance services |
Public Service Zones | Public utilities, sports and leisure services, healthcare services, science, education and cultural services, government agencies and social organizations |
Green Land Zones | Parks and squares, and places of interest |
UTFVI | LST | UHI Phenomenon | Ecological Evaluation Index |
---|---|---|---|
<0 | <Tmean | None | Excellent |
0–0.005 | Tmean − 0.005 × Tmean + Tmean | Weak | Good |
0.005–0.01 | 0.005 × Tmean + Tmean − 0.01 × Tmean + Tmean | Middle | Normal |
0.01–0.015 | 0.01 × Tmean + Tmean − 0.015 × Tmean + Tmean | Strong | Bad |
0.015–0.02 | 0.015 × Tmean + Tmean − 0.02 × Tmean + Tmean | Stronger | Worse |
>0.02 | >0.02 × Tmean + Tmean | Strongest | Worst |
Function Type | 15 March 2023 (Spring) | 8 June 2023 (Summer) | 14 October 2014 (Autumn) | 25 December 2023 (Winter) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ave. | Min. | Max. | Ave. | Min. | Max. | Ave. | Min. | Max. | Ave. | Min. | Max. | |
Residence Zones | 18.76 °C | 14.49 °C | 23.24 °C | 43.47 °C | 35.30 °C | 50.18 °C | 26.65 °C | 23.69 °C | 31.71 °C | 4.26 °C | 0.57 °C | 7.98 °C |
Industry Zones | 20.72 °C | 15.69 °C | 22.97 °C | 44.41 °C | 35.47 °C | 50.78 °C | 27.87 °C | 23.54 °C | 31.74 °C | 5.36 °C | 0.83 °C | 8.02 °C |
Business Zones | 19.40 °C | 13.29 °C | 25.75 °C | 44.28 °C | 37.28 °C | 54.52 °C | 27.37 °C | 22.84 °C | 35.72 °C | 4.47 °C | −0.5 °C | 11.59 °C |
Public Service Zones | 19.79 °C | 16.19 °C | 23.25 °C | 44.12 °C | 39.48 °C | 50.62 °C | 27.41 °C | 24.78 °C | 31.34 °C | 4.86 °C | 1.25 °C | 7.72 °C |
Green Land Zones | 20.09 °C | 11.44 °C | 25.88 °C | 41.53 °C | 25.97 °C | 51.87 °C | 26.65 °C | 20.76 °C | 33.44 °C | 4.97 °C | 1.12 °C | 10.66 °C |
UTFVI (Summer) | Residence Zones (TEM) | Industry Zones (TEM) | Business Zones (TEM) | Public Service Zones (TEM) | Green Land Zones (TEM) |
<0 (excellent) | <43.47 | <44.41 | <44.28 | <44.12 | <41.53 |
0–0.005 (good) | 43.47–43.69 | 44.41–44.63 | 44.28–44.5 | 44.12–44.34 | 41.53–41.74 |
0.005–0.01 (normal) | 43.69–43.91 | 44.63–44.85 | 44.5–44.72 | 44.34–44.56 | 41.74–41.95 |
0.01–0.015 (bad) | 43.91–44.13 | 44.85–45.07 | 44.72–44.94 | 44.56–44.78 | 41.95–42.16 |
0.015–0.02 (worse) | 44.13–44.35 | 45.07–45.29 | 44.94–45.16 | 44.78–45 | 42.16–42.37 |
>0.02 (worst) | >44.35 | >45.29 | >45.16 | >45 | >42.37 |
UTFVI (Spring) | Residence Zones (TEM/QTY) | Industry Zones (TEM/QTY) | Business Zones (TEM/QTY) | Public Service Zones (TEM/QTY) | Green Land Zones (TEM/QTY) |
<0 (excellent) | <18.76 | <20.72 | <19.4 | <19.8 | <20.09 |
0–0.005 (good) | 18.76–18.85 | 20.72–20.82 | 19.4–19.5 | 19.8–19.9 | 20.09–20.19 |
0.005–0.01 (normal) | 18.85–18.94 | 20.82–20.92 | 19.5–19.6 | 19.9–20.0 | 20.19–20.29 |
0.01–0.015 (bad) | 18.94–19.03 | 20.92–21.02 | 19.6–19.7 | 20.0–20.1 | 20.29–20.39 |
0.015–0.02 (worse) | 19.03–19.12 | 21.02–21.12 | 19.7–19.8 | 20.1–20.2 | 20.39–20.49 |
>0.02 (worst) | >19.12 | >21.12 | >19.8 | >20.2 | >20.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xuan, L.; Li, C.; Wu, T.; Wang, Y.; Wang, Y.; Wang, X.; Wang, Y. Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China. Land 2025, 14, 1581. https://doi.org/10.3390/land14081581
Xu J, Xuan L, Li C, Wu T, Wang Y, Wang Y, Wang X, Wang Y. Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China. Land. 2025; 14(8):1581. https://doi.org/10.3390/land14081581
Chicago/Turabian StyleXu, Jiayue, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang, and Yong Wang. 2025. "Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China" Land 14, no. 8: 1581. https://doi.org/10.3390/land14081581
APA StyleXu, J., Xuan, L., Li, C., Wu, T., Wang, Y., Wang, Y., Wang, X., & Wang, Y. (2025). Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China. Land, 14(8), 1581. https://doi.org/10.3390/land14081581